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Abstract

Correlation filter (CF) based trackers are currently

ranked top in terms of their performances. Nevertheless,

only some of them, such as KCF [26] and MKCF [48], are

able to exploit the powerful discriminability of non-linear

kernels. Although MKCF achieves more powerful discrim-

inability than KCF through introducing multi-kernel learn-

ing (MKL) into KCF, its improvement over KCF is quite lim-

ited and its computational burden increases significantly in

comparison with KCF. In this paper, we will introduce the

MKL into KCF in a different way than MKCF. We refor-

mulate the MKL version of CF objective function with its

upper bound, alleviating the negative mutual interference

of different kernels significantly. Our novel MKCF tracker,

MKCFup, outperforms KCF and MKCF with large margins

and can still work at very high fps. Extensive experiments

on public data sets show that our method is superior to

state-of-the-art algorithms for target objects of small move

at very high speed.

1. Introduction

Visual object tracking is one of the most challenging

problems in computer vision [49, 28, 32, 42, 35, 39, 36, 38,

29, 59, 57, 23, 50, 6, 46]. To adapt to unpredictable vari-

ations of object appearance and background during track-

ing, the tracker could select a single strong feature that is

robust to any variation. However, this strategy has been

known to be difficult [51, 20], especially for a model-free

tracking task in which no prior knowledge about the target

object is known except for the initial frame. Therefore, de-

signing an effective and efficient scheme to combine several

complementary features for tracking is a reasonable alterna-

tive [54, 56, 33, 16, 1, 53, 60, 58].

Since 2010, correlation filter based trackers (CF track-

ers) have been being proposed and almost dominated the
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Figure 1. Qualitative comparison of our novel multi-kernel cor-

relation filters tracker, MKCFup, with state-of-the-art trackers,

KCF [26], MKCF [48], SRDCF [12], and ECO HC [9] on chal-

lenging sequences, singer2 and freeman4 of OTB2013 [55] and

ski long and running 100 m 2 of NfS [17].

tracking domain in recent years [4, 25, 16, 10, 26, 13, 15,

5, 8, 43, 14, 41, 37]. Bolme et al. [4] reignited the interests

in correlation filters in the vision community by proposing

a CF tracker, called minimum output sum of squared er-

ror (MOSSE), with classical signal processing techniques.

MOSSE used a base image patch and several virtual ones

to train the correlation filter directly in the Fourier domain,

achieving top accuracy and fps then. Later, the expres-

sion of MOSSE in the spatial domain turned out to be the

ridge regression [45] with a linear kernel [25]. Therefore,

in order to exploit the powerful discriminability of non-

linear kernels, Henriques et al. [25, 26] utilized the cir-

culant structure produced by a base sample to propose an

efficient kernelized correlation filter based tracker (KCF).

Danelljan et al. [16] extended the KCF with the historically

weighted objective function and low-dimensional adaptive

color channels. To adaptively employ complementary fea-

tures in KCF, Tang and Feng [48] derived a multi-kernel
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learning (MKL) [44] based correlation filter (MKCF) which

is able to take advantage of the invariance-discriminative

power spectrums of various features [51] to improve the lo-

cation performance. By introducing a mask on the sam-

ples into the loss item of correlation filter formulation, Ga-

loogani et al. [19] proposed the correlation filter with lim-

ited boundaries (CFLB) to address the boundary effect [31].

And Danelljan et al. [12] introduced a smooth spatial regu-

larization factor within the regularizer to restrain the bound-

ary effect. In [9], Danelljan et al. employed the dimen-

sionality reduction, linear weighting of features, and sample

clustering to further improve the SRDCF proposed in [12]

in both location accuracy and fps.

Up till now, there are at least two principal lines to im-

prove MOSSE and KCF. The first one is to weight the fil-

ter or samples with a mask in MOSSE or the KCF of lin-

ear kernel, alleviating the negative boundary effect greatly

and improving the location performance remarkably. How-

ever, the trackers on this line, such as CFLB, SRDCF, C-

COT [15], and ECO HC [9], are unable to employ power-

ful non-linear kernels. And the other line is to improve the

objective function of KCF, such as designing more compli-

cated objective functions [2], or introducing the MKL into

KCF to adaptively exploit multiple (non-linear) kernels. Al-

though MKCF, the MKL version of KCF, is more discrimi-

native than KCF, its improvement over KCF is quite limited

because different kernels of MKCF may restrict each other

in training and updating. And unfortunately, the computa-

tional cost of MKCF increases significantly in comparison

to KCF. Specifically, the MKCF’s improvement over KCF

on AUC is only about 2% ∼ 3%, while its fps drops dramat-

ically from averagely about 300 of KCF to 30. It is noticed

that such an improvement of introducing MKL into KCF is

similar to that of introducing MKL into single kernel binary

classifier [51], where the improvement of MKL version is

about 2%.

In this paper, we will introduce the MKL into KCF

in a different way than [48] to adaptively exploit multi-

ple complementary features and non-linear kernels more

effectively than in MKCF. We reformulate the MKL ver-

sion of CF objective function with its upper bound, al-

leviating the negative mutual interference of complemen-

tary features significantly while keeping very large fps. In

fact, our novel MKCF tracker, i.e., MKCFup, outperforms

KCF and the KCF with scaling on AUC about 16% and

7%, respectively, at about 150 fps. A qualitative compari-

son shown in Fig. 1 indicates that our novel tracker, MKC-

Fup, outperforms other state-of-the-art trackers in challeng-

ing sequences singer2 and freeman4 of OTB2013 [55] and

ski long and running 100 m 2 of NfS [17].

The remainder of this paper is organized as follows. In

Sec.2, we briefly overview the related work. Sec.3 first

simplifies the solution of MKCF, then analyzes its short-

coming, and finally derives a novel multi-kernel correlation

filter with the upper bound of objective function. Sec.4 pro-

vides some necessary implementation details. Experimental

results and comparison with state-of-the-art approaches are

presented in Sec.5. Sec.6 summarizes our work.

2. Related Work

Multi-kernel learning (MKL) aims at simultaneously

learning a kernel and the associated predictor in supervised

learning settings. Rakotomamonjy et al. [44] proposed

an efficient algorithm, named SimpleMKL, for solving the

MKL problem through reduced gradient descent in a pri-

mal formulation. Varma and Ray [51] extended the MKL

formulation in [44] by introducing an additional constraint

on combinational coefficients and applied it to object clas-

sification. Vedaldi et al. [52] and Gehler and Nowozin [20]

applied MKL based approaches to object detection and clas-

sification. Cortes et al. [7] studied the problem of learn-

ing kernels of the same family with an L2 regularization

for ridge regression (RR) [45]. Tang and Feng [48] ex-

tended the MKL formulation of [44] to RR, and presented

a different multi-kernel RR approach. In this paper, differ-

ently from all above approaches, we derive a novel multi-

kernel correlation filter through optimizing the upper bound

of multi-kernel version of KCF’s objective function.

In addition to the correlation filter based trackers afore-

mentioned, generalizations of KCF to other applications

have also been proposed [3, 18, 24] in recent years. And

Henriques et al. [27] utilized the circulant structure of Gram

matrix to speed up the training of pose detectors in the

Fourier domain. It is noted that all these approaches are un-

able to employ multiple kernels or non-linear kernels simul-

taneously. In this paper, we propose a novel multi-kernel

correlation filter which is able to fully take advantage of

invariance-discriminative power spectrums of various fea-

tures at really high speed.

3. Multi-kernel Correlation Filters with Upper

Bound

In this section, we will first review the multi-kernel cor-

relation filter (MKCF) [48], simplify its optimization, then

analyze its drawback, and finally derive a novel multi-kernel

correlation filter with upper bound. Readers may refer

to [44, 21] for more details on multi-kernel learning.

3.1. Simplified Multi­kernel Correlation Filter

The goal of a ridge regression [45] is to solve the

Tikhonov regularization problem,

min
f

1

2

l−1
∑

i=0

(f(xi)− yi)
2 + λ||f ||2k, (1)
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where l is the number of samples, f lies in a bounded con-

vex subset of an RKHS defined by a positive definite kernel

function k(, ), xis and yis are the samples and their regres-

sion targets, respectively, and λ ≥ 0 is the regularization

parameter.

As a special case of ridge regression, correlation filters

generate their training set {xi|i = 0, . . . , l−1} by cyclically

shifting a base sample, x ∈ R
l, such that xi = Pi

lx, where

Pl is the permutation matrix of l × l [26], and the yis are

often Gaussian labels.

By means of the Representer Theorem [47], the optimal

solution f∗ to Problem (1) can be expressed as f∗(x) =
∑l−1

i=0 αik(xi,x). Then, ||f ||2k = α
⊤Kα, where α =

(α0, α1, . . . , αl−1)
⊤, and K is the positive semi-definite

kernel matrix with κij = k(xi,xj) as its elements, and

Problem (1) becomes

min
α∈Rl

1

2
||y −Kα||22 +

λ

2
α

⊤Kα (2)

for α, where y = (y0, y1, . . . , yl−1)
⊤.

It has been shown that using multiple kernels instead of a

single one can improve the discriminability [34, 51]. Given

the base kernels, km, where m = 1, 2, . . . ,M , a usual ap-

proach is to consider k(xi,xj) to be a convex combina-

tion of base kernels, i.e., k(xi,xj) = d⊤k(xi,xj), where

k(xi,xj) = (k1(xi,xj), k2(xi,xj), . . . , kM (xi,xj))
⊤,

d = (d1, d2, . . . , dM )⊤,
∑M

m=1 dm = 1, and dm ≥ 0.

Hence we have K =
∑M

m=1 dmKm, where Km is the mth

base kernel matrix with κm
ij = km(xi,xj) as its elements.

Substituting K for that in (2), we obtain the constrained op-

timization problem as follows.

min
α,d

F (α,d),

s.t.
∑M

m=1 dm = 1,

dm ≥ 0, m = 1, . . . ,M,

(3)

where

F (α,d) =
1

2

∥

∥

∥

∥

∥

y −

M
∑

m=1

dmKmα

∥

∥

∥

∥

∥

2

2

+
λ

2
α

⊤

M
∑

m=1

dmKmα.

(4)

The optimal solution to Problem (3) can be expressed as

f∗(x) =

l−1
∑

i=0

αid
⊤k(xi,x). (5)

Given d in Problem (3), we get an unconstrained

quadratic programming problem w.r.t. α. And given α,

Problem (3) is the constrained quadratic programming w.r.t.

d. Let {Km} be positive semi-definite. Then, it is clear that

given d, F (α,d) is convex w.r.t. α, and given α, F (α,d)
is convex w.r.t. d.

To solve for α, let ∇αF (α,d) = 0; it is achieved that

α =

(

M
∑

m=1

dmKm + λI

)−1

y, (6)

where I is an l × l identity matrix. And d can be deter-

mined with the quadprog function in Matlab’s optimiza-

tion toolbox. Initially, ∀m, dm = 1/M . Then, because

F (α,d) ≥ 0, alternately evaluating Eq. (6) with fixed d

and invoking the quadprog function with fixed α for d will

achieve a local optimal solution (α∗,d∗).

3.1.1 Fast Evaluation in Training

As stated in Sec. 3.1, the training samples are cyclically

shifting in correlation filters. Therefore, the optimization

processes of α and d can be speeded up by means of the

fast Fourier transform (FFT) pair, F and F−1.

At first, the evaluation of first rows kms of kernel matri-

ces Kms can be accelerated with FFT because the samples

are circulant [25, 26]. Because Kms are circulant [25], the

inverses and the sum of circulant matrices are circulant [22].

Then the evaluation of Eq. (6) can be accelerated as

α = F−1





F(y)

F
(

∑M
m=1 dmkm

)

+ λ



 . (7)

According to Eq. (4), given α, the optimization function

F (d;α) w.r.t. d can be expressed as

F (d;α) =
1

2
d⊤Add+

1

2
d⊤Bd +

1

2
y⊤y, (8)

where

Ad =









α
⊤K⊤

1 K1α · · · α
⊤K⊤

1 KMα

...
. . .

...

α
⊤K⊤

MK1α · · · α
⊤K⊤

MKMα









, (9)

and

Bd =
(

b⊤
d
K1α, . . . ,b⊤

d
KMα

)⊤
, (10)

bd = λα − 2y. The evaluation of Ad and Bd can be ac-

celerated by evaluating Kmα with F−1(F∗(km)⊙F(α)),
where m = 1, . . . ,M .

3.1.2 Fast Detection

According to Eq. (5), the MKCF evaluates the responses

of all test samples zn = Pn
l z, n = 0, 1, . . . , l − 1, in the

current frame p+ 1 as

yn(z) =

M
∑

m=1

dm

l−1
∑

i=0

αikm(zn,x
p
m,i), (11)
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where z is the base test sample, x
p
m,i = Pi

lx
p
m, xp

m is the

weighted average of the mth feature of historical locations

till frame p. Formally,

xp
m = (1− ηm)xp−1

m + ηmR(D(ι(p), s∗p), ζ,m), (12)

where ηm ∈ [0, 1] is the learning rate of kernel m for the

appearance of training samples, ι(p) and s∗p are the optimal

location and scale of target object in frame p, respectively, ζ
is the pre-defined scale for the image sequence, D(ι(p), s∗p)
is the image patch determined by ι(p) and s∗p in frame p,

R(D, ζ,m) denotes D re-sampled by ζ for kernel m, and

x0
m is the feature in the initial frame.

Because km(, )’s are permutation-matrix-invariant, the

response map, y(z), of all virtual samples generated by z

can be evaluated as

y(z) ≡ (y0(z), . . . , yl−1(z))⊤ =

M
∑

m=1

dmC(kp
m)α, (13)

where kp
m = (kpm,0, . . . , k

p
m,l−1), k

p
m,i = km(z,Pi

lx
p
m),

and C(kp
m) is the circulant matrix with kp

m as its first row.

Therefore, the response map can be accelerated as follows.

y(z) =

M
∑

m=1

dmF−1 (F∗(kp
m)⊙F(α)) . (14)

The element of y(z) which takes the maximal value is ac-

cepted as the optimal location of object in frame p+1. And

the target’s optimal scale is determined with fDSST [14].

3.2. Shortcoming of Multi­kernel Correlation Filter

In order to achieve the robust performance of location,

MKCF is updated with the weighted average of histori-

cal samples. To improve the location performance further,

we would like to train a common MKCF (i.e., common α

and d) for the historical samples, just like what was done

in [16]. Then, the optimization function should be as fol-

lows.

Fe(α,d) =

p
∑

j=1

βj





1

2

∥

∥

∥

∥

∥

y −
M
∑

m=1

dmKj
mα

∥

∥

∥

∥

∥

2

2

+
λ

2
α

⊤

M
∑

m=1

dmKj
mα





=
1

2

M
∑

m=1

p
∑

j=1

βj
(

y⊤y − 2dmy⊤Kj
mα+ λdmα

⊤Kj
mα

)

+
1

2

p
∑

j=1

βj
α

⊤

M
∑

m=1

dmKj
m

M
∑

m=1

dmKj
mα,

where βj is the weight of optimization function of the sam-

ple in frame j, Kj
m is the circulant kernel matrix with

kj
m as its first row, kj

m = (kjm,0, . . . , k
j
m,l−1), kjm,i =

km(z,Pi
lx

j
m), j = 1, . . . , p. xj

m is evaluated by using

Eq. (12) where j is used instead of p.

Commonly, different kernels (ı.e., features) should be

equipped with different weights βj , as their robustness is

different throughout an image sequence. For example, the

colors of the target object may vary more frequently than its

HOG in an image sequence. Nevertheless, it is impossible

for different kernels to set different βj in Fe(α,d), because

different kernels are multiplied by each other and can not

be separated into different items. Therefore, it is expectable

that the location performance will be affected negatively if

Fe(α,d), instead of F (α,d), is used in Problem (3), be-

cause different kernels have to share the same weight βj .

3.3. Extension of Multi­kernel Correlation Filter
with Upper Bound

Let yc = y/M. We have

F (α,d) =
1

2

∥

∥

∥

∥

∥

y −

M
∑

m=1

dmKmα

∥

∥

∥

∥

∥

2

2

+
λ

2
α

⊤

M
∑

m=1

dmKmα

≤
1

2

M
∑

m=1

(

∥yc − dmKmα∥
2
2 + λdmα

⊤Kmα

)

≡ UF (α,d).

We then treat UF (α,d), the upper bound of F (α,d), as the

optimization function of MKCF and introduce the historical

samples into it. Consequently, the final optimization objec-

tive for training a common multi-kernel correlation filter for

the whole historical samples can be expressed as follows.

Fp(αp,dp) ≡
1

2

p
∑

j=1

M
∑

m=1

βj
muj,m

F (α,d),

where

uj,m

F (α,d) =
∥

∥yc − dm,pK
j
mαp

∥

∥

2

2
+ λdm,pα

⊤
p K

j
mαp,

β1
m = (1 − γm)p−1, βj

m = γm(1 − γm)p−j , j = 2, . . . , p,

p is the number of historical frames, γm ∈ (0, 1) is the

learning rate of kernel m for the common MKCF, Kj
m

is the Gram matrix of the mth kernel for the samples

in frame j, αp = (α0,p, α1,p, . . . , αl−1,p)
⊤ and dp =

(d1,p, d2,p, . . . , dM,p)
⊤ are dual vector and weight vector

of all kernels when frame p is processed, respectively, and
∑M

m=1 dm,p = 1. And the new optimization problem for

the MKCF with whole samples is

min
αp,dp

Fp(αp,dp),

s.t.
∑M

m=1 dm,p = 1,

dm,p ≥ 0, m = 1, . . . ,M.

(15)
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This is a constrained optimization problem. And similar to

Problem (3), given dp, Fp(αp,dp) is convex and uncon-

strained w.r.t. αp, and given αp, Fp(αp,dp) is convex and

constrained w.r.t. dp.

Because Fp(αp,dp) is unconstrained w.r.t. αp, to solve

for αp, let ∇αp
Fp(αp,dp) = 0; we achieve that

αp =





p
∑

j=1

M
∑

m=1

βj
m

(

(dm,pK
j
m)2 + λdm,pK

j
m

)





−1

·

p
∑

j=1

M
∑

m=1

βj
mdm,pK

j
myc,

(16)

which can be evaluated efficiently with FFT as follows.

Ap ≡ F(αp)

=

p
∑

j=1

M
∑

m=1

βj
mF(dm,pk

j
m)⊙F(yc)

p
∑

j=1

M
∑

m=1

βj
mF(dm,pk

j
m)⊙ (F(dm,pk

j
m) + λ)

.

Set

Ap =
AN

p

AD
p

=

∑M
m=1 A

N
m,p

∑M
m=1 A

D
m,p

, (17)

where

AN
m,p = (1− γm)AN

m,p−1 + γmF(dm,pk
p
m)⊙F(yc),

AD
m,p =(1− γm)AD

m,p−1+

γmF(dm,pk
p
m)⊙ (F(dm,pk

p
m) + λ),

if p > 1. In the initial frame, p = 1. Then

AN
m,1 = F(dm,1k

1
m)⊙F(yc),

AD
m,1 = F(dm,1k

1
m)⊙ (F(dm,1k

1
m) + λ).

Therefore, Ap can be evaluated efficiently frame by frame.

Solving for dp in Problem (15) will have to deal with

a constrained optimization problem. This means that it is

difficult to obtain an iteration scheme for the optimal d∗
p

which is as efficient as the one for α∗
p. Now let us investi-

gate the constraints in Problem (15). It is clear that there are

three purposes for adding these constraints in Problem (15).

(1) dm,p ≥ 0, m = 1, . . . ,M , are necessary to ensure
∑M

m=1 dm,p is convex combination. (2)
∑M

m=1 dm,p = 1
is necessary to ensure the optimal d∗

p is unique and its value

is finite. (3) Both dm,p ≥ 0 and
∑M

m=1 dm,p = 1 are neces-

sary to ensure there exists at least an m such that dm,p > 0.

Therefore, if we are able to design an algorithm to optimize

the unconstrained problem

min
αp,dp

Fp(αp,dp) (18)

w.r.t. dp, such that the above three requirements are satisfied

implicitly, then the explicit constraints in Problem (15) can

be canceled. In the rest of this section, we will first derive an

efficient algorithm to optimize Problem (18) w.r.t. dp, and

then prove that the optimal d∗
p indeed implicitly satisfies the

above requirements for the optimal solution if dm,1 > 0,

m = 1, . . . ,M .

To solve for dp in Problem (18), let ∇dp
Fp(αp,dp) =

0. Then, it is achieved that

dm,p =

∑p
j=1 β

j
m(Kj

mαp)
⊤(2yc − λαp)

2
∑p

j=1 β
j
m(Kj

mαp)⊤(K
j
mαp)

,

where m = 1, . . . ,M . Set

dm,p =
dNm,p

dDm,p

, (19)

where

dNm,p = (1− γm)dNm,p−1 + γm(Kp
mαp)

⊤(2yc − λαp),

dDm,p = (1− γm)dDm,p−1 + 2γm(Kp
mαp)

⊤(Kp
mαp),

if p > 1. And if p = 1, then

dNm,1 = (K1
mα1)

⊤(2yc − λα1),

dDm,1 = 2(K1
mα1)

⊤(K1
mα1).

It is clear that Kp
mαp can be accelerated with

F−1(F∗(kp
m)⊙F(αp)) = F−1(F∗(kp

m)⊙Ap).

Therefore, dm,p can be evaluated efficiently, and optimal

solution d∗
p can be obtained efficiently frame by frame.

Theorem 1 Suppose that Kj
m is circulant Gram matrix,

λ > 0, all components of yc is positive, and also suppose

dtm,p > 0, m = 1, . . . ,M , j = 1, . . . , p, t = 1, 2, . . .,

where dtm,p is the tth iteration on frame p when solving

Problem (18) with alternative evaluation of αp and dp.

Then,

(1) dt+1
m,p > 0,

(2) cl ·λ/2+cl ·b
min < dt+1

m,p < cu ·λ/2+cu ·b
max, where

cl and cu are two constants determined by yc, discrete

Fourier transform matrix, βj
m, and the eigenvalues of

Kj
m, bmin and bmax are two constants related to dtm,p,

βj
m, and the eigenvalues of Kj

m.

The proof can be found in the supplementary material.

It can be seen from Theorem 1 that the range of dt+1
m,p is

totally determined by two lines w.r.t. λ when d1m,p is fixed.

The smaller λ, the smaller dt+1
m,p, therefore, the smaller the

components of final optimal solution d∗
p. That is, the com-

ponents of d∗
p are always finite and controlled by λ. It is
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obvious that d∗
p satisfies the three requirements for the op-

timal solution of Problem (18) w.r.t. dp, given the initial

d1m,p > 0, m = 1, . . . ,M .

More refined analysis on the relationship of λ and opti-

mal d∗
p is complex, because the bounds of d∗

p heavily de-

pend on the eigenvalues of all kernel matrices which are

constructed with practical samples and an additional scale

parameter in the kernel. Therefore, we will experimentally

show the further numerical relation between λ and d∗
p in

Sec. 5.1.

Based on the above analysis, it is concluded that the

optimization objective of the extension of MKCF is Prob-

lem (18), and its optimization process is as follows. Ini-

tially, dm,1 = 1/M , m = 1, . . . ,M . Then alternately

evaluate Eq. (17) with fixed dp and Eq. (19) with fixed αp.

Because Fp(αp,dp) ≥ 0 is convex w.r.t. αp and dp, re-

spectively, such iterations will converge to a local optimal

solution (α∗
p,d

∗
p). In our experiments, a satisfactory con-

vergency (α∗
p,d

∗
p) on frame p can be achieved in three iter-

ations of Eq. (17) and Eq. (19).

The fast determination of the optimal location and scale

of target object in frame p+ 1 is the same as that of MKCF

described in Sec. 3.1.2, where α = α
∗
p and d = d∗

p.

4. Implementation Details

In our experiments, the color and HOG are used as

features in MKCFup. Considering the tradeoff between

the discriminability and computational cost, we employ a

kernel for each of color and HOG, i.e., M = 2. As

in [16, 26, 11, 48], the multiple channels of the color and

HOG are concatenated into a single vector, respectively.

The color scheme proposed by [16] is adopted as our

color feature, except that we reduce the dimensionality of

color to four with principal component analysis (PCA).

Normal nine gradient orientations and 4 × 4 cell size are

utilized in HOGs. The dimensionality of our HOGs is also

reduced to four with PCA to speed up MKCFup. Gaus-

sian kernel is used for both features with σcolor = 0.515
and σHOG = 0.6 for color sequences and σcolor = 0.3 and

σHOG = 0.4 for gray sequences. Employing Gaussian ker-

nel to construct kernel matrices ensures that all Kms are

positive definite [40]. The learning rates γcolor = 0.0174
and γHOG = 0.0173 for color sequences, and γcolor =
0.0175 and γHOG = 0.018 for gray sequences. The learn-

ing rates of sample appearance ηcolor = γcolor and ηHOG =
γHOG for both color and gray sequences.

In order to reduce high-frequency noise in the frequency

domain stemming from the large discontinuity between op-

posite edges of a cyclic-extended image patch, the feature

patches are banded with Hann window. Because there is

only one true sample in each frame, it is well known that

too large a search region in KCF will reduce the location

performance [25, 16]. Therefore, the search region is set 2.5

times larger than the bounding box of target object, which

is the same as that in KCF and CN2 [16].

5. Experimental Results

The MKCFup was implemented in MATLAB. The ex-

periments were performed on a PC with Intel Core i7

3.40GHz CPU and 8GB RAM.

It is well-known that all samples of MOSSE, KCF,

MKCF, and MKCFup are circulant. Therefore, their search

region can not be set too large [12]. Too large a search re-

gion will include too much background, significantly reduc-

ing the discriminability of filters for target object against

background. Consequently, the search regions of above CF

trackers have to be set experientially around 2.5 times larger

than the object bounding boxes [26, 48], much smaller than

those of CFLB, SRDCF, and ECO HC [19, 12, 9]. It is ob-

vious that it will be impossible for any tracker to catch the

target object once the target moves out of its search region

in the next frame. Therefore, CFLB, SRDCF, and ECO HC

are better for locating the target object of large move than

KCF, MKCF, and MKCFup.

An even worse situation for KCF, MKCF, and MKCFup

is that, according to the experimental experiences on corre-

lation filter based trackers [4, 25, 10, 48], even if the target

is in the search region in next frame, its location may still

be unreliable when the target moving near to the boundaries

of the search region. Specifically, it is often difficult for the

CF trackers, such as MOSSE, CN2 [16], KCF, MKCF, and

MKCFup which use only one base sample, to obtain a re-

liable location by using response maps if the ratio of the

center distance of target object over the bounding box in

two frames is larger than 0.6 when the background clutter is

present. Consequently, it is suitable for the above CF track-

ers to track the target object with quite small move between

two frames. In this paper, the move of target object is de-

fined as small, if the offset ratio

τ ≡
∥c(xt)− c(xt+δ)∥2
√

w(xt) · h(xt)
< 0.6, (20)

where c(), w(), and h() are the center, width, and height of

sample, respectively. δ = 1 if there is no occlusion for the

target object, otherwise δ is the amount of frames from start-

ing to ending occlusion. A sequence is accepted to contain

the target object of large move if there exists two adjacent

frames or the occlusion of target object such that τ > 0.6.

It is noted that the above definition of offset ratio for small

move is quite rough, because it neglects the possible big

difference between width and height.

According to the above discussion, two visual tracking

benchmarks, OTB2013 [55] and NfS [17] were utilized to

compare different trackers in this paper, because most of

sequences of OTB2013 and most of high frequency part of

NfS only contain small move of the target object.
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In our experiments, the trackers are evaluated in one-

pass evaluation (OPE) using both precision and success

plots [55], calculated as percentages of frames with cen-

ter errors lower than a threshold and the intersection-over-

union (IoU) overlaps exceeding a threshold, respectively.

Trackers are ranked using the precision score with center

error lower than 20 pixels and area-under-the-curve (AUC),

respectively, in precision and success plots.

In this paper, to simplify the experiments, we only com-

pare those state-of-the-art trackers which merely employ the

hand-crafted features color or HOG.

5.1. Relationship of optimal weight d∗
p and regular­

ization parameter λ

Fig. 2 shows the numerical relation of λ and d∗
p obtained

on OTB2013 when initially d1
p = (0.5, 0.5). In the exper-

iment, λ ∈ {10−3, 10−2, 10−1, 1, 10, 102, 103, 104}. Ac-

cording to Theorem 1, we set d∗m,p = d∗m,p(λ), because

d∗m,p is a function of λ, and

d(λ) =
1

MPS

∑

m

∑

p

∑

i

d∗m,p,i(λ),

(δmax(λ), δmin(λ)) = (max
m,p,i

d∗m,p,i(λ), min
m,p,i

d∗m,p,i(λ)),

where P and S are the number of selected frames in each

image sequence and the total number of selected sequences,

respectively, p and i represent the number of selected frame

and the number of selected sequence, respectively, and

d∗m,p,i is the optimal weight of the mth kernel at frame p
of sequence i. In our experiment, specifically, P = 10 and

S = 20. That is, for each λ, ten frames are randomly sam-

pled from each of 20 randomly selected sequences out of

OTB2013, and d∗m,p(λ)s on these frames are used to cal-

culate d(λ) and two deviations, δmax(λ) and δmin(λ). To

demonstrate the relationship more clearly, λ and its three

functions are shown with logarithmic function.

It is interesting to notice that the relation of the averages

of λ and optimal d∗
p is almost linear when λ < 10−1 or λ ≥

1. And δmax(λ) and δmin(λ) drop significantly when λ <
10−1. When λ ≤ 0.05, the deviations are really close to the

average, and the relation of λ and d∗
p itself is approximately

linear. Surprisingly, 1
M

∑M
m=1 d

∗
m,p ≈ 0.5 for the frames

of all sequences when λ < 10−1 in our experiment. That

is,
∑M

m=1 d
∗
m,p ≈ 1, because M = 2. This means that the

constraint of Problem (15) on the sum of all components

of the optimal dp is satisfied implicitly and approximately,

while optimizing Problem (18) w.r.t. dp with the iterations

of Eq. (17) and Eq. (19).

5.2. Comparison among MKCFs

In this section, we consider KCF as a special case of the

original MKCF [48] with M = 1. To verify our improve-

ment on KCF and MKCF is effective, we compare KCF,
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Figure 2. The numerical relationship between regularization pa-

rameter λ and d, the average of d∗m,p over m on OTB2013 [55].

Besides d, two deviations away from d are also presented. The

logarithmic function is employed to make the relation more clear.

See Sec. 5.1 for details.
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Figure 3. The precision and success plots of KCF [26], KCFs-

cale, MKCF [48], fMKCF, and MKCFup on OTB2013 [55]. See

Sec. 5.2 for details. The average precision scores and AUCs of the

trackers on the sequences are reported in the legends.

KCFscale, MKCF, fMKCF, and MKCFup on OTB2013,

where KCFscale is the KCF with the scaling scheme of

patch pyramid, and fMKCF is a variant of MKCF whose

features and scaling scheme are the same as those adopted

by MKCFup, and the optimization of d that is more efficient

than the one in [48], as described in Sec. 3.1.1, is adopted.

Fig. 3 reports the results. It is concluded from the figure that

MKCFup outperforms KCF and KCFscale with large mar-

gins in both center precision and IoU, and that the novel ob-

jective function and training scheme of MKCFup improve

the location performance with the average precision score of

83.5% and the average AUC score of 64.1%, significantly

outperforming MKCF and fMKCF by 6.8% and 4.9% and

7.7% and 6.1%, respectively. It is noticed that the location

performances of fMKCF are inferior to those of MKCF, al-

though its fps is higher than MKCF’s (50 vs. 30).

5.3. Comparison to State­of­the­art Trackers with
Handcrafted Features

We compare our MKCFup to other 6 trackers, KCF,

KCFscale, MKCF, SRDCF, fDSST, and ECO HC on

OTB2013 and NfS. Fig. 4 shows the results. It can be seen
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Figure 4. The precision and success plots of MKCFup, KCF, KCFscale, MKCF, SRDCF, fDSST, and ECO HC on OTB2013 [55] and

NfS [17]. The average precision scores and AUCs of the trackers on the sequences are reported in the legends.
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Figure 5. The precision and success plots of MKCFup, KCF, KCF-

scale, MKCF, SRDCF, fDSST, and ECO HC on small move se-

quences of OTB2013 [55]. The average precision scores and

AUCs of the trackers on the sequences are reported in the legends.
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Figure 6. The precision and success plots of MKCFup, KCF, KCF-

scale, MKCF, SRDCF, fDSST, and ECO HC on small move se-

quences of NfS [17]. The average precision scores and AUCs of

the trackers on the sequences are reported in the legends.

that MKCFup outperforms all other trackers in both preci-

sion scores and AUCs, except for ECO HC, on two bench-

marks. ECO HC is able to exploit larger search regions

than MKCFup does to catch the target object of large move,

whereas MKCFup is not. Therefore, ECO HC outperforms

MKCFup on the whole benchmarks.

5.4. Comparison on Sequences of Small Move

By means of Eq. (20), it is found that there exist six

sequences which contain large move in OTB2013.1 We

then removed them from the benchmark and compared our

MKCFup, KCF, KCFscale, MKCF, SRDCF, fDSST, and

ECO HC on the rest sequences. Fig. 5 reports the results. It

is seen that MKCFup outperforms SRDCF and ECO HC on

the average precision score and AUC by 3.1% and 2.7% and

1The 6 sequences which contain the target object with large move in

OTB2013 are boy, matrix, tiger2, ironman, couple, jumping.

Table 1. The amount of frames processed per second (fps) with

different trackers.

Tracker KCF MKCF fMKCF fDSST SRDCF ECO-HC MKCFup

fps 297 30 50 80 6 39 150

1.6% and 1.5%, respectively, on the small move sequences

of OTB2013.

To verify the advantage of MKCFup further, we removed

the large move sequences2 from NfS by means of Eq. (20),

and compared the above trackers on the rest 84 sequences.

Note that an occluded target object is considered undergo-

ing large move if its τ > 0.6 between the two frames of

starting and ending occlusion. Fig. 6 shows the results. It

is seen that MKCFup outperforms SRDCF and ECO HC on

the average precision score and AUC by 7.6% and 6.6% and

0.5% and 2.1%, respectively, on small move sequences of

NfS.

Table 1 lists the amount of frames the trackers can pro-

cess per second.

According to the above experiments, it can be concluded

that MKCFup outperforms state-of-the-art trackers, such as

SRDCF and ECO HC, with much higher fps as long as the

move of target object is small.

6. Conclusions and Future Work

A novel tracker, MKCFup, has been presented in this pa-

per. By optimizing the upper bound of the objective func-

tion of original MKCF and introducing the historical sam-

ples into the upper bound, we derived the novel MKCFup.

It has been demonstrated that the discriminability of MKC-

Fup is more powerful than those of state-of-the-art trackers,

such as SRDCF and ECO-HC, although its search region is

much smaller than theirs. And the MKCFup’fps is much

larger than state-of-the-art trackers’. In conclusion, MKC-

Fup outperforms state-of-the-arts trackers with handcrafted

features at high speed if the target object moves small.

2The 16 sequences which contain the target object with large move in

NfS are airboard 1, airtable 3, bee, bowling3, football skill, parkour, ping-

pong8, basketball 1, basketball 3, basketball 6, bowling2, dog 2, ping-

pong2, motorcross, person scooter, soccer player 3.
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