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Abstract—This paper investigates the formation cooperation
problem of networked autonomous underwater vehicles (AUVs).
By considering the underwater communication environments, the
impulsive communication scheme with logarithmic quantization
is developed. Moreover, the effects of time-varying transmission
delays in the communication channels are taken into account.
By means of impulsive control theory, distributed controllers
are designed and sufficient conditions are derived for ensuring
the desired formation. The simulation results are provided to
demonstrate the effectiveness of our theoretical results.

I. INTRODUCTION

Autonomous underwater vehicles (AUVs) are promising

for accomplishing various underwater tasks [1], [2], [3].

Particularly, cooperation of multiple AUVs has become an

active research area to meet the increasing demands that can

not be done by a single AUV. Compared with traditional

control on a single AUV, advantages can be obtained by

cooperative control of multiple AUVs including improving

efficiency and robustness, and reducing the costs [4], [5].

The formation problem of AUVs, as an important issue of

cooperative control, has attracted much attention in recent

years and has wide applications in underwater mapping, mine

localization, sea inspection, etc. With this background, some

effective formation control strategies have been developed for

AUVs [6], [7].

It should be pointed out that most of the existing results for

the AUVs rely on the restrictive continuous-time underwater

communication model. Unfortunately, this assumption may

be not practical for the underwater information exchanges

due to the constraints on the underwater communications. So

far, most effective underwater communications are based on

the underwater acoustic communication or optical devices,

such that continuous-time information exchanges in the weak

underwater communication environment are too expensive or

unavailable [4], [7], [8]. Especially, transmission delays are

inevitable in the underwater information exchanges. This is

partly due to the congestion of the communication channels or

the finite transmission speed by the underwater medium trans-

mitting the information among the AUVs. As is well known,

the delay effects may degrade or even destroy the formation

performance. Thus, delay issues should be addressed in the

early stage of formation design. Another practical problem of

the formation control is the limit communication capabilities

[9], [10], [11]. As a result, it is very important to consider

quantized effects during the information exchanges. Up until

now, to the best of the authors’ knowledge, how to achieve

the formation of multiple AUVs with considerations of real

world underwater communications has seldom been discussed

despite its significance in both theory and applications.

Motivated by the above discussions, we deal with the for-

mation problem of multiple AUVs by adopting the impulsive

communication strategy in this paper. Furthermore, the time-

varying transmission delays in the communication channels

are taken into account in the formation problem, which is

more widely applicable for the real world applications. In

particular, since the multiple AUVs communicate with each

other with limited communication resources, the quantized

effect of information exchanges is considered to model the real

communication environment of underwater communication

networks with limited bandwidth. It is noteworthy that our

proposed scheme can be directly extended to other multi-agent

systems with communication constraints and limited energy

supplies.

The remainder of our paper is arranged as follows. Section
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2 introduces some necessary preliminaries and formulates

the formation problem. In Section 3, distributed controllers

for AUVs with impulsive networking scheme are developed

by considering the quantized effects and time-varying trans-

mission delays. Moreover, sufficient criteria are established

on the basis of impulsive control theory. Section 4 gives

the simulation results for verifying the effectiveness of our

proposed method and Section 5 concludes the paper.

Notation: Rn and R
m×n represents the n dimensional

Euclidean space and the space of m×n matrices, respectively.

A−B > 0(A−B < 0) means that A−B is positive definite

(negative definite). A ⊗ B stands for Kronecker product. sα
and cα denote sinα and cosα, respectively. λmin(P ) and

λmax(P ) denote the largest and the smallest eigenvalues of

the symmetric matrix P .

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Autonomous underwater vehicle (AUV) dynamics

We are considering a group of N AUVs indexed by the set

I = {1, 2, · · · , N}. By defining the global coordinate frame

{E} and the body-fixed reference frame {B}, the translational

dynamics with fixed attitude of the ith AUV, i ∈ I can be

described by [12]{
ṗi = Ji(Θi)vi,
Miv̇i = −Di(vi)vi − gi(Θi) + τi,

(1)

where pi = [xi, yi, zi]
T and Θi = [φi, θi, ψi]

T represent the

generalized position and attitude (described by Euler angles,

i.e., roll φi, pitch θi, and yaw ψi angles) in the global coor-

dinate frame {E}, respectively; Ji(Θi) denotes the kinematic

transformation matrix from {B} to {E} with

Ji(Θi) =

[
Ji(Θi)1 Ji(Θi)2
−sθi , Ji(Θi)3

]
,

Ji(Θi)1 =

[
cϕicθi −sϕicφi + cϕisθisφi

sϕicθi cϕicφi + sφisθisϕi

]
,

Ji(Θi)2 =

[
sϕisφi + cϕicφisθi

−cϕisφi + sθisϕicφi

]
,

Ji(Θi)3 =
[
cθisφi cθicφi

]
,

v = [ui, υi, ωi]
T represents the generalized linear velocity;

τi = [τi1, τi2, τi3]
T ∈ R

3 denotes the control input; Mi,

Di(vi) and gi(Θi) are the inertia matrix, the damping matrix

and the restoring force vector, respectively.

B. Graph theory

An undirected graph G = {V, E ,A}, I = {1, · · · , N} is

adopted for describing the communication topology of AUVs,

where V(G) = {v1, · · · , vN} and E denote the sets of nodes

and edges, respectively. A = [aij ] ∈ R
N×N is the weighted

adjacency matrix. aij > 0 if (vi, vj) ∈ E and aij = 0
otherwise. The Laplacian L = [lij ] ∈ R

N×N can be defined

as lii =
∑N

j=1,j �=i aij and lij = −aij , i 
= j. An undirected

graph is connected if and only if there exists an undirected

path between any two vertices in it.

C. Formation objective

The formation is defined with a prescribed configuration in

{E}, which is given by

lim
t→∞pi − pj = dij , ∀i ∈ I, j ∈ Ni, (2)

lim
t→∞vi = vj , ∀i ∈ I. (3)

where dij ∈ R
3 is a constant configuration vector.

Before proceeding, we introduce the following significant

lemmas for the subsequent analysis.

Lemma 1. [13] Consider the following differential inequali-
ties:

ḟ(t) ≤ − αf(t) + β|ft|, t 
= tk,

f(tk) ≤akf(t
−
k ) + bk|ft−k |,

where f(t) ≥ 0, ft(s) = f(t + s), s ∈ [−τ, 0], |ft| =
supt−τ≤s≤t f(s), |ft− | = supt−−τ≤s≤t− f(s) and f(t0) is
a continuous function.

Suppose that α > β ≥ 0 and there exists a scalar δ > 1,
such that tk − tk−1 > δτ , then

f(t) ≤ ρ1ρ2 · · · ρk+1e
kλτ |ft0 |e−λ(t−t0),

where t ∈ [tk, tk+1], ρi = max{1, ai + bie
λτ}, i =

1, 2, . . . , k + 1 and λ is the unique positive root of equation
λ = α − βeλτ . In particular, if

v = sup
k=1,2,...

{1, ak + bke
λτ},

then
f(t) ≤ v|ft0 |e−(λ−ln veλτ )/δτ(t−t0).

Lemma 2. [14] For any constant matrices with appropriate
dimensions A and B and any positive matrix Q, the following
inequality is satisfied:

ATB +ABT ≤ ATQA+BTQ−1B.

III. MAIN RESULTS

In this section, the impulsive communication scheme with

quantized effects and time-varying transmission delays is

developed. Based on this scheme, the design procedure of the

corresponding distributed formation controllers for AUVs are

given.

Let υi := Ji(Θi)vi, i ∈ I and one can obtain that⎧⎨⎩
ṗi = υi,
υ̇i = −Ji(Θi)M

−1
i Di(J

−1
i (Θi)υi)J

−1
i (Θi)υi

− Ji(Θi)M
−1
i gi(Θi) + Ji(Θi)M

−1
i τi.

Consequently, the distributed formation controller for each

AUV is designed as follows:

τi =Di(J
−1
i (Θi)υi)J

−1
i (Θi)υi + gi(Θi) − kMiJ

−1
i (Θi)υi

− MiJ
−1
i (Θi)

∞∑
k=1

{ρ
N∑

j=1,j �=i

aij [((pi − di) − (pj − dj))

+ (υi − υj)]}δ(t − tk), i ∈ I, (4)
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where ρ > 0, k > 0, di > 0 denotes formation configuration of

the ith AUV with dij = di−dj , Dirac function δ(t) denotes the

impulsive effects at the time moment t = tk, the time sequence

{tk} with 0 = t0 < t1 < · · · < tk < · · · , lim
k→∞

tk = ∞ forms

a strictly increasing sequence in the time interval [0,∞). The

impulsive distance is defined by Δtk = tk−tk−1, k = 1, 2, . . ..

It should be pointed out that in the underwater communica-

tion environments, the transmission delays always exist, which

can affect the information communicated among the AUVs. By

denoting τk ≤ τ , τ > 0 as the transmission delays at the time

moment t = tk, (4) can be rewritten as

τi =Di(J
−1
i (Θi)υi)J

−1
i (Θi)υi + gi(Θi) − kMiJ

−1
i (Θi)υi,

− MiJ
−1
i (Θi)

∞∑
k=1

{ρ
N∑

j=1,j �=i

aij [((pi(t − τk) − di)

− (pj(t − τk) − dj)) + (υi(t − τk)

− υj(t − τk))]}δ(t − tk), i ∈ I. (5)

Remark 1. The transmission delays are important and prac-
tical issues for the underwater communications. Furthermore,
the transmission delays can be time-varying such that time-
varying transmission delays should be modeled.

Fig. 1. The logarithmic quantizer

In addition, the quantized effects should be considered for

the underwater communications, since underwater signals have

to be quantized with an appropriate precision due to the

limited bandwidth of communication network. In this paper,

the logarithmic quantizer q(·) : R → Γ is utilized to model

the quantized effects. The quantizer q(·) is called logarithmic

if it has the form

Γ = {wi = μiw0, i = 0,±1,±2, . . .} ∪ {0}, w0 > 0,

where μ ∈ [0, 1]. The associated quantizer q(·) shown in Fig.

1 is defined as follows

q(x) =

⎧⎨⎩
wi, if 1

1+κwi < x ≤ 1
1−κwi,

0, if x = 0,
−q(−x), if x < 0,

(6)

where κ = 1−μ
1+μ is called sector bound [15]. The quantization

density for quantizer (6) is defined as −2
lnμ . It can be found

that a small μ means coarse quantization and a large μ implies

dense quantization. Then, the quantization error satisfies the

following sector bound condition:

q(x) − x = Ωx, ∃Ω ∈ [−κ, κ], ∀x ∈ R,

such that

(1 − κ)x ≤ q(x) ≤ (1 + κ)x.

Hence, the distributed formation control input is rewritten

as

τi =Di(J
−1
i (Θi)υi)J

−1
i (Θi)υi + gi(Θi) − kMiJ

−1
i (Θi)υi,

− MiJ
−1
i (Θi)

∞∑
k=1

{ρ
N∑

j=1,j �=i

aijσij [(q(pi(t − τk) − di)

− q(pj(t − τk) − dj)) + (q(υi(t − τk))

− q(υj(t − τk)))]}δ(t − tk), i ∈ I. (7)

Based on the above results, the following theorem is pro-

vided for solving the prescribed formation problem of AUVs.

Theorem 1. The formation can be achieved if the communi-
cation topology is connected and there exist constants ρ > 0,
δ∗ > 0, α > 0, ε > 0 and matrix P > 0 with appropriate
dimensions, such that the following inequalities hold:

inf
k=1,2,...

{tk − tk−1} > δ∗τ,

PA + ATP + αP < 0,

δ∗ >
ln(ρ∗ exp(ατ))

ατ
,

where ρ∗ = max{1, a+ b exp(ατ)} and

a = (1 + ρε),

b = ρ(1 + κ)λmax(LT L)/ε,

A=

[
0 I3N
0 −kI3N

]
,

L=
[

0 0
L ⊗ I3 L ⊗ I3

]
.

Proof. By denoting p̃i := pi − di, it can be obtained that

q(p̃i(t − τk)) − p̃i(t − τk) = Ωip̃i(t − τk).
Then, the closed loop dynamics of the networked AUVs can

be obtained as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̃p = υ,
υ̇ = −kυ, t 
= tk,
Δυ = −ρ(L ⊗ I3)q(p̃(t − τk)) − ρ(L ⊗ I3)q(υ(t − τk))

= −ρ((L ⊗ I3)(I3N + Ω̃))p̃(t − τk)

− ρ((L ⊗ I3)(I3N + Ω̃))υ(t − τk)

= −ρ(L(IN + Ω̃) ⊗ I3)p̃(t − τk)

− ρ(L(IN + Ω̃) ⊗ I3)υ(t − τk), t = tk,
(8)

where

p̃ : = [p̃T1 , p̃
T
2 , . . . , p̃

T
N ]T ,

υ : = [υT
1 , υ

T
2 , . . . , υ

T
N ]T .
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It can be found that the formation can be achieved asymp-

totically if for any initial value p̃(0), υ(0) ∈ R
3N , p̃i → p̄ :=

1
N

∑N
j=1 p̃i(t), υi → ῡ := 1

N

∑N
j=1 υi(t) as t → ∞.

Consequently, it can be obtained that

p̃ =p̄1+εp̃,

υ =ῡ1+ευ,

where 1 =[1, 1, . . . , 1]T ∈ R
3N , εp̃ and ευ are the disagree-

ment vectors satisfying 1T εp̃ = 0 and 1T ευ = 0. It follows

that ⎧⎪⎪⎨⎪⎪⎩
ε̇p̃ = ευ,
ε̇υ = −kευ, t 
= tk,

Δευ = −ρ(L(IN + Ω̃) ⊗ I3)εp̃(t − τk)

− ρ(L(IN + Ω̃) ⊗ I3)ευ(t − τk), t = tk,

which can be further rewritten as{
δ̇(t) = Aδ(t), t 
= tk,
Δδ(t) = ρBδ(t − τk), t = tk,

where A is defined in Theorem 1 and

δ(t) :=
[
εTp̃ , ε

T
υ

]T
,

B :=

[
0 0

(−L(IN + Ω̃) ⊗ I3) (−L(IN + Ω̃) ⊗ I3)

]
.

Choose the Lyapunov function as follows

V (t) = δT (t)Pδ(t), (9)

and define the Dini derivative of V (t) by

D+V (t) = lim
h→0+

sup[V (t+ h) − V (t)]/h.

As a result, for t ∈ [tk−1, tk), it can be derived from

Theorem 1 that

D+V (t) =δ̇T (t)δ(t) + δT (t)δ̇(t)

= δT (t)(PA + ATP )δ(t)

≤ − αδT (t)Pδ(t). (10)

.

In addition, for t = tk, it can be derived by Lemma 2 that

V (t+k ) =δT (t+k )δ(t
+
k )

=[δT (tk) + ρδT (t − τk)BT ]×
[δ(tk) + ρBδ(t − τk)]

=δT (tk)δ(tk) + 2ρBT δT (t − τk)δ(tk)

+ ρ2δT (t − τk)BT Bδ(t − τk)

≤δT (tk)δ(tk) + ρεδT (tk)δ(tk)

+
ρBT B

ε
δT (t − τk)δ(t − τk)

≤aV (tk) + bV (t − τk), (11)

where ε > 0 is a constant, a = (1 + ρε), b = ρ(1 +

κ)λmax(LT L)/ε, L =

[
0 0

L ⊗ I3 L ⊗ I3

]
.

By Lemma 1, it can be obtained that if the inequalities in

Theorem 1 can be satisfied, then it follows that

V (t) ≤ ρ∗|V (t0)| exp{−(α − ln ρ∗eατ )/δ∗τ(t − t0)},

and

‖δ(t)‖ ≤
√

ρ∗

λmin{P} |V (t0)| exp{− 1
2 (α − ln ρ∗eατ )
δ∗τ(t − t0)

},

which implies that δ(t) → 0 as t → ∞. Therefore, it follows

that εp̃ → 0 and εv → 0 as t → ∞, which completes the

proof.

Remark 2. It is worth mentioning that the so-called syn-
chronization (consensus) problem can also be solved with the
proposed approach by choosing di = 0.

IV. ILLUSTRATIVE EXAMPLE

In this section, the feasibility and effectiveness of our

proposed scheme is demonstrated by the following simulation

example.

Consider a group of 4 AUVs with identical dynamics,

where the parameters are given by Mi = diag{150, 120, 120},
Di(vi) = diag{100 + 80|ui|,+60|υi|, 80 + 60|ωi|}, and φi =
−π/8 , θi = π/12 , ψi = π/4, ∀i ∈ I. Fig. 2 shows the

communication topology of AUVs.

Fig. 2. The communication topology of AUVs

In the simulation, the impulsive interval is set as Δtk =
0.5s. The time-varying delays are set as τk = {0.1, 0.2, 0.3}s.

The parameter of the logarithmic quantizer is chosen by

μ = 0.65. Moreover, set ρ = 50 and k = 10. The initial

conditions are assumed to be pi = vi = 0 and the configu-

ration parameters are given as d1 = [0; 4; 0], d2 = [4; 4; 0],
d3 = [4; 0; 0] and d4 = [0; 0; 0]. Figs. 3-4 show the simulation

results of the formation procedure for the AUVs, which can

support our theoretical results.
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Fig. 3. The generalized position of AUVs
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Fig. 4. The generalized linear velocity of AUVs

V. CONCLUSION

This paper addresses the formation problem of AUVs by the

method of impulsive information exchanges with quantized

effects and transmission delays. The impulsive information

exchanges are adopted for more practical underwater com-

munications. By means of impulsive control theory, we have

developed sufficient conditions for ensuring the prescribed

formation configuration. The simulation results are provided

for illustrating the effectiveness of the proposed formation

design. An interesting further extension can be the cases with

randomly transmission delays or data packet dropouts.
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