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ABSTRACT
Offline reinforcement learning (RL) aims to optimize policy
from large pre-recorded datasets without interaction with the
environment. This setting offers the promise of utilizing di-
verse and static datasets to obtain policies without costly, risky,
active exploration. However, commonly used off-policy deep
RL methods perform poorly when facing arbitrary off-policy
datasets. In this work, we show that there exists an estimation
gap of value-based deep RL algorithms in the offline setting.
To eliminate the estimation gap, we propose a novel offline RL
algorithm that we term Pessimistic Offline Policy Optimization
(POPO), which learns a pessimistic value function. To demon-
strate the effectiveness of POPO, we perform experiments on
various quality datasets. And we find that POPO performs
surprisingly well and scales to tasks with high-dimensional
state and action space, comparing or outperforming tested
state-of-the-art offline RL algorithms on benchmark tasks.

Index Terms— Reinforcement Learning, Offline Opti-
mization, Out-of-distribution

1. INTRODUCTION

One of the main driving factors for the success of mainstream
machine learning paradigms is that high capacity function ap-
proximators (e.g. deep neural networks) can learn open-world
perception ability from large amounts of data [1, 2]. Combined
with deep learning, reinforcement learning (RL) has proven its
great potential in a wide range of fields such as playing Atari
games [3], playing chess, Go, and Shoji [4], etc. However, it
turns out that RL is difficult to extend from simulators to the
unstructured physical real world because most RL algorithms
need to actively collect data due to the nature of sequential
decision-making, which is distinct from a typical supervised
learning setting. In the physical world, we can usually ob-
tain static data from historical experiences more easily than
dynamics data. Learning from static datasets is a crucial re-
quirement for generalizing RL to a system where the data
collection procedure is time-consuming, risky, and expensive.
In this paper, we study how to utilize RL to solve sequential
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decision-making problems from pre-collected datasets, i.e., of-
fline RL, which is opposite to the research paradigm of active,
interactive learning with the environment.

Off-policy RL algorithms, in general, are considered to
be able to leverage any data to learn skills. In practice, these
methods, however, still fail when facing arbitrary off-policy
data. Specifically, off-policy RL methods suffer from the prob-
lem of out-of-distribution (OOD) actions [5, 6] in the offline
setting. That means the target of the Bellman backup operator
utilizes actions sampled from the learned policy, which may
not exist in the datasets. In this paper, we firstly show that even
the off-policy RL method would fail given high-quality ex-
pert data produced by the same algorithm. This phenomenon
goes against our intuition because if given expert data, then
exploration, RL’s intractable problem, no longer exists. The
sensitivity of existing RL algorithms to data limits the broad
application of RL. Formally, we show that a catastrophic es-
timation gap occurs when applying value-based algorithms
to completely offline data. That means when we evaluate the
value function, the inability to interact with the environment
makes it unable to eliminate the estimation gap through the
Bellman equation. Secondly, to tackle this issue, we propose a
novel offline policy optimization method, termed Pessimistic
Offline Policy Optimization (POPO), where the policy utilizes
a pessimistic distributional value function to approximate the
true value, thus learning a strong policy. Our proposed algo-
rithm can alleviate the estimation gap between the true value
function and the estimated value function due to its pessimistic
nature. Finally, to demonstrate the effectiveness of POPO,
we compare it with state-of-the-art offline RL methods on
d4rl benchmarks [7]. The experimental results show that our
method compares or outperforms the tested algorithms.

Related Work. Imitation learning (IL) [8] studies how to
learn a policy by mimicking expert demonstrations. IL has
been combined with RL, either by learning from demonstra-
tions [9] or utilizing deep RL extensions [10]. However, IL
may still fail when applied on fully offline demonstrations.
Because IL either requires interaction with the environment or
needs high-quality data. We introduce a generative model into
POPO, wherein we get insights from IL. Recently, offline RL
algorithms have received significant attention [5, 6, 11, 12].
The BCQ algorithm [5] can ensure itself converges to the
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optimal policy under the given consistent datasets. BEAR
algorithm [6] utilizes maximum mean discrepancy (MMD) to
constrain the support of learned policy close to the behavior
policy. CRR [11] can be considered as a form of filtered be-
havior cloning where data is selected w.r.t. the policy’s value
function. CQL [12] aims to learn a conservative Q-function
such that the expected value of a policy under this Q-function
lower-bounds its true value. We get insight from CQL and
BCQ. If the agent could directly learn a pessimistic attitude to-
wards the actions out of the support of behavior policy, we can
suppress the estimation gap so that the agent can obtain a pes-
simistic value function to learn a strong policy. To this end, we
utilize the quantile regression [13] method when optimizing
the value function.

2. PESSIMISTIC OFFLINE POLICY OPTIMIZATION

2.1. Background

We formalize the standard RL paradigm as a Markov Deci-
sion Process (MDP), defined by a tuple (S,A,R,p, ρ0, γ) with
state space S , action spaceA, reward functionR : S ×A× S →
R, transition probability function p(s′, r|s, a), initial state dis-
tribution ρ0, and discount factor γ ∈ [0, 1). The agent
generates action a w.r.t. policy π, then receives a new
state s′ and reward r. Through interactions, a trajectory
τ = {s0, a0, s1, a1, · · · } is produced. The goal of RL
is to maximize the expected return J = Eτ [R0], where
Rt =

∑T
i=t γ

i−tr(si, ai). The action-value function, a.k.a. Q-
function, critic, is defined as Q(s, a) = Eτ [R0|s0 = s, a0 =
a] which measures the quality of an action a given a state
s. State-value function, a.k.a. value function, V -function, is
defined as V (s) = Eτ [R0|s0 = s], measuring the quality of
an individual state s. For a given policy π, the Q-function
can be estimated recursively by Bellman backup operator [14].
When we apply RL to large space or continuous space, the
value function can be approximated by neural networks, which
is called Deep Q-networks [3]. Sutton et al. [14] introduced
the policy gradient method.

2.2. Diagnosing Value Function Estimation

Offline RL suffers from OOD actions as we have discussed.
Hasselt et al. [15] observed that overestimation occurs in the
DQN algorithm. We argue that a similar phenomenon also oc-
curs in offline scenarios but for the different underlying mech-
anisms. OOD actions and overestimation issues[16, 17, 18]
are coupled with each other, making the value function more
difficult to learn than online setting. We call the result of
coupling these two effects as estimation gap. In the standard
RL setting, the estimation gap could be eliminated through
the agent’s exploration to obtain an approximately true action
value and then updated by the Bellman backup operator. But
for offline settings, the estimation gap cannot be eliminated
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Fig. 1. The relationship between data quality, quantity, and
corresponding average return. We train the TD3 algorithm
on the MuJoCo halfcheetah-v2 environment over five random
seeds. ’Estimate 50k’ means the curve shows the agent’s value
estimation on the size=50k dataset. The shaded area represents
a standard deviation.

due to the inability to interact with the environment. Fur-
thermore, due to the backup nature of the Bellman operator,
the error would gradually accumulate, which would eventu-
ally cause the estimation gap to become larger, leading to
the failure of policy learning. Therefore, out-of-distribution
actions harm these RL algorithms’ performance in offline set-
tings. Formally, we define estimation gap for policy π in state
s as δMDP(s) = V π(s) − V π

D (s) where V π(s) is true value
and V π

D (s) is estimated on datasets D. Given any policy π
and state s, the estimation gap δMDP(s) satisfies the following
Bellman-like equation

δMDP(s) =
∑
a

π(a|s)
∑
s′,r

[p(s′, r|s, a)− pD(s
′, r|s, a)]

(
r+

γV π
D (s′)

)
+ γ

∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)δMDP(s
′)

(1)
Equation 1 can be proved by expanding this equation through
the definition of the V function. The transition probabil-
ity function of dataset D is defined as pD(s

′, r|s, a) =
N(s,a,s′,r)∑

s′,r N(s,a,s′,r) , where N(s, a, s′, r) is the number of the
transition observed in data set D. What’s more, Equation 1
shows that the estimation gap is a divergence function w.r.t.
the transition distributions, which means if the agent carefully
chooses actions, the estimation gap can be minimized by
visiting regions where the transition probability is similar.

Does this analysis occur in practice? We utilize static
datasets [7] of different qualities and sizes to verify our analy-
sis. We train TD3 agents in halfcheetah-v2 environment in the
offline setting. We show results in Figure 1. Surprisingly, train-
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Algorithm 1 Pessimistic Offline Policy Optimization (POPO)
Initialize: Dataset D, num of quantiles N , target network
update rate η, coefficient ξ
Initialize: Distortion risk measure β, random initialized net-
works and corresponding target networks, parameterized by
θ′i ← θi, ϕ

′ ← ϕ, VAE G = {E(·, ·;ω1), D(·, ·;ω2)}
for iteration = 1, 2, ... do

Sample mini-batch data (s, a, r, s′) from data set D
µ,Σ = E(a|s;ω1), â = D(z|s, ;ω2), z ∼ N (µ,Σ)
ω ← argminω

∑
(a− â)2 + 1

2DKL(N (µ,Σ)∥N (0, I))
Set Critic loss L(θ) (Equation 4)
θ ← argminθ L(θ).
Generate anew from Equation 7
ϕ← argmaxϕ Qβ(s, anew)
θ′i ← ηθi + (1− η)θ′i, ϕ

′ ← ηϕ+ (1− η)ϕ′

end for

ing on random data gives us a better average return than on
expert data. Checking its value function, we find that the esti-
mated value function w.r.t. expert data deviates more and more
from the true value as the data set capacity increases, which
verifies there does exist an estimation gap. The erroneous
estimation of the value function further leads to the failure of
policy learning. Why can random data learn better? The anal-
ysis above inspires us that if the agent chooses actions similar
to the actions in datasets, the estimation gap can be eliminated.
The difference in performance suggests that the TD3 agent
which is offline trained on random datasets may produces tra-
jectories similar to static random data. Thus, we collect the
produced trajectories that are not used to train. And we vi-
sualize the distributions of the static datasets and trajectories
in Figure 2 through the T-SNE tool [19]. Expert/random tra-
jectory means we train offline TD3 agent with expert/random
datasets. We find that the offline training TD3 agent does visit
a similar area to the static random datasets. Still, for expert
data, the agent visits different areas from expert data, which is
consistent with our analysis.
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Fig. 2. Visualization of data generated by the halfcheetah-v2
environment. Left: expert data, visiting the different areas.
Right: random data, visiting a similar area.
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Fig. 3. Performance curves for OpenAI gym continuous con-
trol. The shaded region represents a standard deviation of the
average evaluation over five seeds. The BCQ is stable when
tested, but it is not as good as the POPO. BEAR suffers from
performance decrease when training too much time. REM
almost failed during testing.

2.3. Pessimistic Value Function

Our insights are if an agent could maintain a pessimistic at-
titude towards actions out of the support of behavior policy
when learning value function, then we can suppress the esti-
mation gap of the value function outside the datasets so that
the algorithm can obtain a more pessimistic value function to
learn a strong policy through an actor-critic style algorithm.
To capture more information on the value function, we utilize
the distributional value function [13], which has proved its
superiority in the online settings. The distributional Bellman
optimality operator is defined by

T Zπ(s, a) := r + γZπ(s′, argmax
a′∈A

Es′Z(s′, a′)), (2)

where random return Zπ(s, a) :=
∑∞

t=0 r(st, at), and = sym-
bol denotes that the left and the right random variable have
the same distribution. Let F−1

Z (τ) be the quantile function at
τ ∈ [0, 1] for random variable Z. We write Zτ := F−1

Z (τ) for
simplicity. We model the state-action quantile function as a
mapping from state-action to samples from certain distribution,
such as τ ∼ U(0, 1) to Zτ (s, a). Let β : [0, 1] → [0, 1] be a
distortion risk measure [13]. Then the distorted expectation
of random variable Z(s, a) induced by β is Qβ(s, a; θ) :=

4010

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 26,2022 at 08:35:31 UTC from IEEE Xplore.  Restrictions apply. 



Eτ∼U(0,1)[Zβ(τ)(s, a; θ)]. We also call Zβ critic. By choosing
different β, we can obtain various distorted expectations, i.e.,
different attitudes towards the estimation. To avoid the abuse
of symbols, τ in the following marks τ acted by β. For the
critic loss function, given two samples, τ, τ ′ ∼ U(0, 1), the
temporal difference error at time step t is

∆τ,τ ′

t = rt + γZτ ′(st+1, πβ(st+1); θ
′)− Zτ (st, at; θ). (3)

Then the critic loss function of POPO is given by

L(st, at, rt, st+1) =
1

N ′

N∑
i=1

N ′∑
j=1

ρκτi(∆
τi,τ

′
j

t ), (4)

where

ρκτ (x) = |τ − I{x < 0}|Lκ(x)

κ
, with (5)

Lκ(x) =


1

2
x2, if |x| ≤ κ

κ(|x| − 1

2
κ), otherwise

in which N and N ′ is the number of i.i.d. samples, and
τi, τ

′
j are sampled from U(0, 1), respectively. We can recover

Qβ(s, a) from Zβ(τ).

2.4. Generating Actions from VAE

To tackle OOD actions, we introduce a generative model,
specifically, conditional Variational Auto-Encoder (VAE), con-
sists of Encoder E(·|·;ω1) and Decoder D(·|·;ω2). Further-
more, VAE could constrain the distance between the actions
sampled from the learned policy and that provided by the
datasets [5]. VAE reconstructs action on condition state s. We
call the action produced by the VAE the central action â. The
loss function of VAE is

LVAE = E(s,a)∼D
[
(a− â)2 +

1

2
DKL(N (µ,Σ)∥N (0, I))

]
.

(6)
where â = D(z|s;ω2). To generate action a′ w.r.t. state
s′, firstly we copy the action n times and send it to VAE
to incorporate with policy improvement. Then we feed the
actor network with central action â′i = D(zi|s′;ω2) and state
s′, then the actor network π(· · · ;ϕ) outputs a new action ā′i.
Combining â′i and ā′i with residual style ã′i = ξā′i + (1− ξ)â′i
with coefficient ξ, we get the selected action ã′i. We choose
action of n outputs with highest value as the final output

a′new = argmax
ai

Qβ(s
′, ã′i; θ), (7)

where {ã′i = (π ◦D)(zi|s′)}ni=1. We call this action genera-
tion method the residual action generation. We use the DPG
method [20] to train actor network π. For a given state, the
generated action can be close to the actions contained in the
data set with a similar state. At the same time, residual action
generation maintains a large potential for policy improvement.
We summarize POPO in Algorithm 1.
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Fig. 4. Performance curves for ablation study. The results
show that the pessimistic critic does have an improvement over
the original TD3 algorithm. VAE makes offline optimization
successful because it deals with the OOD action issue.

2.5. Experimental Results

To evaluate our algorithm, we utilize the various quality
datasets [7, 21] to train our proposed algorithm. We recom-
mend readers check [7] for more details. Given the recent
concerns about algorithms reflect the principles that informed
its development [22], we implement POPO without any engi-
neering tricks so that POPO works as we originally intended
for. We compare our algorithm with the recently proposed
SOTA offline RL algorithms BCQ, REM, BEAR, and CQL.
And we use the authors’ official implementations. The perfor-
mance curves are graphed in Figure 3, which shows POPO
matches or outperforms all compared algorithms.
Ablation Study. The main components of POPO are VAE and
pessimistic distributional critic. We term the POPO version
without distributional critic OPO. And we term the POPO ver-
sion without VAE TD4. The performance curves are graphed
in Figure 4, which shows the pessimistic distributional critic
does have a significant performance improvement over TD3
and OPO. Besides, VAE makes the offline RL successful
because it solves the OOD actions issue. The combination
between VAE and pessimistic critics would produce better
results.

3. CONCLUSION

In this work, we studied why off-policy RL methods fail to
learn in offline settings and proposed a novel offline RL algo-
rithm POPO. Firstly, we showed that the inability to interact
with the environment makes offline RL unable to eliminate the
estimation gap through the Bellman equation. And we con-
ducted experiments to verify the correctness of our analysis.
Secondly, We proposed the POPO algorithm, which learns a
pessimistic value function to get a strong policy. Finally, we
demonstrated the effectiveness of POPO by comparing it with
SOTA offline RL methods on the offline RL datasets. In future
works, we can extend the POPO algorithm to discrete control
settings and test more hyper-parameters.
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