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ABSTRACT

Although object detection has reached a milestone recently,
the scale variation is still the key challenge. Integrating multi-
level features is presented to alleviate the problems, like Fea-
ture Pyramid Network (FPN) and its improvements. Howev-
er, the specifically designed architectures and fixed data flow
paths of these methods are not flexible for feature fusion, es-
pecially when fed with various samples. To overcome the lim-
itations, we propose a Dynamic Sample-Individualized Con-
nector (DSIC) for multi-scale object detection, which dynam-
ically adjusts network connections to fit different samples. In
particular, DSIC consists of two components: Intra-scale S-
election Gate (ISG) and Cross-scale Selection Gate (CSG).
With the help of the presented gate operator, ISG adaptively
extracts proper multi-level features from backbone as the in-
puts of feature integration. CSG automatically activates infor-
mative data flow paths based on the extracted multi-level fea-
tures. These two components are both plug-and-play and can
be embedded in any backbone. Experimental results demon-
strate that the proposed method outperforms the state-of-the-
arts.

Index Terms— Object Detection, Scale Variation, Gate,
Sample-Individualized Connector

1. INTRODUCTION

Object detection has been explored for many years as a
foundation in computer vision. With the great developmen-
t of deep learning, object detection has achieved remarkable
progress. Plenty of excellent detectors [1, 2, 3, 4, 5, 6] are
proposed to improve the performance and show extraordinary
results on public benchmarks such as MS-COCO [7].

However, there are still some problems limiting the per-
formance of detectors. Scale variation is one of the most
challenging problems. Feature Pyramid Network (FPN) [8]
is an effective method to alleviate this problem by merging
features at adjacent levels to construct a top-down pyramid
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Fig. 1. Illustrations of (a) the classical FPN, (b) Fully-
Connected FPN (FC-FPN) and (c) our method Dynamic
Sample-Individualized Connector (DSIC). FPN and FC-FPN
represent the different cases of connection which use the same
output of backbone as input, constantly. Our DSIC can learn
to select input from backbone and activate different data flow
paths as connection according to the input sample.

(seen as Fig 1 (a)). More recently, some studies [9, 10, 11]
have been proposed to improve the connection design in FP-
N. Nevertheless, the manual designed architectures have fixed
connections, ignoring the diversity brought by different sam-
ples. And the interaction across multi-level features is not
adequate, because the specific connections cannot be the opti-
mal case in various situations. Fully-Connected Feature Pyra-
mid Network (FC-FPN), depicted in Fig 1 (b), can be seen
as the universal set that includes all connection methods be-
tween the bottom-up and top-down pyramid. It uses full con-
nection to enhance the feature representation without manual
design. But meanwhile, redundancy and noise are brought in,
which indicates that it is unnecessary to activate all connec-
tions. Furthermore, both series of FPN and FC-FPN are fixed,
which are not friendly to different samples.

In this paper, in order to alleviate aforementioned prob-
lems, we propose a novel and effective module called Dynam-
ic Sample-Individualized Connector (DSIC). Different from
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the methods mentioned above (i.e., Fig 1(a) and (b)), DSIC
dynamically selects the proper input and connections, like Fig
1(c) illustrated. It avoids fixed specific design, and automat-
ically adjusts the connection and feature interaction process,
to fit different samples. In particular, we firstly present a gate
operator as the basic element of DSIC, which controls the s-
tate of data flow path. Given control signals, it can connect or
disconnect a data flow path, even further enhance or suppress
the data flow. Based on the gate operator, DSIC is construct-
ed, consisting of two components: Intra-scale Selection Gate
(ISG) and Cross-scale Selection Gate (CSG). ISG aims to ex-
plore what is the proper input of feature integration which
adaptively extracts multi-level features with sufficient infor-
mation from backbone. CSG devotes to learning what is the
proper connections among multi-level features when fed with
different samples. It automatically activates informative da-
ta flow paths based on the multi-level features. These two
components are both plug-and-play and can be embedded in
any backbones separately or jointly. DSIC shows superiori-
ty when compared with the state-of-the-arts and other feature
integration methods.

In summary, this work makes the following main contri-
butions:

• We propose a novel plug-and-play block called DSIC to
alleviate the scale-variant problem. To control the con-
nection of data flow path dynamically, we firstly present
the gate operator as the basic element of DSIC, which
is the core operation of the proposed method.

• We propose Intra-scale Selection Gate (ISG) and Cross-
scale Selection Gate (CSG) to constitute DSIC, taking
advantage of the presented gate operator. ISG aims to
adaptively extracts multi-level features from backbone
as input, while CSG devotes to automatically activat-
ing data flow paths. Each of these components can be
separately or jointly embedded into any backbones.

• We evaluate the proposed framework on MS-COCO
2017 and it shows the superiority when compared with
state-of-the-arts. The ablation experiments validate the
effectiveness of each module of DSIC.

2. RELATED WORKS

2.1. Multi-level feature extraction

Scale variation of object instances is a gargantuan obstacle
in object detection. The integration of multi-level features is
beneficial to mitigate such problem. FPN [8] was designed to
fuse features through a top-down pyramid. After that, a series
of works were presented with improved structures based on F-
PN, to further enhance the performance. For example, PANet
[9] improved FPN by adding a new bottom-up structure after
the feature pyramid to shorten information path. FPG [12]
was proposed utilizing a deep multi-pathway feature pyramid

that repeated the fusion process in different directions. Al-
though the methods above have obtain some progress, there
are still some problems. The multi-level features extracted
from backbone and data flow paths of integration in these net-
works are fixed, when different inputs and features are being
processed. This is not flexible.

2.2. Dynamic Mechanisms

More recently, dynamic mechanisms have been explored to
improve the performance of models in computer vision tasks,
which adaptively adjust some variables or settings of the net-
work. Some methods use dynamic mechanism to adjust the
network configurations. DRConv [13] assigns filters to learn-
ing appointed spatial areas that achieved better performance
through obtaining rich and diverse spatial information. Other
methods dynamically learn to set the hyper-parameters. Dy-
namic R-CNN [14] was proposed to alleviate the inconsisten-
cy between the hyper-parameters and training procedure, by
automatically adjusting the IoU threshold and the parameters
of loss function. Nevertheless, the existing dynamic mech-
anisms only focus on training or network configurations ad-
justment, ignoring the feature settings and data flow path s-
election. We propose a new dynamic sample-individualized
connector that can select the superior features in multi blocks
from backbone and the better multi-level feature integration
strategy when processing different samples dynamically.

3. THE PROPOSED METHOD

3.1. Foundation

Pipeline Existing feature pyramid module is shown in
Fig 2 (a), which aims to integrating multi-level features
to solve multi-scale object detection. In this module,
{C2, C3, C4, C5} represent the inputs of the feature pyramid.
Note that, Ci is extracted from the output of the last block in
the i-th stage of the backbone. In addition, {P2, P3, P4, P5}
represent the new feature maps after feature integration. Pk

denotes the new feature map at the k-th level. Due to the suc-
cess of alleviating the scale variation problem, feature pyra-
mid module is widely used in the recent years. However, this
module has fixed the input and connection data flow path.

We utilize DSIC to dynamically construct the feature in-
tegration module, as illustrated in Fig 2(b). In particular, the
proposed DSIC comprises two components: ISG and CSG.
ISG is put in the left of the feature integration module, utilized
to select the proper features in each stage of the backbone.
Note that Blockij denotes the j-th block in the i-th stage.
Besides, CSG is leverage to replace the original connection,
to obtain a proper connection cross variant-scale features.
Gate Operator The gate operator is the basic element of D-
SIC, which controls the data flow path. In detail, given data
flow X ∈ Rc×h×w as input, the gate operator G(·) can be
formulated as:
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Fig. 2. (a) The conventional feature pyramid network. (b) The framework of the proposed DSIC.

G(ε,X) = σ[Ψ(ε,
∑
Φ∈F

Φ(X))], (1)

in which ε ∈ Rm×1×1 denotes the gate control signal. It
assists the gate to determine whether to open or close, and
further enhance or suppress the data flow when the gate is
open. F represents the set of functions, including a series
of convolutions, making the input compatible with the gate.
Ψ(·) denotes the Hadamard product and σ(·) represents the
mode selection of gate operator by activation function. In
this manner, given different data and control signals, the gate
shows different states so that the inputs and connection data
flow paths are dynamically changed.

3.2. Intra-scale Selection Gate (ISG)

The input with sufficient information is crucial to feature inte-
gration. The conventional FPN only extracts the feature maps
from each stage’s last block as input. This design is rigid, in
which only single block’s output is used while the informa-
tion of the rest is lost. Contrastively, we propose ISG to dy-
namically select the intra-scale information in backbone from
coarse to fine and obtain an input with adequate information.

As shown in Fig 2 (b), ISG is comprised by Coarse Se-
lection (CS) and Fine Selection (FS). Because of the stronger
representation of last block, CS firstly selects the useful infor-
mation from (n− 1) former blocks, to compensate the infor-
mation that the last block lacks. FS further selects a proper
fusion of the last block’s output and the complementary data.

In particular, the (n−1) former blocks {Bij}j=n−1
j=1 in the

i-th stage are fed into CS, and then the corresponding control
signals bij are obtained to adjust the states of the gates:

{bi1, ...bij} =
∑
Φ∈I

Φ {Bi1, ...Bij} , j = (1, ...n−1), (2)

where I denotes set of integration operators, including
channel-wise concatenation, a series of convolutions and
poolings. Note that the parameters of CS in each stage are
non-shared. After that, given outputs of blocks and control
signals, a series of gates control the data flow paths and ob-
tain:

BCS
i =

n−1∑
j=1

G(bij , Bij). (3)

The gate operators G(·) control whether the data flows from
some blocks are needed currently. BCS

i denotes the result
of selection from previous output. After the process of CS,
the results are fed into FS to select an integration of Bi,n and
BCS

i . Similarly, considering Bi,n and BCS
i , FS computes the

gate control signals ai:

ai = Max[tanh(Fgap(BCS
i ) + Fgmp(BCS

i )), 0], (4)

where tanh denotes the Tanh activation operator and Fgap

and Fgmp means global average-pooling and global max-
pooling, respectively. Here, ai ∈ Rc×1×1 is the control sig-
nals of BCS

i that determines which channels should pass in
the gate operator. After the computation of FS, the dynami-
cally selected input of feature integration C ′i can be obtained:

C ′i = G(ai, B
CS
i ) + G((1− ai), Bi,n). (5)

Instead of the fixed input of FPN, we rethink the effect of
all blocks in backbone and rearrange the retention and aban-
don of information. The proposed ISG achieves coarse-to-fine
selection, which can dynamically extract the useful informa-
tion as input according to various samples in backbone.
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3.3. Cross-scale Selection Gate (CSG)

In multi-scale object detectors, feature integration mod-
ule merges multi-level feature maps {C ′2, C ′3, C ′4, C ′5} vi-
a lateral connections, in order to obtain a feature pyramid
{P ′2, P ′3, P ′4, P ′5} with rich semantics at all levels. As shown
in Fig 1(b), the full connection in FC-FPN can be seen as the
universal set of the lateral connections. This case seems to
fully integrate features, but there exists large redundancy. On
the other hand, the conventional FPN (seen in Fig 2(a)) is the
subset of FC-FPN. It only connects the features at the same
level from bottom-up pyramid to top-down pyramid in later-
al direction. Both of them are fixed, when fed with different
samples.

Different from the cases above, we propose CSG to dy-
namically activate useful data flow paths, and obtain a flex-
ible connection case when meeting various samples. In de-
tail, as illustrated as Fig 2(b), taking {C ′2, C ′3, C ′4, C ′5} as in-
put, the central control unit CCU(·) firstly generates gate con-
trol signals wk = {wik}5i=2 and pixel-wise selection maps
sk = {sik}5i=2 :

{wk, sk} = CCU({Mk}) k = (2, 3, 4, 5), (6)

Mik =


F

(k−i)
down (C ′i) i < k
C ′i i = k

F
(i−k)
up (C ′i) i > k

. (7)

Note that Mk = {Mik}5i=2 are the input feature maps with
unified resolution. Specifically, to compute Mik, higher-
resolution features are down-sampled by the 3×3 convolu-
tion and lower-resolution features are up-sampled by bilin-
ear interpolation with appropriate scale factors. In Equation
7, F k−i

down is 3×3 convolution operators with(k − i)times and
F i−k
up is bilinear interpolation with scale factor of (i− k).

More detailedly, inside the central control unit, the gate
control signals {wik}5i=2 are computed as:

{wik}5i=2 =
∑

Φ∈O1

Φ({Mik}5i=2). (8)

O1 indicates the operation set, including convolutions and ac-
tivation functions. The gate control signals wk are utilized
to adjust the corresponding gate units, so that the useful data
flow path can be connected. After the data flow passes the
gate, a pixel-wise selection map generated by the central con-
trol unit is leveraged to activate the data flow spatially, and
further make features from different levels consistent. When
it comes to different data flows, the generated selection maps
have different activated pixels and significant regions. In par-
ticular, inside the central control unit, the pixel-wise selection
maps sk = {sik}5i=2 at the k-th level:

{sik}5i=2 =
∑

Φ∈O2

Φ({Mik}5i=2) (9)

O2 contains a modulus operator that normalize Mik spatially
and a series of operations, including convolutions, activation

Table 1. Comparison with baselines on val2017. “
√

” means
the baseline models integrated with our connector and others
mean the baseline models integrated with FPN by default.

Method Backbone DSIC AP AP50 AP75 APS APM APL

FCOS
ResNet-50 36.6 55.7 38.8 20.7 40.1 47.4√

37.7 56.5 40.0 22.1 41.2 48.8

ResNet-101 39.2 58.8 42.1 22.9 42.8 51.6√
40.0 58.4 43.1 23.9 43.9 51.2

Faster R-CNN
ResNet-50 36.3 58.4 39.1 21.5 40.0 46.6√

38.3 59.7 41.7 22.5 41.7 49.5

ResNet-101 38.3 60.0 41.8 22.8 42.6 49.5√
39.6 61.4 43.2 22.8 43.1 50.0

Mask R-CNN
ResNet-50 37.3 59.2 40.4 22.3 40.6 46.3√

38.8 60.5 42.1 22.5 41.8 48.5

ResNet-101 39.4 60.9 43.1 22.9 43.9 51.1√
40.6 60.7 44.5 24.6 44.4 51.7

functions and element-wise sum. Subsequently, the final fea-
ture pyramid output can be calculated as:

P ′k =

[
5∑

i=2

(G(wik,Mik) · sik)

]
, (10)

where P ′k denotes the output at the k-th level, containing rich
information at all levels.

Thus, CSG takes features at all levels into consideration,
and automatically selects different connections when meeting
different samples. This connection case can eliminate redun-
dant information and achieve a better performance, compared
with the full connection case. Besides, the pixel-wise selec-
tion can further refine the passed data flow spatially.

4. EXPERIMENTS

4.1. Settings

Our experiments are implemented on MS-COCO 2017 which
is a challenging and credible dataset containing 80 object cat-
egories. It consists of 115k images for training (train2017),
5k images for validation (val2017) and 20k test-dev images
(testdev). The training process is performed on train2017,
and ablation experiments and final results are evaluated on
val2017 and testdev, respectively. The performance is eval-
uated by standard COCO-style Average Precision (AP) met-
rics. In order to ensure the fairness of the experiment compar-
isons, we implement our method and re-implement baseline
methods based on PyTorch [15] and mmdetection [16].

4.2. Performance

Comparison with the baseline. As shown in Table 1, DSIC
achieves consistent improvement overall all baseline detec-
tors, which brings the definite improvements on various pub-
lic backbone and different detectors. The better performance
proves the generalization and robustness ability of DSIC.
Comparison with other feature integration modules. As
shown in Table 2, we compare our method with other dif-
ferent feature integration modules with same configs. It is
obvious that DSIC provides the better improvement when
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Table 2. Comparison with other feature integration methods
on Faster R-CNN with ResNet-50 on val2017.

Method AP AP50 AP75 APS APM APL

FPN 36.3 58.4 39.1 21.5 40.0 46.6
FC-FPN 37.5 59.1 40.3 21.8 41.4 48.7
PANet 37.7 59.5 40.7 21.8 41.5 48.9
FPG 38.0 59.4 41.2 22.1 40.7 46.4
FPT 38.0 57.1 38.9 20.5 38.1 55.7
Ours 38.3 59.7 41.7 22.5 41.7 49.5

Table 4. Effectiveness of each component. ISG: Intra-scale
Selection Gate, CSG: Cross-scale Selection Gate.

Method AP AP50 AP75 APS APM APL

baseline 36.3 58.4 39.1 21.5 40.0 46.6
baseline+ISG 37.6 59.0 40.5 21.7 40.9 49.0
baseline+CSG 37.8 59.1 41.0 21.8 40.8 48.9

baseline+ISG+CSG 38.3 59.7 41.7 22.5 41.7 49.5

compared with common feature pyramid networks including
PANet [9], FPT [17] and FPG [12]. DSIC can dynamically s-
elect different connections according to samples avoiding the
contradiction between useful and redundant information.
Comparison with State-of-the-art. In this section, we eval-
uate our detector on COCO test− dev set and compare with
other state-of-the-art object detection approaches. For a fair
comparison, we re-implement the corresponding baselines e-
quipped with FPN on mmdetection. Besides, we use 2x train-
ing scheme without any bells and whistles to train our method
on Faster R-CNN and Mask R-CNN. All results are shown in
Table 3. It is obvious that our DSIC boosts the baselines by a
significant improvement when integrated with one-stage and
two-stage detectors. Also, our method outperforms the state-
of-the-art detectors based on the same backbone without any
bells and whistles. These improvements demonstrate the su-
perior performance of our proposed framework.

4.3. Ablation Studies

In this section, we conduct the ablation experiments on
val2017, using Faster R-CNN with FPN based on ResNet-50.
Ablation studies on each component. In order to verify the
importance of our components in DSIC, we apply the ISG
and CSG to the model gradually. We report the overall abla-
tion studies in Table 4. “CSG” means our method abandon-
s the FPN when compared with the baseline. Both of them
have significant improvements and the performance of com-
bination is much better which can prove the effectiveness of
association.
Ablation studies on Gate operator. We further consider the
mode selection in gate operator of two selection gate mod-
ules. Experimental results with different modes in two mod-
ules are shown in Table 5. In ISG, the three modes achieve the
similar result which Softmax and Sigmoid ignore the noise in
redundant information, which Tanh has a better performance.
We consider that the information in the same stage is more
complementary instead of mutual exclusion. However, the
performance of three modes has obvious differences in CSG
because of spatial contradiction of different levels. The Soft-

Table 5. Comparison with different mode selection of two
gate modules.

Module Mode selection AP AP50 AP75 APS APM APL

ISG
Softmax 37.4 58.9 40.7 21.6 41.2 48.2
Sigmoid 37.5 58.7 40.4 21.7 41.3 47.9

Tanh 37.6 59.0 40.5 21.7 40.9 49.0

CSG
Softmax 37.4 59.0 40.4 21.3 41.0 48.4
Sigmoid 37.6 59.4 40.4 21.9 41.4 48.8

Tanh 37.8 59.1 41.0 21.8 41.8 48.9
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Fig. 3. The visual results of CSG. The first row is the de-
tection results and the second row is the corresponding state
matrix of each data flow path. (a) is the large scale input. (b)
is the small scale input. And (c) has various scales of input.

max operator takes account of four levels’ data flow together
ignoring the independence and inconsistency. Sigmoid opera-
tor considers the data flow individually which can’t eliminate
the redundant information. Tanh operator avoids the above
defects and achieves the best result.

4.4. Visualization

We present the visual results of CSG. AS shown in Fig 3,
three different samples tend to select different connections
according to the scale of objects, which validates the sample-
individualized data flow path selection of DSIC. In addition,
the regression task in detection need more high-resolution in-
formation whether large or small scale samples. But we find
that the highest-resolution information of output is from the
other three levels instead of itself which contains huge noise.
By contrast, the classification task need more semantic infor-
mation in high levels while the highest level output is from it-
self. Thus, DSIC dynamically selects the inputs and data flow
paths of feature integration which reconciles the differences
between the classification and regression to some extent.

5. CONCLUSION
In this paper, we have proposed a novel Dynamic Sample-
Individualized Connector (DSIC) for multi-scale object de-
tection, which dynamically adjusts network connections to fit
different samples. With the help of two simple yet effective
components, i.e., ISG and CSG, DSIC has shown the gen-
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Table 3. Comparisons with the state-of-the-art methods on COCO test−dev. The symbol * means our re-implemented results.
Method Backbone Schedule AP AP50 AP75 APS APM APL

YoLOv2[18] DarkNet-19 - 21.6 44.0 19.2 5.0 22.4 35.5
SSD512[4] ResNet-101 - 31.2 50.4 33.3 10.2 34.5 49.8

Faster R-CNN[3] ResNet-101-FPN - 36.2 59.1 39.0 18.2 39.0 48.2
Deformable R-FCN[19] Inception-ResNet-v2 - 37.5 58.0 40.8 19.4 40.1 52.5

Mask R-CNN[20] ResNet-101-FPN - 38.2 60.3 41.7 20.1 41.1 50.2
Libra R-CNN[11] ResNet-101-FPN 1x 40.3 61.3 43.9 22.9 43.1 51.0

RetinaNet* ResNet-50-FPN 1x 35.8 55.6 38.4 19.8 38.8 45.0
FCOS* ResNet-101-FPN 2x 40.9 60.2 44.1 24.7 45.0 52.3

Faster R-CNN* ResNet-101-FPN 2x 39.5 61.2 43.0 22.0 43.1 50.1
Mask R-CNN* ResNet-101-FPN 2x 40.8 62.1 44.6 22.8 43.9 52.0

DSIC RetinaNet(ours) ResNet-50-FPN 1x 37.2 57.3 39.8 20.3 40.0 47.1
DSIC FCOS(ours) ResNet-101 2x 41.6 60.8 44.8 25.4 45.5 53.5

DSIC Faster R-CNN(ours) ResNet-101 2x 41.0 62.4 44.6 25.0 44.7 52.6
DSIC Mask R-CNN(ours) ResNet-101 2x 42.6 63.0 46.6 25.5 45.8 52.8

erality and effectiveness for both two-stage and single-stage
detectors. Compared with previous approaches, DSIC offers
several advantages: (1) instead of utilizing the special man-
ual design and insufficient interactions, the whole process is
dynamic and sample-individualized; (2) it performs better on
multi-level feature integration and can be simply generalized
in different computer vision tasks. The experiments on MS-
COCO show the superiority of DSIC.
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