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Abstract

Active learning is able to significantly reduce the annotation cost for data-driven techniques.
However, previous active learning approaches for natural language processing mainly depend
on the entropy-based uncertainty criterion, and ignore the characteristics of natural language. In
this paper, we propose a pre-trained language model based active learning approach for sentence
matching. Differing from previous active learning, it can provide linguistic criteria from the
pre-trained language model to measure instances and help select more effective instances for
annotation. Experiments demonstrate our approach can achieve greater accuracy with fewer
labeled training instances.

1 Introduction

Sentence matching is a fundamental technology in natural language processing. Over the past few years,
deep learning as a data-driven technique has yielded state-of-the-art results on sentence matching (Wang
et al., 2017; Chen et al., 2016; Gong et al., 2017; Yang et al., 2016; Parikh et al., 2016; Gong et al.,
2017; Kim et al., 2019). However, this data-driven technique typically requires large amounts of manual
annotation and brings much cost. If large labeled data can’t be obtained, the advantages of deep learning
will significantly diminish.

To alleviate this problem, active learning is proposed to achieve better performance with fewer labeled
training instances (Settles, 2009). Instead of randomly selecting instances, active learning can measure
the whole candidate instances according to some criteria, and then select more efficient instances for
annotation (Zhang et al., 2017; Shen et al., 2017; Erdmann et al., ; Kasai et al., 2019; Xu et al., 2018).
However, previous active learning approaches in natural language processing mainly depend on the
entropy-based uncertainty criterion (Settles, 2009), and ignore the characteristics of natural language.
To be more specific, if we ignore the linguistic similarity, we may select redundant instances and waste
many annotation resources. Thus, how to devise linguistic criteria to measure candidate instances is an
important challenge.

Recently, pre-trained language models (Peters et al., 2018; Radford et al., 2018; Devlin et al., 2018;
Yang et al., 2019) have been shown to be powerful for learning language representation. Accordingly,
pre-trained language models may provide a reliable way to help capture language characteristics. In this
paper, we devise linguistic criteria from a pre-trained language model to capture language characteristics,
and then utilize these extra linguistic criteria (noise, coverage and diversity) to enhance active learning. It
is shown in Figure 1. Experiments on both English and Chinese sentence matching datasets demonstrate
the pre-trained language model can enhance active learning.

2 Methodology

In a general active learning scenario, there is a small set of labeled training data P and a large pool of
available unlabeled data Q. Active learning is to select instances in Q according to some criteria, and then
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Figure 1: Pipeline of our pre-trained language model based active learning. Noise, coverage and diversity
are proposed linguistic criteria from a pre-trained language model.

label them and add them into P , so as to maximize classifier M performance and minimize annotation
cost. More details of preliminaries about sentence matching and active learning are in the Appendix.

2.1 Pre-trained Language Model
We choose the widely used language model BERT (Devlin et al., 2018) as the pre-trained language model.
From BERT, we can obtain two kinds of information to provide linguistic criteria. One is the cross entropy
loss sai of reconstructing of the i-th word ai in sentence A (the same with another B) by masking only
ai and predicting ai again. The other is word embeddings (contextual representations of the last layer)
a=[e(a1),e(a2),. . . ,e(alA)] in the sentence, where lA is the length of sentence A.

2.2 Criteria for Instance Selection
(1) Uncertainty: The uncertainty criterion indicates classification uncertainty of an instance and is the
standard criterion in active learning. Instances with high uncertainty are more helpful to optimize the
classifier and thus are worthier to be selected. The uncertainty is computed as the entropy, and we can
obtain uncertainty rank rankuncer(xi) for the i-th instance in Q based on the entropy. Formally,

rankuncer(xi) ∝ −Ent(xi) (1)

where Ent(xi) = −
∑

k P (yi = k|xi) logP (yi = k|xi).
(2) Noise: The noise criterion indicates how much potential noise there is in an instance. Intuitively,
instances with noise may degrade the labeled data P , and we want to select noiseless instances. Noisy
instances usually have rare expression with low generating probability. Thus, tokens in noisy instances
may be hard to be reconstructed with context by the pre-trained language model. Based on this assumption,
noise criterion is formulated about losses of reconstructing masked tokens:

ranknoise(xi) ∝ −P (A)− P (B) (2)

where P (A) = P (a1a2 . . . alA) ∝
lA∑

i∈lA
sai

. P (B) is similar. ranknoise(xi) denotes noise rank of the

i-th instance in Q, sai /sbi is the reconstruction loss of the i-th word ai/bi in sentence A/B from the
pre-trained language model.
(3) Coverage: The coverage criterion indicates whether the language expression of the current instance
can enrich representation learning. On the one hand, some tokens like stop words are meaningless and easy
to model (high coverage). On the other hand, the classifier needs fresh instances (low coverage) to enrich
representation learning. These fresh instances like relatively low-frequency professional expressions
usually have lower generating probabilities than common ones. Thus, we can employ reconstruction
losses to capture the low coverage ones as follows:

rankcover(xi) ∝ −
∑

j∈lA cajsaj∑
j∈lA caj

−
∑

j∈lB cbjsbj∑
j∈lB cbj

(3)

caj =

{
0 if saj > β
1 others

, cbj =

{
0 if sbj > β

1 others
(4)



where β denotes a hyperparameter to distinguish noise and is set as 10.0.
(4) Diversity: The diversity criterion indicates the diversity of instances. Redundant instances are
inefficient and waste annotation resources. In contrast, diverse ones can help learn more various language
expressions and matching patterns.

First, we use a vector vi for instance representation of a sentence pair instance xi. To model the
difference between two sentences, we employ the subtraction of word embeddings between “Delete
Sequence” LD and “Insert Sequence” LI from Levenshtein Distance (when we transform sentence A
to sentence B by deleting and inserting tokens, these tokens are added into LD and LI respectively).
It is illustrated in the Appendix. Besides, the word embeddings in the subtraction are weighted by
reconstruction losses. Intuitively, meaningless tokens such as preposition should have less weight, and
they are usually easier to predict with lower reconstruction losses. Formally,

vi =
∑
j∈LI

wbje(bj)−
∑
j∈LD

waje(aj) (5)

waj =
saj∑

k∈lA sak
, wbj =

sbj∑
k∈lB sbk

(6)

where sai /sbj is the reconstruction loss of the i/j-th word of sentence A/B. e(aj)/e(bj) denotes word
embdeddings. wai /wbj denotes the weight for tokens.

With instance representation, we want to select diverse ones that are representative and different from
each other. Specifically, we employ k-means clustering algorithm for diversity rank as follows:

rankdiver(xi) =

{
0 if vi ◦ vi ∈ Odiver

n others
(7)

where Odiver are the centers of n clusters of {vi ◦ vi}. ◦ denotes multiplication on element.

2.3 Instance Selection
In practice, according to different effectiveness of criteria, we combine ranks of criteria and select the
top n candidate instances in unlabeled data Q. Specifically, we sequentially use rankuncer, rankdiver,
rankcover, ranknoise to select top 8n, 4n, 2n, n candidate instances, and add the final n instances into
labeled data P for training at every round.

3 Experiments

3.1 Settings and Comparisons
We conduct experiments on Both English and Chinese datasets, including SNLI (Bowman et al., 2015),
MultiNLI (Williams et al., 2017), Quora (Iyer et al., 2017), LCQMC (Liu et al., 2018), BQ (Chen et al.,
2018). The number of instances to select at every round is n = 100. We choose (Devlin et al., 2018) as
classifier M and perform 25 rounds of active learning. There is a held-out test set for evaluation after all
rounds. We compare the following active learning approaches:
(1)Random sampling (Random) randomly selects instances for annotation and training at each round.
(2)Uncertainty sampling (Entropy) is the standard entropy criterion (Tong and Koller, 2001; Zhu et al.,
2008).
(3)Expected Gradient Length (EGL) aims to select instances expected to result in the greatest change
to the gradients of tokens (Settles and Craven, 2008; Zhang et al., 2017).
(4)Pre-trained language model (LM) is our proposed active learning approach.

3.2 Results
Table 1 and Figure 2 (1-5) report accuracy and learning curves of each approach on the five datasets.
Overall, our approach obtains better performance on both English and Chinese datasets. We can know that
extra linguistic criteria are effective, demonstrating that a pre-trained language model can substantially
capture language characteristics and provide more efficient instances for training. Besides, active learning



SNLI MultiNLI Quora LCQMC BQ
Random 77.90 67.83 79.01 82.04 71.44
Entropy 79.80 70.27 80.21 83.25 73.60

EGL 77.86 66.80 77.91 80.35 71.59
LM 80.99 71.79 81.79 84.29 74.73

Ent E+Cov E+Noi E+Div E+All
Ablation 79.80 80.99 81.11 81.45 80.99

Table 1: The upper part lists accuracy of different approaches on five datasets. The low part lists accuracy
of combining different linguistic criterion with uncertainty on SNLI dataset for ablation.

Figure 2: The figures 1-5 are learning curves of comparisons on the five datasets. The 6-th figure illustrates
learning curves on four SNLI subsets to show the relation between data size and accuracy.

approaches always obtain better performance than random sampling. It demonstrates that the amount of
labeled data for sentence matching can be substantially reduced by active learning. And EGL performs
worse than the standard approach active learning, maybe gradient based active learning is not suitable
for sentence matching. In fact, sentence matching needs to capture the difference between sentences and
gradients of a single token can’t reflect the relation. Moreover, we show the relation between the size of
unlabeled data and accuracy in Figure 2 (6), we can see the superiority of the pre-trained model based
approach is more significant for larger data size.

3.3 Ablation Study
To validate the effectiveness of extra linguistic criteria, we separately combining them with standard
uncertainty criterion. “Ent” denotes the standard uncertainty criterion, “E+Noi/E+Cov/E+Div/E+All”
denotes combining uncertainty with noise/coverage/diversity/all criteria. Table 1 reports the accuracy.
Curves are also illustrated in the Appendix.

We can see each combined criterion performs better than a single uncertainty criterion. It demonstrates
that each linguistic criterion from a pre-trained language model helps capture language characteristics and
enhances selection of instances. More ablation discussions are shown in the Appendix.

4 Conclusion

In this paper, we combine active learning with a pre-trained language model. We devise extra linguistic
criteria from a pre-trained language model, which can capture language characteristics and enhance active
learning. Experiments show that our proposed active learning approach obtains better performance.
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Appendix A: More Details and Discussions
Sentence Matching Task: Given a pair of sentences as input, the goal of the task is to judge the relation
between them, such as whether they express the same meaning. In formal, we have two sentences
A=[a1,a2,. . . ,alA] and B=[b1,b2,. . . ,blB ], where ai and bj denote the i-th and j-th word respectively in
corresponding sentences, and lA and lB denote the length of corresponding sentences.

Through a shared word embedding matrix We ∈ Rne×d, we can obtain word embeddings of input
sentences a=[e(a1),e(a2),. . . ,e(alA)] and b=[e(b1),e(b2),. . . ,e(blB )], where ne denotes the vocabulary
size, d denotes the embedding size and e(ai) and e(bj) denote the word embedding of the i-th and j-th
word respectively in corresponding sentences. And there is a sentence matching model M to predict a
label ŷ based on a and b. When testing, we choose the label with the highest probability in prediction
distribution P (yi|a,b; θM ) as output, where θM denotes parameters of the model M and yi denotes a
possible label. When training, the model M is optimized by minimizing cross entropy:

Loss = −P (y|a,b; θM ) logP (y|a,b; θM ) (8)

where y denotes the golden label.
Standard Active Learning: In a general active learning scenario, there exists a small set of labeled
data P and a large pool of available unlabeled data Q. P is for training a classifier and can absorb new
instances from Q. The task for the active learning is to select instances in Q based on some criteria, and
then label them and add them into P , so as to maximize classifier performance and minimize annotation
cost. In the selection criteria, a measure is used to score all candidate instances in Q, and instances
maximizing this measure are selected into P .

The process is illustrated in Algorithm 1. The instance selection process is iterative, and the process
will repeat until a fixed annotation budget is reached. At every round, there are n instances to be selected
and labeled.

Algorithm 1 Active learning algorithm flow.
Input:

labeled data set P={∅}, unlabeled data set Q={qi}, the classifier M , criteria of instance selection C,
the number of instances for annotation at every round n

Output:
labeled data set P={pi}, the classifier M

1: repeat
2: Sort Q based on M and C
3: Select top n instances from Q to label, update Q
4: Add labeled n instances into P , update P
5: Train and update classifier M based on P
6: until The annotation budget is exhausted

With the same amount of labeled data P , criteria for instance selection in active learning determine the
classifier performance. Commonly, the criteria is mainly based on uncertainty criterion (uncertainty
sampling), in which ones near decision boundaries have priority to be selected. A general uncertainty
criterion uses entropy, which is defined as follows:

Ent(xi) = −
∑
k

P (yi = k|xi) logP (yi = k|xi) (9)

where k indexes all possible labels, xi denotes a candidate instance that is made up of a pair of sentences
A and B in available unlabeled data Q.
Visualization of Delete Sequence and Insert Sequence: To model the difference between two sentences,
we employ the subtraction of word embeddings between “Delete Sequence” and “Insert Sequence” from
Levenshtein Distance (when we transform sentence A to sentence B by deleting and inserting tokens,
these tokens are added into “Delete Sequence” and “Insert Sequence” espectively). We illustrate it in
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Figure 3.
Datasets: We conduct experiments on three English datasets and two Chinese dataset. Table 2 provides
statistics of these datasets.

(1)SNLI: an English natural language inference corpus based on image captioning.
(2)MultiNLI: an English natural language inference corpus with greater linguistic difficulty and

diversity.
(3)Quora: an English question matching corpus from the online question answering forum Quora.
(4)LCQMC: an open-domain Chinese question matching corpus from the community question answer-

ing website Baidu Knows.
(5)BQ: an in-domain Chinese corpus question matching corpus from online bank custom service logs.

training validation test
SNLI 549,367 9,842 9,824

MultiNLI 392,702 9,815 9,832
Quora 384,348 10,000 10,000

LCQMC 238,766 8,802 12,500
BQ 100,000 1,000 1,000

Table 2: Statistics of sentence matching datasets.

Figure 4: Learning curves of combining each proposed linguistic criterion with uncertainty on SNLI
dataset.

Configuration: The number of instances to select n is 100 at every round and we perform 25 rounds of
active learning, that is there are total of 2500 labeled instances for training in the end. Batch size is 16 for
English and 32 for Chinese, Adam is used for optimization. We evaluated performance by calculating
accuracy and learning curves on a held-out test set (classes are fairly balanced in datasets) after all rounds.



Figure 5: Learning curves of different instance representation methods.

Figure 6: Learning curves of subtraction operation on Levenshtein Distance.

Curves of Ablation Study: Figure 4 shows learning curves of combining each proposed linguistic
criterion with uncertainty on SNLI dataset.
Discussion:

(1)Effectiveness of different instance representation methods: We validate the effectiveness of
different instance representation methods in diversity criterion on SNLI dataset. We compare our method
with 4 baselines: (a) using the first word embedding layer in BERT as context-dependent representations
(Uncontext); (b) using the subtraction between sentence vectors from auto-encoding (AE); (c) using
the subtraction between sentence vectors from topic model (Topic); (d) using the subtraction between
sentence vectors from Skip-Thoughts (Skip).

Entroy Uncontext AE Topic Skip LM
79.80 80.63 80.42 80.54 80.71 80.99

Table 3: Accuracy of different instance representation methods.

Table 3 and Figure 5 report accuracy and learning curves respectively. We can see contextual repre-
sentations are better than context-dependent representations. In intuition, contextual representations are
more exact especially when dealing with polysemy. Next, we find our proposed method outperforms
sentence vector based methods (Topic, AE, and Skip). It is possibly because BERT used more data to
learn language representations.

(2)Effectiveness of subtraction operation on Levenshtein Distance: Here we validate the effective-
ness of the operation that uses the subtraction of word embeddings between “Delete Sequence” and “Insert
Sequence” in diversity criterion on SNLI dataset. We compare it with 4 baselines: (a) using the sum of
word embeddings of the two sentences (Sum); (b) directly using the subtraction of word embeddings of



the two sentences without “Delete Sequence” and “Insert Sequence” (Sub); (c) without weight for word
embeddings (Nowei); (d) without absolute value operation for symmetry (Noabs).

Entroy Sum Sub Nowei Noabs LM
79.80 80.35 80.67 80.29 80.44 80.99

Table 4: Accuracy of subtraction operation on Levenshtein Distance.

Table 4 and Figure 6 report accuracy and learning curves respectively. We can see subtraction operation
is better than sum operation. It demonstrates that subtraction has better ability to capture the difference
between two sentences, and provides better instance representation for diversity rank. We can see the
results without “Delete Sequence” and “Insert Sequence” performs a little worse, proving its necessity.
And the results without weight operation for word embeddings perform worse. We can know weight
for meaningless tokens is effective. Besides, we can see the results without absolute value operation for
symmetry is worse, demonstrating absolute value operation is necessary.


