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Abstract. Convolutional Neural Network (CNN) based object detec-
tion has achieved remarkable progress. However, most existing methods
work on closed set assumption and can detect only objects of known
classes. In real-world scenes, an image may contain unknown-class fore-
ground objects that are unseen in training set but of potential interest,
and open set object detection aims at detecting them as foreground,
rather than rejecting them as background. A few methods have been
proposed for this task, but they suffer from either low speed or unsat-
isfactory ability of unknown identification. In this paper, we propose a
one-stage open set object detection method based on prototype learning.
Benefiting from the compact distributions of known classes yielded by
prototype learning, our method shows superior performance on identify-
ing objects of both known and unknown classes from images in the open
set scenario. It also inherits all advantages of YOLO v3 such as the high
inference speed and the ability of multi-scale detection. To evaluate the
performance of our method, we conduct experiments with both closed
& open set settings, and especially assess the performance of unknown
identification using recall and precision of the unknown class. The exper-
imental results show that our method identifies unknown objects better
while keeping the accuracy on known classes.

Keywords: Object detection · Open set recognition · Prototype
learning

1 Introduction

As a fundamental problem of computer vision, object detection aims at detecting
objects of a certain class of interest in images, and has been studied for many
years. Recently, the development of convolutional neural network (CNN) leads
to remarkable breakthroughs in object detection, and CNN based methods have
become the mainstream. They can be roughly grouped into two-stage detection
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and one-stage detection [19], where the former [5,15] usually gives better accu-
racy while the latter [11,14] excels in high detection speed. Thanks to all those
efforts, object detection has been successfully applied in many areas including
auto-driving, robot vision, smart retail supermarkets, etc. [19].

Standard object detection approaches can detect only objects of known
classes, assuming that all the foreground classes to be detected should exist
in the training set. However, this assumption can be violated by a common
scenario in real-world applications: a test image may contain novel foreground
objects of unknown classes that never appear in training images but are also of
interest. This is the problem of open set object detection (OSD). Unfortunately,
standard detection algorithms cannot deal with this case, which either neglect
novel objects as background, or even identify them as a known class by mistake.
To solve this problem, we focus on OSD that is able to detect both objects of
known classes and objects of interest beloning to some unknown class.

Open set object detection is closely related to open set recognition (OSR) [3],
which aims at understanding the real world with incomplete knowledge.
Although both of them aim at identifying unknown classes, the OSR meth-
ods cannot be directly exploited for OSD due to two important reasons. First,
for OSR, any sample outside of known classes is regarded as unknown, while
for OSD, there is an extra background class in addition to the known classes
that is also available during training but of no interest. Thus, a candidate object
rejected by all classes of interest may be either background or unknown-class
object. Second, even if we explicitly treat the background as an additional class
of interest, it is still difficult for identifying a novel object, because the back-
ground has diverse appearance and is easily confused with novel objects which
are not trained.

Due to the novelty and difficulty of this topic, only very few works focus on
OSD. Dhamija et al. [1] first proposes the concept of OSD and defines several
evaluation metrics. A series of experiments are conducted to evaluate the perfor-
mance of several popular object detection methods under the open set condition
using such metrics. Joseph et al. [6] proposes to use the energy model to con-
duct unknown category discovery and example replay for continual incremental
learning. Miller et al. [12] proposes to use dropout sampling to extract label
uncertainty for increasing the performance of object detection under open set
condition. These works proposed the concept of OSD and some effective ideas to
solve this problem, but there are still some important issues to be solved. First,
existing methods are mostly designed based on two-stage object detection frame-
work. They first generate a large number of potential foreground boxes and then
adopt common open set recognition model to identify unknown objects. This
strategy suffers from the drawback of most two-stage detection methods that
the speed cannot satisfy the requirement of real-time applications. Second, pre-
vious OSD methods focus on avoiding classifying an unknown object as a known
class by mistake. In practical open set scenarios, it is also valuable to distinguish
novel objects that may be of interest from background.

To overcome the above problems, we propose a novel high-speed open set
detection method that is able to correctly detect known objects while identify-
ing unknown-class objects of interest. We first build a base model of open set



One-Stage Open Set Object Detection with Prototype Learning 281

detection using YOLO v3 [14], which is a representative one-stage detector with
obvious higher speed than two-stage methods. By exploiting the objectness score
to determine the foreground regions and setting class confidence thresholds for
sigmoid outputs, we can identify the novel objects from these foreground regions
when the confidence score of each class is below a preset threshold.

To improve the compactness of distribution of known classes in feature space
and avoid confusion of unknown objects with known classes, we introduce the
prototype classifier into YOLO v3 [14] to explicitly model the feature distribution
of objects. The obtained model is trained to make features of each class concen-
trate in a separated and compact region in the feature space, which makes it
simpler to distinguish unknown classes from known classes. Our method benefits
from all advantages of YOLO v3 and gives a favorable performance on unknown
object detection.

To evaluate our proposed method, we conduct experiments on both closed
and open set settings. For the open set test, we divide the PASCAL VOC [2] into
two parts according to classes. One part is used as known classes while the other
as unknown. While existing works assess the performance of open set detection
by counting how many unknown objects are misclassified as known, we adopt
a more comprehensive evaluation criterion including recall and precision of the
unknown objects. The experimental results show that our method can effectively
identify the foreground objects of unknown classes while keeping satisfactory
performances on known classes.

The main contributions of this work can be summarized as follows.

• We propose an open set object detection method within the one-stage detec-
tion framework. It has obviously higher speed than existing two-stage meth-
ods.

• We propose to construct open set object detection by integrating the pro-
totype classifier into the framework. Exploiting the ideal feature distribu-
tion generated by the prototype classifier, it performs well on detecting both
known and unknown objects.

• We evaluate our proposed method by both closed and open set experiments.
We also assess the capability of the algorithm to discover unknown objects
from background, which has not been considered before.

2 Related Work

In this section, we will give a brief review on the development of CNN-based
object detection methods, followed by recent advances on open set object detec-
tion. Then, a short introduction to prototype learning and its application to
open set recognition are present.

Object Detection and OSD. Object detection is a fundamental task in computer
vision and has been studied for many years. Due to the great progress of deep
neural networks in computer vision and pattern recognition, CNN-based object
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detection has been the mainstream method. They can be generally divided into
two-stage and one-stage methods [19]. The former first generates a large number
of potential foreground boxes, from which the objects are obtained by classifica-
tion and bounding box regression. The latter outputs class labels and locations
of the objects directly in one shot.

Faster R-CNN [15] is the most representative work on two-stage object detec-
tion. It firstly proposes to use the anchor as an object prior to generate class-
agnostic foreground regions and then obtain the bounding boxes of the object by
classification and regression. After Faster R-CNN [15], there are many works to
improve the performance of two-stage object detection, including feature fusion
and enhancement [7], etc. Nowadays, the state-of-the-art results are still held by
two-stage methods.

With the advent of SSD [11], one-stage object detectors have attracted much
attention because of their high computational efficiency. SSD [11] directly uses
anchors with different aspect ratios and areas on multi-layer feature maps to
generate category predictions and bounding box locations. Due to the real-time
efficiency, many efforts have been devoted to future improve the performance
of one-stage object detectors, including loss function to solve sample imbalance
problem [8], and new architectures for object detection [13].

All the above methods work under the closed set assumption. Recently, a few
methods are proposed to solve the open set object detection problem. Dhamija
et al. [1] firstly propose the concept of open set object detection and design eval-
uation metrics to evaluate the performance of several popular object detectors
under open set conditions. Joseph et al. [6] proposes open world object detection,
which first identifies both known and unknown objects and then dynamically
updates knowledge by continually incremental learning. Because it is based on
two-stage object detection framework, the speed cannot satisfy the requirement
of real-time applications. Miller et al. [12] proposes to use dropout sampling as an
approximation to Bayesian inference over the parameters of deep neural network
to extract label uncertainty, which increases the performance of object detection
under open set conditions. Although SSD [11] is adopted in this method, it is
still computationally expensive since it requires multiple inference passes per
image.

Prototype Learning. Prototype learning is a classical and representative method
in pattern recognition which uses prototype to represent the main characteristics
of classes. The earliest prototype learning method is k-nearest-neighbor (K-NN).
In order to reduce the heavy burden of storage space and computation require-
ment of K-NN, an online method called learning vector quantization (LVQ) is
proposed. The LVQ has been studied in many works and there are a lot of vari-
ants [4,10]. After the arrival of the deep learning era, prototype learning can be
incorporated into the deep neural network and trained in an end-to-end manner.
It has played an important role in few-shot learning [16], robust representing
learning [17], open set recognition [18], etc.
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3 Method

3.1 Open Set Object Detection

Before introducing our method, we first formalize the problem of Open Set
Object Detection (OSD). In a common object detection setting, all classes in
the label space Y can be broadly categorized into three types [12]: 1) Known
classes in K are labeled in the training dataset and the detector is trained to
detect them. 2) Known Unknown classes in UK exist in the training dataset
but are not labeled. The detector is trained to ignore these objects which typ-
ically appear in the background. 3) Unknown Unknown classes in UU are
not present in the training dataset. The detector has never seen objects of those
classes during training and therefore has not learned to identify them. It is a
challenge to identify the unknown unknowns under open set conditions.

Traditional detection only considers the problem of detecting known objects
in K and neglecting objects in UK , without paying attention to UU . Existing
works on OSD [1,12] consider the existence of UU and make efforts on preventing
misclassifying the objects in UU as known classes. Different from the aforemen-
tioned methods, we consider OSD as a more challenging task, which is able to
not only prevent misclassifying UU as K but also distinguish them from UK .
Thus, we adopt both precision and recall of unknown classes as well as known
classes to evaluate the OSD algorithm.

3.2 Open Set Object Detection Using YOLO V3

YOLOv3 [14] has proven an efficient object detection algorithm in a lot of appli-
cations. Thus, we first adapt it to the OSD setting by a simple modification. The
architecture of YOLOv3 consists of three components including feature extrac-
tion network (Darknet53), across scale multi-layer feature fusion, and detection
head. Darknet53 first produces powerful feature representations and then com-
bines intermediate layer feature maps to produce multi-scale feature maps. The
detection head predicts class condition probability, objectness score, and location
offset for each predefined anchor on every pixel of the feature map.

(a) (b)

Fig. 1. Comparison of the outputs of detection heads. (a) Original YOLO v3, where c
is the number of classes. (b) Our method based on prototype classifier, where l is the
dimension of abstract representations.

The detailed output of the prediction head is illustrated in Fig. 1(a). YOLO
v3 [14] regards the objectness score p0 as the confidence of foreground and uses
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C sigmoid functions to act as one-vs-all classifiers giving the class conditional
probabilities {pi}Ci=1. During detection, only the candidate boxes with p0 > p̃0
are considered and the probability that the object belongs to class i is calculated
by p0 × pi. In this process, since all classifiers give a low response, the unknown
objects are usually simply neglected as background and cannot be detected.

We can easily adapt YOLO v3 [14] to an open set object detector by exploit-
ing the output of the detection head in a different way. Considering that in the
training phase, the objectness score regards objects of all foreground classes as
positive and background as negative, it is expected to give a higher response to
similar foreground objects in the test phase. Therefore, if a candidate box is given
low responses by all classifiers but a high objectness score, there is a large prob-
ability that the box contains an object of unknown class. Based on the analysis,
we can identify an object with a high objectness score but lower responses from
all classifiers as an unknown class. Although such a strategy provides a straight-
forward way to identify objects of unknown classes with YOLO v3, an inherent
defect of the method affects its accuracy on unknown classes. The C sigmoid
classifiers define C linear classifiers in an implicit feature space determined by
the last 1×1 convolution, which cannot produce a compact distribution for each
class. Therefore, features of unknown objects are liable to overlap with known
classes, which makes it difficult to obtain satisfactory performance of unknown
identification. In order to solve this problem, we resort to generative model and
exploit prototype classifier to obtain a compact feature representation for each
class.

3.3 Prototype Based Open Set Object Detection

In this section, we will present our prototype based open set object detection,
which is illustrated in Fig. 2, after a brief introduction on prototype learning. By

Fig. 2. The overall framework of our proposed open set object detection. Person class
is known and horse class is unknown. For clarity, only the prototype classifier on mid
level of feature maps is shown.
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introducing prototype classifier, which has proven effective on open set recogni-
tion [18], into the framework of YOLO v3, the detector obtains the ideal capabil-
ity of discovering unknown objects. Meanwhile, all advantages inherently built-in
one-stage detector are inherited.

Different from sigmoid classifiers which give the class conditional probabilities
directly, prototype learning maintains several prototypes in the feature space for
each class and uses prototype matching for classification [17]. The prototypes
are feature vectors representing the main characteristics of each class, which
are denoted as mij where i ∈ {1, 2, ..., C} represents the class index and j ∈
{1, 2, ..., n} represents the prototype index in each class. Here we assume each
class having the equal number of n prototypes and this assumption can be easily
relaxed in the real application.

To obtain the class of an input X, we first calculate its abstract representation
f(X) by the feature extractor. Then, f(X) is compared with all prototypes in
each class and the nearest prototype according to the distance metric defined in
the space is found. This sample is assigned by the class of the nearest prototype
using Eq. 2.

d(f(X),mij) = ‖f(X) − mij‖2 (1)

y∗ = arg min
i

{∀j d(f(X),mij)} (2)

Recently, some works [17,18] attempt to integrate the prototype learning with
convolutional neural network, and obtain remarkable progress in robust classi-
fication and open set recognition. Following these works, we adopt a prototype
classifier to replace the sigmoid classifiers in the detection head of YOLO v3. The
output of detection head with respect to each predicted box x is composed of
three components: location offset, objectness score, and abstract representation
of this box f(x) ∈ R

l, as illustrated in Fig. 1(b). During training and inference,
we use this feature vector to compare with prototypes of each class. Considering
that YOLO v3 uses multi-scale feature maps to detect objects of different scales
and the feature distributions are different in three levels, we set a prototype
classifier on each level of feature maps.

In the inference stage, the model accepts an image as input and generates
feature maps. The detector generates predicted boxes based on the predefined
anchors per pixel in every level of feature maps. We use the objectness score
as measurement of foreground and select the candidate boxes with p0 > p̃0 as
potential foreground regions. Then, the distances between f(x) and all proto-
types are calculated according to Eq. 1. Finally, we assign the class label of each
candidate box according to Eq. 4, where Tdis is the predefined distance threshold.

(i∗, j∗) = arg min
i,j

d(f(x),mij) (3)

y∗ =

{
i, if d(f(x),mi∗j∗) ≤ Tdis;

unknown, if d(f(x),mi∗j∗) > Tdis.
(4)
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3.4 Model Training

The proposed model contains two parts of parameters to learn. One is the param-
eters of the CNN extractor θ, and the other is the prototypes in each class
M = {mij |i = 1, ..., C; j = 1, ..., n}. During the training stage, the two parts of
parameters are trained jointly in an end-to-end manner.

In our proposed prototype based open set object detection, the distance Eq. 1
is used as a measurement of similarity between instances and prototypes. Thus,
we use distance to define the probability p(mij |x) that an instance x belongs to
a prototype mij .

p(mij |x) =
e−d(f(x),mij)∑C

p=1

∑n
q=1 e−d(f(x),mpq)

(5)

According to Eq. 5 we can easily infer the posterior probability of each input
instance p(y = i|x) =

∑n
j=1 p(mij |x). Then, we can use cross entropy (CE) loss

(called as distance-based CE (DCE) in this case [17]) to optimize the model.
Although training with DCE loss can make the model classify the data correctly,
its robustness is insufficient under open set conditions since it cannot make
instances of the same class gather compact enough. To improve the robustness,
we add a regularization named prototype loss (PL) [17]

pl((x, y); θ,M) = ‖f(x) − myj‖2, (6)

where myj is the nearest prototype to f(x) belonging to ground truth class y.
Thus, the classification loss of our proposed model can be defined as

Lcls((x, y); θ,M) = − log p(y|x) + λpl((x, y); θ,M). (7)

Using the classification loss defined in Eq. 7 and keeping other terms from
the original YOLO v3, we obtain the total loss of our proposed open set object
detection as:

L((x, y); θ,M) = Lcls((x, y); θ,M)+λobjLobj((x, y); θ)+λboxLbox((x, y); θ), (8)

where λobj , λbox are hyper parameters. In the training stage, we first randomly
initialize the prototypes in each class of different feature levels and then optimize
parameters of network and class prototypes jointly in an end-to-end manner
according to Eq. 8.

4 Experiments and Results

4.1 Experimental Setting

In order to comprehensively evaluate the performance of the proposed method,
we conduct both closed set object detection that does not include unknown
classes and open set object detection with unknown classes. We introduce the
experimental settings for both of them in the following.
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Closed Set Experiments. For closed set detection experiments, we evalu-
ate the proposed approach on PASCAL VOC [2] benchmark following standard
training and test protocols. We use the training and validation sets of PASCAL
VOC 2007 and 2012 for training and PASCAL VOC 2007 test data for test. The
performance is measured by average precision (AP) 0.5 [2].

Open Set Experiments. Open set object detection is a relatively new task.
Existing datasets [2,9] are unsuitable for evaluation of OSD algorithms since they
do not explicitly label the objects of unknown classes. Previous methods [1,6]
adopt twenty classes from PASCAL VOC [2] as training set and choose sixty
classes from Microsoft COCO [9] that are different from training classes as the
test set. Since the scenes and styles of these two datasets are obviously different,
this setting cannot accurately evaluate the performance of the detector under
open set conditions. Therefore, we have to propose a protocol to adapt the
existing dataset to open set conditions.

In order to build a dataset containing labels of unknown unknowns, we divide
PASCAL VOC [2] into two parts. The first part {Dtrain

K ,Dtest
K } only contains

training and test images belonging to the first N1 classes that act as known
classes, while the second part {Dtrain

U ,Dtest
U } contains the training and test

images of the remaining N2 classes that act as unknown unknowns. We use Dtrain
K

to train the model, which ensures that the model does not see any unknowns
during training. Then, Dtrain

U is used as evaluation set to select suitable thresh-
old for identifying unknowns. Finally, we conduct a closed set test using Dtest

K

and an open set test using Dtest
K ∪ Dtest

U to evaluate the OSD algorithms.
Previous works [1,6] focus on preventing misclassification of a unknown

objects as known class, they use the Absolute Open Set Error (A-OSE) [12]
or Wilderness Impact (WI) [1] as measurement. In this paper, we consider an
OSD algorithm should not only reduce the misclassification of unknowns but
also distinguish unknowns from the background. Therefore, we test the ability
of algorithms to discover the candidate unknown objects from background by
regarding unknown objects as a special class and calculating their recall and
precision.

4.2 Implementation Details

We use PyTorch for implementation1, adopt 4 GPUs for training with a batch
size of 64 (16 images per GPU) using SGD, and optimize for 300 epochs in total.
First three epochs are used for warmup and the initial learning rate is set to
0.01. Then, onecycle learning rate scheduler is used and the final learning rate is
0.002. We use a weight decay of 0.0005 and a momentum of 0.937. Input images
are resized to 640 × 640, and we also perform random horizontal image flipping,
mosaic, color space transformation, and random scale for data augmentation.

1 https://github.com/ultralytics/yolov3.

https://github.com/ultralytics/yolov3
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4.3 Main Results

Results on Closed Set Detection. At first, in order to evaluate the per-
formance of our proposed method on closed set object detection, we conduct
common object detection experiments on PASCAL VOC [2] datasets. For the
original YOLO v3 with a sigmoid classifier, we follow the standard setting. For
our proposed method, we use one prototype with the 128-dimensional feature
for each class on each level of features, keeping other settings unchanged. From
Table 1, we can see that our method has comparable performance as the original
YOLO v3. Assessing with precision and recall, our proposed method can surpass
by 1% than original YOLO v3.

Table 1. Detection performance under closed set setting

Model Precision Recall mAP@0.5

Sigmoid classifier (original yolo v3) 0.777 0.822 0.821

Prototype classifier (ours) 0.781 0.831 0.818

Results on Open Set Detection. As presented in Sect. 3.2, YOLO v3 can be
used as an open-set classifier by modifying the classification strategy. A candidate
box with a high objectness score but low responses on all sigmoid classifiers is
identified as unknown. In contrast, our proposed method uses the objectness
score to select the foreground candidate boxes and exploit the prototype classifier
to identify the unknowns.

According to the open set setting, we choose the first ten classes from PAS-
CAL VOC as known and the remaining classes as unknown. For both methods,
we train the model using the set of known classes and test on the union of known
and unknown classes. During test, we adopt the same threshold of objectness
score for both methods and use Dtrain

U as the evaluation set to determine the
suitable threshold. Table 2 shows that our proposed method performs better
than YOLO v3 in discovering unknown classes, which verifies the advantage of
compact feature representations on unknown discovery. We also use t-SNE to
visualize the feature distribution of test samples of unknown class and known
classes to further verify the effectiveness of our proposed method. From Fig. 3,
we can see the features of each known class gather together, while the features
of unknown class are distributed far away from the center.

Table 2. Detection performance under open set setting

Model Category Precision Recall

Sigmoid classifier (original yolo v3) Known Classes 0.572 0.785

Prototype classifier (ours) Known Classes 0.595 0.747

Sigmoid classifier (original yolo v3) Unknown Classes 0.271 0.162

Prototype classifier (ours) Unknown Classes 0.322 0.210
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(a) (b) (c)

Fig. 3. Feature distribution of samples. Black points and colored points represent
unknown class and known classes respectively. Subfigures (a-c) correspond to level
1–3 of the feature map. (Color figure online)

4.4 Configuration of Prototype on Different Scales

YOLO v3 [14] adopts multi-scale feature map fusion strategy similar to FPN [7]
to improve the object detection performance. Each level of multi-scale feature
maps is responsible for detecting objects of a scale, and we assume that feature
maps of different scales should have different feature distributions. In order to
verify this assumption, we design two different settings for prototypes: 1) shared
setting: multi-scale features share the same class prototypes; 2) separated set-
ting: each scale of feature maps owns a separate set of class prototypes. From
Table 3, we can see that the separated setting performs much better than the
shared setting, which indicates that each scale of the feature map indeed has a
different distribution. In order to further investigate the distributions of abstract
representations of samples, we adopt t-SNE to visualize them. From Fig. 4, the
separated setting can obtain a more separable classification surface than the
shared setting, and the samples within the same class gather more compact.
Thus, it gives better performance.

(a) (b) (c) (d)

Fig. 4. Visualization of the feature distribution for different configurations of prototype
in closed set test. Subfigures (a-c) correspond to the first to third level in the separated
setting, while (d) corresponds to the shared setting.
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Table 3. Detection performance with different prototypes setting

Model Precision Recall mAP@0.5

Separated setting 0.781 0.831 0.818

Shared setting 0.764 0.834 0.809

5 Conclusion

In this paper, we focus on the problem of open set object detection which intends
to detect unseen objects from images that may be of interest. To this aim,
we propose a method by incorporating the idea of prototype learning into the
framework of popular YOLO v3. It inherits the outstanding detection perfor-
mance from YOLO v3 and obtains the ability of identifying foreground objects
of unknown classes by exploiting the prototype classifiers. As a one-stage detec-
tion approach, it benefits from higher inference speed than existing OSD meth-
ods that are mostly two-stage. The experimental results show that our method
is able to effectively identify unseen objects of unknown classes, while keeping
the performance on known objects. By visualizing the distribution of feature
representations, we see that samples of different classes are well separated in
the feature space. This characteristic is in favor of unknown class identification,
which explains the effectiveness of our method from one perspective. Further-
more, our method can be easily adapted to other one-stage detection methods
and is expected to be effective too.
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