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ABSTRACT

Due to its ill-posed nature, single image dehazing is a chal-
lenging problem. In this paper, we propose an end-to-end fea-
ture aggregation attention network (FAAN) for single image
dehazing. It incorporates the idea of attention mechanism and
residual learning and can adaptively aggregate different level
features. In particular, in the proposed FANN, we design a
novel block structure consisting of feature attention module,
smoothed dilated convolution and local residual learning. The
local residual learning allows the less useful information to
be bypassed through multiple skip connections. The feature
attention module is designed to assign more weight to impor-
tant features. The smoothed dilated convolution is adopted
to enlarge the receptive field without the negative influence
of gridding artifacts. The experiments on the RESIDE dataset
show that the proposed approach acquires state-of-the-art per-
formance in both qualitative and quantitative measures.

Index Terms— Dehazing, image restoration, deep CNN.

1. INTRODUCTION

Due to the effect of light scattering through floating atmo-
spheric particles such as mist, fumes, dust and smoke in the
atmosphere, images taken in hazy conditions are easily sub-
ject to low contrast, saturation loss, blurring and other visible
quality degradation. These image quality degradations make
many succeeding high-level visual tasks, e.g., object detection
and tracking for video surveilance and autonomous driving,
become more challengeable. Hence, image dehazing, which
aims to recover the clear version of a hazy image, has attracted
much attention in computer vision community.

The atmospheric scattering model [1, 2, 3] has been a clas-
sical description for the hazy image generation process, it can
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be mathematically formulated as:

I(x) = J(x)t(x) +A(1− t(x)) (1)

where I(x) is the observed hazy image, x denotes the pixel
location, t(x) is the medium transmission map, A stands for
the global atmospheric light and J(x) is the haze-free scene
radiance. When the haze is homogeneous, the transmission
map can be expressed as t(x) = e−βd(x), where β represents
atmosphere scattering parameter and d(x) is the scene depth.
Since only the observed image I(x) is known, single image
dehazing is an ill-posed problem.

Many previous dehazing methods [4, 5] employ many im-
age priors to estimate the transmission maps and atmospheric
light, then recover the haze-free images according to the at-
mosphere scattering model. For instance, DCP [4] is a dark
channel prior method and postulates that local patches in clear
outdoor images have some pixels with low intensity in at least
one color channel. However, this assumption dose not hold
when the scene object is similar to atmosphere lights. That is,
the priors used in the prior-based approaches are not always
valid, and they may not be feasible in certain real scenarios.

Recently, with the advent of deep learning, numerous
learning-based methods [6, 7, 8, 9, 10, 11, 12, 13] are
proposed for image dehazing. Dehazenet[8] learns and re-
gresses the medium transmission map in an end-to-end way.
DCPDN [10] builds upon the atmosphere scattering model
and presents two sub-networks to respectively estimate the
transmission map and atmospheric light. Compared to the
prior-based approaches, learning-based approaches generally
regress intermediate transmission maps or final clear images
directly, and achieve good performance as well as robustness.

In this work, we propose a novel end-to-end learning-
based method termed as feature aggregation attention network
(FAAN), for single image dehazing. Considering the uneven
distribution of haze in the image, the weights of thin and thick
haze area pixels should be significantly different. Moreover,
the discovery of dark channel in DCP suggests that the fea-
tures from different channels have different important infor-
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mation. All of these imply that equally treating the channel-
wise and pixel-wise features will makes the network expend
a lot of efforts on less important information and thus dam-
age the expressive power of the network. Therefore, inspired
by the widely used attention mechanism [14, 15] in network
design, we introduce a feature attention module containing
the pixel attention and channel attention for pixel-wise and
channel-wise features respectively. This makes our model pay
more attention on the thick hazy pixels and the more impor-
tant channel information.

Since the dilated convolution is very effective for the ag-
gregation of context information and does not lose spatial res-
olution [16], we introduce it to cover more adjacent pixels
and help get better dehazing effect. Nevertheless, the origi-
nal dilated convolution suffers from the gridding artifacts [17]
which hampers the performance, so we adopt the smoothed
dilated convolution [18] to reduce the gridding artifacts and
obtain better performance.

Considering that training a very deep network is feasible
by using residual learning [19], we incorporate the idea of
residual learning and the attention mechanism and make our
network learn the different weights of different level feature
information adaptively. Furthermore, we design a novel block
structure composed by feature attention module, smoothed
dilated convolution and multiple local residual learning skip
connections. In this block structure, on the one hand, the lo-
cal residual learning makes it possible to bypass the thin haze
area and low frequency information, so that the main network
can learn more useful features. On the other hand, the at-
tention module and smoothed dilated convolution further im-
prove the capability of our network.

To verify the effectiveness of our method, we conduct
extensive qualitative and quantitative experiments on the RE-
SIDE dataset[20], which is a large scale benchmark public
available recently for single image dehazing. The results
demonstrate that our method realizes the state-of-the-art de-
hazing performance. Moreover, we design several ablation
experiments to show the effectiveness of key components.

In summary, our main contributions include:

1) We propose a novel feature aggregation attention net-
work (FAAN) for single image dehazing, which incorporates
attention mechanisms and residual learning and can adap-
tively aggregate different level features.

2) We design a block structure consisting of feature atten-
tion module, smoothed dilated convolution and local residual
learning. Local residual learning permits the thin hazy area
and low frequency information to be bypassed through mul-
tiple skip connections. Smoothed dilated convolution and at-
tention module enhance the capability of our FAAN.

3) Extensive experiments show that our approach outper-
forms the state-of-the-art image dehazing methods and can
suppress artifacts and color distortion.

2. THE PROPOSED APPROACH

In this section, our feature aggregation attention network is
introduced. As illustrated in Figure 1, our FAAN uses a haze
image as input and directly outputs a clear image. It adopts
global residual learning and mainly contains a shallow feature
extractor, three group structures with multiple skip connec-
tions and feature attention module. Furthermore, each group
structure is mainly composed of N block structures with local
residual learning. Each block structure includes the smoothed
dilated convolution, local residual learning and the feature at-
tention module which consist of a channel-wise and a pixel-
wise attention mechanism.

2.1. Smoothed Dilated Convolution

Since dilated convolution can enlarge the receptive field with-
out increasing the training parameters and will not decrease
the spatial resolution of the response, some researchers have
used it in image pixel-wise prediction tasks for efficient com-
putation [21, 22]. In the one-dimensional case, the dilated
convolution operation can be formulated as:

o[i] =

k∑

j=1

f [i+ r × k]w[j] (2)

where f denotes the 1-D input, o is the output, k is the kernel
size and r denotes the dilation rate. When we set r to 1, di-
lated convolutions degenerate to standard convolutions. Spe-
cially, the receptive field of the dilated convolution increases
to r × (k − 1) + 1 without sacrificing the spatial resolution.

However, when r of dilated convolution is greater than 1,
adjacent units in the output are calculated from completely
separate unit sets in the input. It leads to gridding artifacts
[17], which hampers the performance. To alleviate this prob-
lem, we adopt the smoothed dilated convolution [18] which
adds an additional convolution layer with kernel size (2r−1)
to increase the dependency among the input units before di-
lated convolutions (or the output units after dilated convolu-
tions). More specially, we leverage separable and shared con-
volutions [18] as the additional convolutional layer to aug-
ment the interaction among input units.

2.2. Feature Attention

To assign different degrees of attention to the features which
have different degrees of importance for the dehazing task and
enhance the representational abilities of the network, we in-
troduce a feature attention mechanism. This mechanism con-
tains two part, including channel attention and pixel attention.
The details are described as below.

Channel Attention. Channel attention focuses on giv-
ing different weights to different channel features. As illus-
trated in Figure 1, we first use global average pooling to ac-
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Fig. 1. The architecture of the proposed feature aggregation attention network.

quire channel-wise global spatial information, which can be
expressed as:

Gc = P (Fc) =
1

H ×W

H∑

a=1

W∑

b=1

Xc(a, b) (3)

where Xc(a, b) denotes the value of c-th channel Xc at posi-
tion (a, b), P stands for the global average pooling function.
Then, the shape of the feature map becomes C × 1× 1.

Subsequently, the feature passes through two convolu-
tional layers with kernel size 1 × 1, ReLU and sigmoid
activation layer. It can be represented as:

CAc = Sigmoid(Conv(ReLU(Conv(Gc)))). (4)

Finally, we use element-wise multiplication for the weights
of channel CAc and the input Fc, and get the output:

F
′
c = CAc ⊗ Fc. (5)

Pixel Attention. We introduce the pixel attention mecha-
nism to attach greater importance to informative features. As
is evident in Figure 1, similar to the channel attention module,
the output of channel attention F

′
is fed into two convolu-

tional layers with kernel size 1×1, ReLU along with sigmoid
activation layer. It can be formulated as:

PA = Sigmoid(Conv(ReLU(Conv(F
′
)))). (6)

Then we get the pixel attention weight feature map whose
shape is 1 × H × W . In the end, we can obtain the output
of the feature attention module by element-wise multiplying
PA and F

′
:

F ∗ = PA⊗ F
′
. (7)

2.3. Network Structure

Our network architecture is demonstrated in Figure 1. We use
three group structures and each one outputs 64 filters and con-
tains several block structures. In our experiment, we set the

number of block structures in each group as 19. In addition
to the feature attention module whose kernel size is 1× 1, the
kernel size of all convolutional layers is 3× 3. Besides chan-
nel attention module all feature maps keep fixed size. The
dilation rate of dilated convolutions is set as 2.

2.4. Loss Function

Considering that L1 loss can achieve better performances than
L2 loss in many image restoration tasks [23], we adopt the L1
loss instead of the widely used mean square error (MSE) or
L2 loss. Therefore, the loss function can be defined as:

L = ‖Igt − FAAN(Ihaze)‖1 (8)

where Ihaze stands for the hazy input and Igt denotes the
clean ground truth.

3. EXPERIMENTS

In this section, we quantitatively and qualitatively evaluate the
proposed approach on the large-scale dehazing benchmark
RESIDE [20]. We train our model with 313950 synthetic
hazy outdoor images (OTS) and test it on 500 outdoor images
from the synthetic objective testing set (SOTS) of RESIDE.
Peak signal to noise ratio (PSNR) and structural similarity
index (SSIM) are adopted for quantitative measurement. Ex-
periments are conducted on two NVIDIA TITAN XP GPUs.

Training Details. We adopt the Adam solver for network
training, with a batch size of 2 and momentum parameters
0.9 and 0.999. The input of our network is a cropped hazy
image patch with a size of 240 × 240. We train the network
for 8×105 steps and use the cosine annealing strategy [24] to
decay the learning rate from the initial value of 1×10−4 to 0.

Qualitative and Quantitative Evaluation. To demon-
strate the superiority of the proposed FAAN, we design both
qualitative and quantitative comparision experiments. We
compare our model with seven previous image dehazing ap-
proaches quantitatively including DCP [4], AOD-Net [6],
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Fig. 2. Qualitative comparisons on the SOTS outdoor testing set.

Table 1. Quantitative evaluation results on the SOTS outdoor
testing set for different dehazing methods.

Methods PSNR SSIM

DCP [4] 19.13 0.8148
AOD-Net [6] 20.29 0.8765
MSCNN [7] 22.06 0.9078

DehazeNet [8] 22.46 0.8514
GFN [9] 21.55 0.8444

GridDehazeNet [12] 30.86 0.9819
FFA-Net [13] 33.38 0.9804

Ours 34.10 0.9850

MSCNN [7], DehazeNet [8], GFN [9], GridDehazeNet [12]
and FFA-Net [13]. The comparison results are reported in
Table 1. As is evident in Table 1, our FAAN achieves the best
performance in both PSNR and SSIM metrics. It indicates the
superiority of our model over other state-of-the-art methods.

Furthermore, we display some dehazing results in Fig-
ure 2 for qualitative comparisons. In Figure 2, it can be ob-
served that the result of DCP [4] is darker than the ground-
truth which is caused by the inaccurate estimation of haze
thickness. Besides, due to the underlying prior assumptions,
the prior-based methods DCP and CAP [5] suffer from se-
vere color distortion which dramatically damages the quality
of their outputs. Dehazenet recovers images with excessive
brightness relative to ground-truth. For DehazeNet, its de-
hazing results are also affected by color distortion. MSCNN
has poor dehazing capacity and a mass of haze still remains
unremoved. Although GridDehazeNet and FFA-Net produce
quite good dehazing results, the proposed FAAN is better at
suppressing artifacts and color distortion while removing haze
as much as possible from input images.

Ablation Study. To further illustrate the effectiveness of

Table 2. Evaluation results on the SOTS outdoor testing set
for different configurations.

Attention meachanism
√ √ √

Local residual learning
√ √

Smoothed dilation
√

PSNR 31.78 33.21 34.10

key components in our FAAN, we consider different compo-
nent configurations and conduct ablation studies. In particu-
lar, we mainly concern three components including attention
mechanism, local residual learning and smoothed dilation.
Correspondingly, we evaluate the three different configura-
tions of our network on the RESIDE dataset and the results
are listed in Table 2. It is clear that the performance keeps
raising by incrementally adding each key component. This
suggests that the designed components are effective and rea-
sonable, and the maximum gain can be achieved by combing
all these components together.

4. CONCLUSION

In this work, we propose an end-to-end trainable feature ag-
gregation attention network and its superior performance in
single image dehazing is demonstrated by quantitatively and
qualitatively comparison experiments. By ingenious design
and application of attention mechanism, smoothed dilated
convolution and local residual learning, our method can re-
move haze as much as possible while preserving image detail
and color fidelity as much as possible. Considering the su-
periority of our network in suppressing color distortion and
artifacts, it is expected to be used to address other low-level
vision problems, such as de-raining and denoising.
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