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Abstract—Networks are ubiquitous data structures in the
real world. The accurate and efficient analysis of networks
is critical to realizing many intelligent network-based services.
However, most existing network analysis methods are developed
for single networks and require a lot of labeled data, which
is costly and time-consuming to acquire. Transfer learning has
been widely accepted as an effective paradigm for tackling
this problem by reusing the model trained on a supervised
task. However, transfer learning on the non-euclidean network
data has been investigated by no more than a few studies.
To realize accurate node classification based on the knowledge
learned from the labeled source network, this paper proposes to
learn network-invariant and label-discriminative representations
based on graph embedding and linear discriminant analysis.
Specifically, we embed the source and target networks into
adjacent vector spaces based on the graph attention network by
minimizing the Sinkhorn distributional distances between their
embeddings. To obtain label-discriminative features for learning
better classification models, we then utilize a transferable linear
discriminative analysis method to project the embeddings into
label-discriminative subspaces. In the end, a support vector
machine model trained on the labeled source network is utilized
to classify the target nodes. Experiments on two pairs of networks
illustrate that our method achieves the best performance and
evaluates the effectiveness of the proposed modules.

Index Terms—Transfer learning, node classification, Sinkhorn
distance, linear discriminative analysis

I. INTRODUCTION

Node classification is a fundamental task of network analy-

sis for realizing many network-based intelligent services, such

This work was supported by the National Key R&D Program of China under
Grant 2018AAA0101502 and the Science and technology project of SGCC
(State Grid Corporation of China): fundamental theory of human-in-the-loop
hybrid-augmented intelligence for power grid dispatch and control.

as function prediction of proteins in protein-protein interaction

networks, user classification in social networks [1], [2], and

rumor recognition on social media [3]. Node classification

is to predict nodes’ labels in a network. Traditional node

classification methods apply classifiers trained on a set of

labeled data with the input of node features. The representative

classifiers include support vector machine (SVM), neural net-

work, and logistic regression [4]. Recently, the development of

graph embedding has greatly benefited the node classification

task, which represents nodes with low-dimensional vectors

while preserving their structural and attribute proximities [5].

Then, classifiers are trained on the embeddings to predict

nodes’ class labels. In addition, some methods utilize unified

frameworks to learn class-specific embeddings for nodes by

jointly optimizing the embedding module and the prediction

module. However, most existing node classification methods

learn and predict node classes on a single network and require

a large percent of labeled data to provide supervision for the

training, which is costly and hard to acquire.

Most recently, transfer learning has been deeply researched

and used as an effective paradigm to deal with the lack of

labeled data and has been successfully applied to solve various

problems, such as medical image classification [6], cross-

domain recommendation [7], and object instance segmentation

[8]. The basic idea of transfer learning is to improve the clas-

sifier’s performance on the target domain by transferring the

knowledge contained in the source domain [9]. Despite their

success in many domains, little research has been conducted on

transfer learning for networked data structures. This is because

that most existing transfer learning methods require identically

and independent distributed (IID) data to make the knowledge
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learned from the source domain can be used to solve problems

in the target domain, which cannot be satisfied by the non-

euclidean graph-structured data. Most existing cross-network

analysis studies transfer knowledge across networks based on

plenty of anchor links [10], which is not the case in most

situations.

To overcome these problems, we devise a transfer learning

method for unsupervised node classification. Our motivation is

to learn network-invariant embeddings to make the knowledge

can be transferred between different networks and project the

embeddings to label-discriminative subspaces to improve the

classification performance. In specific, we utilize a pair of

graph attention networks (GATs) [11] with parameter sharing

to represent nodes from both networks, whose objectives

are to minimize the classification loss on the labeled source

nodes and the Sinkhorn distributional distance between t-

wo embedding spaces. Then, inspired by the transferable

linear discriminant analysis (TLDA) [12], we learn label-

discriminative projections by preserving the low-rank structure

of the two domains while enlarging the distances between

different classes. Based on the obtained representations, an

SVM classifier with margin maximization is utilized to predict

the labels of target nodes based on the parameters learned

from the labeled source nodes. This paper’s contributions are

concluded as follows.

• A transfer learning model for the unsupervised node

classification is proposed, which addresses this task without

the need for anchor links.

• Our method learns network-invariant embeddings with

supervision from the Sinkhorn distance.

• We adopt the TLDA method to project nodes into label-

discriminative subspaces, which improves the separability of

nodes’ representations.

• Empirical evaluations are carried out, our model’s supe-

riority and the usefulness of each component is evaluated.

We organize the reset paper as follows. Section II reviews

the related studies of graph embedding and cross-network

transfer learning. Section III states the problem and describes

the model’s details. In Section IV, we perform empirical eval-

uations and analyze the results. In Section V, we summarize

this paper.

II. RELATED WORK

In the following, recent advances in graph embedding and

cross-network transfer learning are briefly reviewed.

A. Graph Embedding

Over the past decade, significant progress has been made in

graph embedding research. Graph embedding is to represent

nodes with embedding vectors that preserve their proximities

to simplify the graph calculations [13]. Most existing graph

embedding techniques can be categorized into random walk,

matrix factorization or deep learning methods.

The earliest graph embedding methods are mostly matrix

factorization based models, which utilize matrices to represent

the edges between nodes and factorize the matrices to obtain

nodes’ embeddings. The matrices utilized by these methods in-

clude the adjacency matrix, Laplacian matrix, and so on. Rep-

resentatives of these methods such as graph factorization [14]

that factorizes the adjacency matrix and Laplacian eigenmaps

[15] that factorizes the Laplacian matrix. Matrix factorization

based methods are usually used to embed homogeneous graphs

and can hardly tackle large-scale graphs as their computational

complexities increase with the matrix scale.

Random walk based methods learn embeddings from a

few random walk paths. For example, DeepWalk [16] utilizes

SkipGram to learn latent representations based on the sample

paths from truncated random walks, which optimizes the

embeddings to maximize the softmax probability between

neghboring nodes in the paths. node2vec [17] generates more

informative embeddings than DeepWalk based on the biased

random walks. Random walks can effectively tackle the graph

embeddings of large-scale or incomplete graphs. However, this

kind of methods can hardly preserve high order proximities

between nodes.

Deep learning based methods utilize deep autoencoders to

map graphs into embedding matrices while preserving the

proximity contained in the data. Typical methods of this kind

such as SDNE [18] and LINE [4]. In addition, the increasing

research on graph neural networks has led to the development

of graph convolutional networks (GCNs) [19] based graph

embedding methods. GCNs iteratively aggregate the neigh-

borhoods’ embeddings of a node and update its embedding

based on a convolution operator, which can preserve the global

proximities between high-order neighborhoods.

B. Cross-Network Transfer Learning

Transfer learning aims to tackle problems in the target do-

main based on the knowledge studied from the source domain

[20]. The main objective is to achieve effective knowledge

transfer by minimizing the distributional divergence between

the two domains [9]. Most commonly used distance mea-

surements such as the KL divergence and maximum mean

discrepancy (MMD). Recently, a few studies have imple-

mented transfer learning on the research of multiple network

analysis. For instance, Lee et al. [21] designed a graph transfer

learning framework and investigated the conditions to achieve

successful knowledge transfers between graphs. Salem et al.

[22] devised a pipeline model which utilizes GCNs to tackle

the virtual screening task and transfers the learned knowledge

between multiple molecular datasets, which effectively alle-

viates the over-training and generalization problems caused

by unbalanced and small datasets. Ye et al. [23] utilized

instance weighting to employ the knowledge trained on the

most valuable source instances to solve the edge classification

problem in the target network. Fang et al. [24] mapped the

structural features of different networks into the same latent

space based on label propagation. Existing methods do not

jointly consider the domain invariance and label discrimination

while representing nodes.

Recently, with the development of optimal transport, the

Sinkhorn distance has been widely utilized as an effective
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Fig. 1: Framework of the proposed method.

distance measure between different embeddings. For exam-

ple, Xu et al. [25] proposed matching embeddings of two

languages by minimizing their Sinkhorn distance for unsu-

pervised cross-lingual translation and demonstrated the supe-

riority of Sinkhorn distance over KL divergence. To learn

label-discriminative representations for knowledge transfer

tasks, Han et al. [12] devised the TLDA method to project

embeddings into label discriminative subspaces. Inspired by

these methods, we propose to learn network-invariant and label

discriminative embeddings for for both source and target net-

works by minimizing their Sinkhorn distance and maximizing

the separability for data from different classes.

III. PROPOSED METHOD

In the following, we first propose the mathematical defini-

tion of the cross-network node classification task. Then, we

propose the technical details of our method.

A. Problem Definition and Framework Overview

Suppose that G = (V,E,X, Y ) is a network, in which V
represents the nodes, E denotes the edges, X and Y are the

attribute and label matrices of the nodes. The edge set can

be described in the adjacency matrix. Given a source network

Gs = (Vs, Es, Xs, Ys) whose labels are known and a target

network Gt = (Vt, Et, Xt, Yt) whose labels are unknown,

the cross-network node classification problem is to predict the

target nodes’ labels based on the knowledge learned from the

source network. Note that the node categories of the target

network must be the same as that of the source network.

In addition, there are no equivalent nodes between Gs and

Gt, and Gs and Gt are two disconnected networks, which is

distinct from those anchor links based multi-network analysis

studies.

To achieve this goal, we propose a transfer learning frame-

work based on the representation learning, as is shown in Fig.

1. In this framework, we first utilize two GATs with parameter

sharing to learn network-invariant embeddings by minimizing

the Sinkhorn distance. Then, we adopt TLDA to project the

embeddings into label-discriminative subspaces.

B. Graph Attention Network

Given Gs and Gt, we devise a graph embedding method

based on the GAT model. Typically, GATs update nodes’ rep-

resentations by attending over their neighborhoods’ features,

which can be computed by

�h
(l)
i = σ

⎛
⎝∑

j∈Ni

αijW
(l)�h

(l−1)
j

⎞
⎠ , (1)

where �h
(l)
i represents the i-th node’s hidden representation at

the l-th layer, σ (·) denotes the activation function ReLU (·) =
max (0, ·), W(l) is a linear transformation parameter matrix

shared by all nodes, Ni is single-hop neighbors of the i-th node

containing itself, αij represents the attention weight between

the i-th node and its j-th neighbor, which is computed by

α
(l)
ij = softmax

(
a
(l)
ij

)
=

exp
(
a
(l)
ij

)
∑

k∈Ni
exp

(
a
(l)
ij

) , (2)

where a
(l)
ij is the attention coefficient between the i-th node

and its j-th neighbor, which is computed by the following

equation:

a
(l)
ij = η

(
�qT

[
W(l)�h

(l)
i ⊕W(l)�h

(l)
j

])
, (3)

where η (·) denotes the LeakyReLu activation function, �qT is

a learnable parameter vector, ·T represents the transposition

operation, and ⊕ represents vector concatenation. We restrict

the transformation matrix W(l) to be a diagonal matrix to

avoid overfitting caused by too much parameters and increase

the generalization.

The GATs are trained with two aspects of supervision, the

first of which is to make the embeddings of the source network

discriminative according to their classes, while the second is to

decrease the divergence between the target embeddings and the

source embeddings to make the knowledge can be effectively

transferred. To achieve this, we add a classifier above the

embedding layers to utilize the source labels to optimize the

embeddings. Specifically, the classification output is computed

by the following equation:

ŷi = φ
(
�hiWc +�bc

)
, (4)

where ŷi ∈ Rc represents the predicted probabilities of the i-
th node over all categories, φ (·) is the ReLu function, and

Wc and �bc are trainable parameters of the classifier. The

classification loss to optimize the model with the source nodes,

which is computed by the following cross-entropy loss:

Lc = − 1

|Vs|
∑
i∈Vs

c∑
k=1

yik log (ŷik) + (1− yik) log (1− ŷik) ,

(5)
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in which |Vs| is number of node in the source network. yik
is the true class of the i-th node, yik = 1 represents that the

i-th node is the k-th class; otherwise, yik = 0. ŷik denotes the

predicted probability of the i-th node to be the k-th class.

This loss function is also backpropagated to optimize the

embeddings.

Sinkhorn distance is an optimal transportation distance that

measures the divergence between two probability distribu-

tions. Besides, Sinkhorn distance is an approximation of the

Wasserstein distance [26]. Therefore, we employ the Sinkhorn

distance to calculate the closeness between the embeddings

learned for the two domains. Our embedding module opti-

mizes the GATs for lower Sinkhorn distance to make target

embedding close to the distributions of the source embeddings.

In particular, outputs of the GATs are normalized embeddings.

Therefore, the target embeddings that are similar to the source

embeddings in distribution are also adjacent to the source

embeddings in the vector space.

The Sinkhorn distance between embeddings H1 and H2 is

defined as:

d(H1, H2) = min
T∈Uα(r,c)

〈T,M〉, (6)

where 〈·, ·〉 denotes the Forbenius dot product. M is the

transportation cost matrix, which we adopt the square root

cosine distance proposed by Xu et al. [25]. Uα(r, c) is the

transport polytope with the entropy constraint, defined as:

Uα (r, c) = {T ∈ R
n×n
+ |T�1n = r, TT�1n = c,

ε (T ) ≤ ε (r) + ε (c)− α}, (7)

in which ε (·) is the entropy function. r and c are the weights

for the source nodes and the target nodes, which are set to be

proportional to their degrees.

Algorithm 1: Calculation of Sinkhorn distance

Input: M, r, c, μ, T
Output: d (H1, H2)

1 K = e−μM ;

2 v = �1/n;

3 for t from 1 to T do
4 u = r./Kv;

5 v = c./KTu;

6 d (H1, H2) = uT ((K ⊗M) , v);

For a batch of samples with n source nodes and n target

nodes, the Sinkhorn distance between their embeddings is

calculated by Algorithm 1, in which μ is the Lagrange

multiplier for the entropy constraint and ⊗ is the inner-product

calculation. For each batch, the calculation of the Sinkhorn

distance is repeated T times.

The distributional divergence loss is then defined as the

Sinkhorn loss, which is denoted as:

Ld = d (Hs, Ht) . (8)

The total loss for the optimization of the embedding module is

Lc+λ1Ld, where λ1 is the relative weight of the distributional

divergence loss.

C. Transferable Linear Discriminant Analysis

The core idea of TLDA [12] is to reduce the variants of

distributions within the same subspace and enlarge the vector

distances between different classes while preserving the low-

rank structure of both domains during linear discriminant

analysis. Therefore, inspired by TLDA, the loss function of

projecting the embeddings into different subspaces for cross-

network node classification is defined as:

L(P ) = min
P

tr
(
P (Sw − ξSb)P

T
)

+ λ2

{
C∑

c=1

‖PHc
s‖∗ − ‖PH‖∗

}

s.t. ‖P‖2 = 1

(9)

where P represents the linear projection matrix, Sw represents

the intra-class scatter matrix while Sb denotes the inter-class

scatter matrix, H is the concatenation of the source embedding

and the target embedding, ‖·‖∗ denotes the nuclear norm, and

λ2 is a weight hyperparameter.

The projection matrix is optimized with the projected sub-

gradient optimization algorithm proposed by Han et al. [12],

i.e., Pt+1 = Pt − ρ� Pt, where Pt is P at the t-th iteration

and ρ is the step size. P is renormalized after each iteration.

The subgradient is calculated by

�P =2P (Sw − ξSb)+

λ2

(
C∑

c=1

�‖PHc
s‖∗ (Hc

s)
T −�‖PH‖∗HT

)
,

(10)

in which �‖·‖∗ represents the nuclear norm’s subdifferential.

With the optimized projection matrix, the node representations

with better label-discriminant can be obtained. Then, we train

an SVM classifier on the projected representations of the

source network with their labels and utilize this model to

predict the categories of target nodes with their projected

representations.

TABLE I: Description of the network datasets.

Network Nodes Edges Common Attributes Categories
Blog1 2300 33471

8189 6
Blog2 2896 53836

Citationv1 8935 15113
6775 5

DBLPv7 5484 8130

IV. EXPERIMENTAL EVALUATIONS

In this section, we carry out cross-network node classifica-

tion experiments on four networks to evaluate the proposed

method. We conduct comparisons with both network transfer

learning methods and graph embedding based methods and

analyze the experimental results in detail. An ablation study

is also conducted to evaluate each module’s effect.
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TABLE II: Overall node classification results of different models.

Gs Gt F1 MMD DANN NetTr ANRL LANE SEANO GCN Ours

Blog1 Blog2
Micro-F1 0.4384 0.4492 0.5011 0.4772 0.4701 0.4985 0.5111 0.6350
Macro-F1 0.4368 0.4481 0.4914 0.4587 0.4572 0.4953 0.4785 0.6239

Blog2 Blog1
Micro-F1 0.4592 0.4652 0.5242 0.4415 0.4955 0.5022 0.4981 0.5591
Macro-F1 0.4579 0.4643 0.5150 0.4223 0.4942 0.4981 0.4631 0.5468

Citationv1 DBLPv7
Micro-F1 0.5702 0.5782 0.5985 0.6601 0.5855 0.6929 0.7122 0.7201
Macro-F1 0.5355 0.5514 0.5516 0.6275 0.5506 0.6691 0.6810 0.6868

DBLPv7 Citationv1
Micro-F1 0.5341 0.5625 0.5910 0.6661 0.5694 0.7145 0.7163 0.7082
Macro-F1 0.4960 0.5411 0.5552 0.6342 0.5381 0.6951 0.6717 0.6968

A. Experimental Setup

Datasets: Our method is evaluated on two pairs of cross-

network classification datasets [20], whose statistics are con-

cluded in Table I. Blog1 and Blog2 are two disconnected

datasets collected from the BlogCatalog network, while Ci-

tationv1 and DBLPv7 are two networks extracted from the

ArnetMiner citation dataset. The experiments are conducted

between Blog1 and Blog2 and between Citationv1 and D-

BLPv7.

Baselines: The following baseline are utilized to evalu-

ate our method [27]: MMD [28], which utilizes the MMD

measure to match the distributions of two domains; DANN

[29], which incorporates the gradient reversal layer into the

representation learning module to obtain features that are

discriminative for the classification task while indiscriminative

between different domains; NetTr [24], which constructs label

propagation matrices in both source and target networks to

map their latent features into a shared space; ANRL [30],

which incorporates the structural and attribute information of

nodes to learn network embeddings; LANE [31], which in-

corporates label information and preserves nodes’ correlations

while learning their embeddings; SEANO [32], which learns

network representations incorporating the structural, attribute,

and label information; GCN [19], which utilizes a GCN model

to learn node representations. MMD, DANN, and NetTr are

transfer learning models, while the other baselines are graph

embedding models.

Parameter settings: We implement our method and the

baseline models on a work station with an Intel Xeon(R)

CPU E5-2630 v4 @ 2.2GHZ and GPU TITAN RTX (32G).

The configurations of the embedding module are as follows:

embedding dimension 64, learning rate 0.0001, batch size

100, training epochs 20, λ1 = 15, and the calculation of

the Sinkhorn distance is iterated for 20 times. For the TLDA

module, ξ, ρ, and λ2 are all set to 0.0001, and it is trained for

10 epochs.

B. Results and Analysis

In our proposed method, we train a SVM classifier on the

source domain and then employ it to predict the categories of

the target nodes. The Micro-F1 and Macro-F1 are utilized to

compare different methods. We report the evaluation results in

Table II.

The results indicate that the proposed method performs

the best on these network knowledge transfer tasks. We can

also see that NetTr achieves the highest F1 scores than other

transfer learning based baselines. This is because MMD and

DANN consider each sample independently while learning

domain-invariant representations. However, networks are not

IID data, for which the complex relationships between nodes

should be considered. Among the graph-embedding based

methods, GCN achieves the best cross-network classification

performance in most experimental scenarios as it effectively

utilizes the higher-order structural proximities, the attributes

and labels of nodes to learn node embeddings. However, due to

that GCN does not address the discrepancy between different

domains, the proposed method still performs better than it.

C. Ablation Study

In the following, ablation studies are carried out to eval-

uate the usefulness of different components in the proposed

method. To achieve this, we present two variants, -Sinkhorn

and -TLDA, in which we remove the Sinkhorn distance-based

distributional divergence loss in the embedding module and

the TLDA module, respectively. Besides, we also propose a

variant, +LDA, which replaces the TLDA with traditional LDA

to demonstrate the difference of learning label-discriminative

representations in the network transfer learning situations.

TABLE III: Experiment results of ablation studies of the

proposed method.

Gs Gt F1 Ours -Sinkhorn -TLDA +LDA

Blog1 Blog2
Micro-F1 0.6350 0.3053 0.6277 0.6336

Macro-F1 0.6239 0.2450 0.6128 0.6219

Blog2 Blog1
Micro-F1 0.5591 0.3309 0.5483 0.5496

Macro-F1 0.5468 0.3000 0.5203 0.5389

Citationv1 DBLPv7
Micro-F1 0.7201 0.6750 0.7125 0.7199

Macro-F1 0.6868 0.6450 0.6858 0.6953

DBLPv7 Citationv1
Micro-F1 0.7082 0.6384 0.7045 0.7051

Macro-F1 0.6968 0.5655 0.6883 0.6922

We report the ablation results in Table III. The results

indicate that the distributional divergence loss is important

for the proposed method. Without the supervision from the

Sinkhorn distance, the GATs cannot learn network-invariant

embeddings, thus the classifier learned from the source nodes

cannot be effectively applied on the target network. We can

also see that the TLDA model is beneficial to achieve better

performance. Besides, compared with the traditional LDA
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method, projections with TLDA are more label discriminative,

which results in higher F1 scores.

V. CONCLUSION

In this paper, we propose a novel method achieve cross-

network node classification with the network-invariant and

label-discriminative representations. In specific, our proposed

method utilizes GATs with the supervision from the Sinkhorn

distance between the source embeddings and the target em-

beddings to mitigate the domain shift and employs TLDA

to project the embeddings into label-discriminative subspaces.

Based on these representations, the classifier learned from the

source nodes can be effectively utilized to the target network

and achieve better classification performance. Evaluation re-

sults indicate the superiority of the proposed method.
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