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ABSTRACT

In the speaker extraction problem, it is found that additional informa-
tion from the target speaker contributes to the tracking and extraction
of the target speaker, which includes voiceprint, lip movement, facial
expression, and spatial information. However, no one cares for the
cue of sound onset, which has been emphasized in the auditory scene
analysis and psychology. Inspired by it, we explicitly modeled the
onset cue and verified the effectiveness in the speaker extraction task.
We further extended to the onset/offset cues and got performance
improvement. From the perspective of tasks, our onset/offset-based
model completes the composite task, a complementary combination
of speaker extraction and speaker-dependent voice activity detec-
tion. We also combined voiceprint with onset/offset cues. Voiceprint
models voice characteristics of the target while onset/offset mod-
els the start/end information of the speech. From the perspective
of auditory scene analysis, the combination of two perception cues
can promote the integrity of the auditory object. The experiment re-
sults are also close to state-of-the-art performance, using nearly half
of the parameters. We hope that this work will inspire communi-
ties of speech processing and psychology, and contribute to com-
munication between them. Our code will be available in https:
//github.com/aispeech-lab/wase/.

Index Terms— onset cue, onset/offset cues, voiceprint, speaker
extraction, cocktail party problem

1. INTRODUCTION

The cocktail party effect is the phenomenon that the brain focuses
one’s auditory attention on specific stimuli while filtering out other
stimuli [1, 2]. For example, in complex auditory scenes, people can
pay attention to the chat partner while ignoring other people or noise
in the background [2, 3]. Researchers in different fields, which in-
clude psychology, neuroscience, and information science, have made
many efforts to analyze and model the brain’s ability of auditory at-
tention [4, 5, 6]. In the artificial intelligence community, with the
rapid development of deep learning, more and more methods have
been proposed to model the cocktail party effect. According to the
formal definition of the problem, these models can be mainly di-
vided into two types, speech separation and speaker extraction [7, 8].
Suppose that there are N sources, s1(t), s2(t), . . . , sN (t), then the
mixture signal x(t) ∈ R1×T of N sources can be defined as:
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Fig. 1: The framework of WASE. Note that offset cue and voiceprint
cue are optional to injected into speaker extraction module.

x(t) =

N∑
i=1

si(t). (1)

The problem of speech separation can be formulated in terms
of estimating N sources, while speaker extraction estimating only
one source. Since the speech separation aims to extract each source,
this leads to two problems, uncertain number of source problem and
label permutation problem [9]. Specifically, N may change dynam-
ically, even unknown sometimes, which result in the uncertain num-
ber of source problem; the label permutation problem is that how to
add supervision signals to correct channels and avoid training fail-
ure caused by gradient conflict. Researchers proposed some solu-
tions represented by deep clustering and permutation invariant train-
ing [9, 10]. In comparison, speaker extraction takes a different path
from the prior. Speaker extraction utilizes additional information
that can identify the speaker of interest and regards the information
as cues to extract the target speaker. Because speaker extraction is
only interested in one speaker, it avoids the two problems above.
The additional information includes voiceprint (pitch, identity), vi-
sual information (lip movement, facial expression), spatial informa-
tion (azimuth) [8, 11, 12, 13].

Except the above-mentioned cues, the onset signal is also an im-
portant cue in the auditory scene analysis [14, 15]. Previous psy-
chological studies have found that infants are more sensitive to the
synchronization between the onset times of auditory and visual stim-
uli, instead of continuous temporal coherence between auditory and
visual events [16, 17]. Infants, who have little experience in lan-
guage, cannot utilize additional temporal and phonetic information
provided by visual signal. However, they can take advantage of the
onset cue and benefit from when to hear [18].
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In this paper, we propose a novel model that can learn When to
Attend for Speaker Extraction (dubbed WASE). WASE can detect
the onset signal and regard it as important guidance, as shown in
Fig. 1. Specifically, we first obtain the speaker voiceprint from the
reference voice. And then we use the onset detector to predict the
onset of noisy voice intermediate features with the help of speaker
voiceprint. Finally onset signal directly filters intermediate features,
which inhibits the signal before onset and guides the extraction mod-
ule to extract the target speaker from a specific onset time. We pro-
pose a multi-task learning strategy to support our model and use a
unified training objective that considers both speaker extraction and
onset detection tasks. The oracle onset is generated from the voice
activity detection (VAD) results of the clean voice. The training ob-
jective of onset detection is to minimize the cross-entropy (CE) loss
between oracle onset and the predicted onset in intermediate feature
space. We extend onset cue to onset/offset cues, which means not
only the start of voice but also the end of voice is predicted. Interest-
ingly, our onset/offset prediction task is actually speaker-dependent
voice activity detection (SDVAD) [19]. Therefore, the onset/offset-
based model completes a combination task of speaker extraction and
SDVAD. Cross fusion of multiple cues is an important mechanism
of the brain to process related information from complex scenes and
form auditory objects. Therefore, we also extend a single cue to
multiple cues, i.e., combine onset/offset cues with voiceprint cue.

Our contributions can be concluded as follow:

1. As far as we know, it is the first time to explicitly model on-
set cue in speaker extraction problem, which is considered an
important cue for the cocktail party effect in both fields of
auditory scene analysis and psychology;

2. We extend the onset cue to onset/offset cues. Since our model
reconstructs clean voice and predicts the start/end of voice
simultaneously, it completes the speaker extraction task and
SDVAD task, which have complementary advantages;

3. We further combine the onset/offset cues with the voiceprint
cue. The onset/offset cues play a role in the time dimension
while the voiceprint plays a role in the feature dimension, re-
spectively, which is beneficial for the integrity of the auditory
object.

2. RELATION TO PRIOR WORK

Several prior works for speaker extraction have studied various cues
about the target speaker, such as voiceprint [11, 20, 21], lip move-
ment [12, 22], facial appearance [23], and spatial information [13].
Voiceprint models voice characteristics. Facial appearance mod-
els the cross-modal relationship between facial appearance and the
voice characteristics of the target speaker. Lip movement informa-
tion has strong coherence with the dynamic changes of voice, which
can enhance the voice signal. The spatial information contained in
multi-channel acoustic recordings can filter the speaker in a specific
location. Among the cues mentioned above, although lip movement
contains onset/offset cues, no study has explicitly modeled it. There-
fore, our model is the first time to directly focus on the role of on-
set/offset cues in speaker extraction.

3. METHOD

3.1. Onset Cue

Onset cue is one of the most important cues in the auditory scene
analysis. We take advantage of the reference voice to obtain the

onset cue from the mixture input. The reference voice can be repre-
sented by r(t) ∈ R1×Tr

, where T r denotes the length of the refer-
ence voice. r(t) is transformed into a C-dimensional representation,
v ∈ RC×1, by voiceprint encoder. The intermediate features of the
mixture can be represented by U ∈ RC×L, where L denotes the
length of intermediate features. The onset detector searches for the
onset signal in U with the guidance of v. The onset cue can be de-
fined as:

o = H(U, v), (2)

where H(·, ·) is the onset cue detector, as shown in Fig. 2(C-b).
o ∈ R1×L is a 1-dimensional (1-D) vector of the same length with
U , and the value of each element in vector represents the current po-
sition relationship with onset point, i.e., the value larger than thresh-
old denotes after onset while smaller than threshold denotes before
onset. The range of value is [0, 1] and the threshold is 0.5. That is,
the single change point across the threshold is the most important in-
formation contained in o. To offer guidance in extracting the target
speaker voice, o is injected to the intermediate features as follow:

U ′ = U � o, (3)

where � denotes element-wise multiplication. o is supervised by
oracle onset, which is generated from the clean voice. Specifically,
the start time of clean voice is detected by VAD, and we use it to
generate a binary vector, b ∈ R1×T , with a single change point, i.e.,
0 is before the start time and 1 after it. But there is a problem with the
length of the generated binary vector and o is T and L, respectively.
To make length equal, we downsample the binary vector with the
fixed stride, which is equal to the length of the encoder stride. The
downsampled results are named oracle onset in this paper. Note that
the stride size of the encoder is 1 ms in our model, which seems short
enough and can hardly influence the precision of oracle onset.

3.2. Extensions of Onset Cue

Onset/Offset Cues: Intuitively, offset cue can bring additional ben-
efits. Therefore, we extend the onset cue to onset/offset cues. The
structure of the onset/offset detector is the same as the onset detector,
as shown in Fig. 2(C-b). The only thing that changed is the supervi-
sion signal. Specifically, we use both the start time and the end time
of clean voice to generate b, which has two change points. Then we
downsample b to obtain oracle onset/offset cues.
Voiceprint Cues: Onset/offset cues filter mixture intermediate fea-
tures in the time dimension, while voiceprint filters in the feature
dimension. Therefore, we manage to take advantage of both cues in
one model. Specifically, the voiceprint cue first filter the noisy voice,
and then onset/offset cues filter the noisy voice, as shown in Fig. 2(C-
c). In contrast, we also show the only voiceprint-based modulation
method in Fig. 2(C-a).

3.3. Model Structure

The onset cue and its extensions have been described above. Here
we introduce the base model in detail. The structure of the base
model is adapted based on our previous proposed framework [24],
which includes five modules: voiceprint encoder, onset/offset detec-
tor, speech encoder, speech decoder, and speaker extraction module,
as shown in Fig. 2(A). The model has both the reference voice of
the target speaker and the noisy voice as inputs. It is optimized by a
multi-task learning strategy, which maximizes the training objective
of speaker extraction, and minimizes the loss between the predicted
onset cue and the oracle onset cue, simultaneously. The main differ-
ence between the current model and the previous model lies in two
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Fig. 2: An illustration of our WASE model. (A): The overall architecture of the proposed WASE. (B): Details of TCN block in speaker
extraction module. ‘D-Conv’ indicates a depthwise convolution. (C): Three modulated methods based on different cues.

points: 1) we introduce a more complex module to model more cues,
instead of a simple voiceprint cue; 2) we replace the previous feature
extraction method of reference voice, short-time Fourier transform
(STFT), with the time-coding method, i.e., convolution layer.
Voiceprint Encoder: We obtain the reference voice feature by the
time-coding method with a 1-D convolutional layer, whose kernel
size is 256 and stride size is 64, i.e., 32 ms and 8 ms in 8 kHz. The
reference voice feature is processed using two-layer bidirectional
long short-term memory (LSTM) and one fully-connected layer.
Moreover, we use a mean-pooling to squeeze the time dimension
of the reference voice feature and finally get the voiceprint vector
v. Note that the voiceprint encoder weights will be frozen after 150
epochs to avoid overfitting.
Speech Encoder & Decoder: The encoder and decoder follow
the same structure in [25], which use a 1-D convolutional layer
and a 1-D transpose convolutional layer without bias, respectively.
The time-coding method has some advantages over the traditional
STFT method, including no phase reconstruction problem, trainable
weights, and finer coding granularity.
Extraction Module: We use the temporal convolutional network
(TCN) block as the main structure in the speaker extraction module
[25, 26]. As shown in Fig. 2(B), the TCN block contains pointwise
convolution (1× 1 Conv), parametric rectified linear unit (PReLU),
normalization (Norm), and depthwise convolution (D-Conv). The
TCN block has two output paths, one of which is fed to the next TCN
block and the other is summarized to obtain the final mask. TCN
network has three groups, and each group has eight TCN blocks. The
dilation factor of D-Conv increases exponentially by 2 in each group,

which make convolutional receptive fields enlarge layer-by-layer and
allow the extraction module to capture correlation in a longer time
scale.

We multiply specific cues (onset/offset, voiceprint) with the in-
termediate features of the speaker extraction module, and inject the
results back to guide speaker extraction, as shown in Fig. 2(C).
Loss Function: We use the multi-task learning strategy to train our
model. One task is reconstructing the target speaker voice, which
is supervised by the scale-invariant source-to-noise ratio (SI-SNR)
between predicted wave ŝ and clean wave s. The SI-SNR can be
defined as: 

starget =
〈ŝ,s〉s
‖s‖2 ;

enoise = ŝ− starget;

SI − SNR = 10 log10
‖starget‖2
‖enoise‖2

,

(4)

where 〈s, s〉 and ‖s‖2 are the signal power. The other task is the
onset/offset detection, which is supervised by CE loss between the
predicted onset/offset vector and the oracle onset/offset. The ratio
between two losses is 1.

4. EXPERIMENT SETTINGS

We performed experiments on speech separation and speaker extrac-
tion benchmark dataset WSJ0-2mix [10]. The training set contains
101 speakers, and the test set includes 18 unseen speakers. We
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downsampled all samples to 8 kHz. For training samples, we se-
lected randomly two speakers and regarded one as the target speaker
and the other as the interfering speaker. Then we sampled two voices
from the target and regarded them as clean voice and reference voice,
respectively. We sampled one voice from the interfering speaker and
set it as the interfering voice. The noisy voice is generated by mix-
ing clean voice and interfering voice at random signal-to-noise ra-
tios (SNR) between −2.5 dB and 2.5 dB, and the length is limited
to 4 seconds. Note that we also used interfering voice as a supervi-
sion signal to guide interfering voice prediction in the training phase,
which is generated by decoding noisy intermediate features masked
by residual of the target mask. In the experiments of onset/offset, we
pad silence with a random length of [200, 800] ms at the end of the
target/interfering voice, which ensure the existence of offset. In the
test phase, we modified the test dataset to match the speaker extrac-
tion task. Specifically, we set each one of the two speakers in the
original test dataset as the target in turn. We obtained 6000 samples
finally, which is twice the number of original test samples.

We use Adam [27] optimizer with an initial learning rate of
1e−3, decreasing by half if no improvement in recent 10 epochs.
Our model is trained until the performance of the evaluation set is
not improved in 10 consecutive epochs after the learning rate equals
2.5 · e−4. We built our model in Pytorch.

5. RESULTS

To illustrate the effectiveness of the onset/offset cues, we first trained
the base model with given oracle onset/offset cues. As shown in
Tab. 1, both models achieved good performance, which showed that
the onset/offset guidance information is enough to extract the target
speaker. It is reasonable that the onset/offset-based model is better
than the onset-based model because of more guidance information in
onset-offset cues. And then we used the modulated module to predict
onset/offset cues and reported metrics of speaker extraction and SD-
VAD. The signal-to-distortion ratio (SDR) improvements of models
with predicted onset/offset cues is not as good as responding oracle
onset/offset cues. However, the model based on the predicted on-
set cue is better than the oracle onset. We analyze this phenomenon
and find that the learned onset cue contains some behavior similar
to offset cue at the end of target speech, especially when the target
speech is much shorter than the interfering speech. In other words,
the network spontaneously learns behaviors similar to onset/offset
cues. Therefore, onset-only cue leads to better results than oracle
onset. We reported the SDVAD results for the frame-level evaluation
in terms of accuracy (ACC) and F-score (F1, the harmonic mean of
precision and recall). The ACC and F1 results show that our model
could capture the target speaker onset/offset signal. The higher layer,
the higher ACC and F1 performance, which is more obvious in on-
set/offset. It indicates that the onset/offset cues of the target speaker
are abstract representations, and it is difficult to effective detection
only relying on the voiceprint and the representation of low-layer in
our model. The visual information may be a better choice for on-
set/offset detection solely relying on low-layer representation, e.g.,
lip movement.

The voiceprint representation is difficult to distinguish people
with similar voices, while onset/offset cues are challenging to han-
dle simultaneous voices. The model with all mentioned cues above
could combine the advantages of all cues and form a more robust
representation of the auditory object. In Tab. 2, compared with the
model based on single voiceprint cue, the performance of the model
with two cues is improved while the additional parameters are neg-
ligible.

Table 1: SDR improvements (dB) with onset/offset cues on WSJ0-
2mix dataset.

Cues used ACC(%) F1(%) SDRi(dB)

oracle onset - - 14.78
oracle onset / offset - - 17.02

onset 91/90/92/87 95/94/95/92 16.31
onset / offset 66/90/93/96 78/92/94/97 16.75

Table 2: SDR improvements (dB) with two cues on WSJ0-2mix
dataset.

Cues used #Params SDR(dB) SDRi(dB)

voiceprint 7.5M 16.27 16.14
onset + voiceprint 7.5M 17.12 16.99
onset / offset + voiceprint 7.5M 17.18 17.05

A comparison with the previously published results on the
WSJ0-2mix dataset is shown in Tab. 3. Although our best per-
formance is slightly worse than SpEx+, our parameter quantity is
nearly half of it, which shows the potential of onset/offset cues and
multi-cue integration.

Table 3: SDR improvements (dB) with different speaker extraction
methods based on WSJ0-2mix dataset.

Methods #Params SDRi(dB)

SBF-MTSAL [28] 19.3M 7.30
SBF-MTSAL-Concat [28] 8.9M 8.39
SpEx [20] 10.8M 14.6
SpEx+ [29] 13.3M 17.2
WASE (onset / offset + voiceprint) 7.5M 17.05

6. CONCLUSION

Inspired by auditory scene analysis and psychology, we focus on the
onset cue and verify the effectiveness in speaker extraction. Then
we explicitly model onset cue using reference voice and obtain com-
parable performance on the benchmark dataset. We extend onset
cue to onset/offset cues, and the performance further improved.
Since the onset/offset-based model completes the combination tasks
of speaker extraction and speaker-aware voice activity detection, it
verifies the mutual benefits between the two related tasks. We also
combine the onset/offset cues and voiceprint cue. Onset/offset cues
model start/end time of voice and voiceprint cue models the voice
characteristics. Therefore, the combination of these perceptual cues
can promote the integrity of auditory objects. The experimental
performance is also further improved.
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[15] Beáta T Szabó, Susan L Denham, and István Winkler, “Com-
putational models of auditory scene analysis: a review,” Fron-
tiers in Neuroscience, vol. 10, pp. 524, 2016.

[16] David J Lewkowicz, “Infant perception of audio-visual speech
synchrony.,” Developmental psychology, vol. 46, no. 1, pp. 66,
2010.

[17] Renée N Desjardins and Janet F Werker, “Is the integration of
heard and seen speech mandatory for infants?,” Developmen-
tal Psychobiology: The Journal of the International Society
for Developmental Psychobiology, vol. 45, no. 4, pp. 187–203,
2004.

[18] Lynne A Werner, Heather K Parrish, and Nicole M Holmer,
“Effects of temporal uncertainty and temporal expectancy on
infants’ auditory sensitivity,” The Journal of the Acoustical
Society of America, vol. 125, no. 2, pp. 1040–1049, 2009.

[19] Yefei Chen, Shuai Wang, Yanmin Qian, and Kai Yu, “End-
to-end speaker-dependent voice activity detection,” arXiv
preprint arXiv:2009.09906, 2020.

[20] Chenglin Xu, Wei Rao, Eng Siong Chng, and Haizhou Li,
“Spex: Multi-scale time domain speaker extraction network,”
IEEEACM Transactions on Audio Speech Language Process-
ing, vol. PP, no. 99, pp. 1–1, 2020.

[21] Yuma Koizumi, Kohei Yaiabe, Marc Delcroix, Yoshiki Max-
uxama, and Daiki Takeuchi, “Speech enhancement using self-
adaptation and multi-head self-attention,” in ICASSP. IEEE,
2020, pp. 181–185.

[22] Ariel Ephrat, Inbar Mosseri, Oran Lang, Tali Dekel, and
Michael Rubinstein, “Looking to listen at the cocktail party:
A speaker-independent audio-visual model for speech separa-
tion,” Acm Transactions on Graphics, vol. 37, no. 4, pp. 1–11,
2018.

[23] Soo-Whan Chung, Soyeon Choe, Joon Son Chung, and Hong-
Goo Kang, “Facefilter: Audio-visual speech separation using
still images,” arXiv preprint arXiv:2005.07074, 2020.

[24] Yunzhe Hao, Jiaming Xu, Jing Shi, Peng Zhang, Lei Qin, and
Bo Xu, “A unified framework for low-latency speaker extrac-
tion in cocktail party environments,” Proc. Interspeech 2020,
pp. 1431–1435, 2020.

[25] Luo Yi and Mesgarani Nima, “Conv-tasnet: Surpassing ideal
time–frequency magnitude masking for speech separation,”
IEEE Transactions on Audio, Speech, and Language Process-
ing, vol. 27, no. 8, pp. 1256–1266, 2019.
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