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   Abstract—The performance of medical image classification has
been  enhanced  by  deep  convolutional  neural  networks  (CNNs),
which  are  typically  trained  with  cross-entropy  (CE)  loss.
However, when the label presents an intrinsic ordinal property in
nature,  e.g.,  the  development  from  benign  to  malignant  tumor,
CE  loss  cannot  take  into  account  such  ordinal  information  to
allow for better generalization.  To improve model  generalization
with  ordinal  information,  we  propose  a  novel  meta  ordinal
regression forest (MORF) method for medical image classification
with ordinal labels, which learns the ordinal relationship through
the combination of convolutional neural network and differential
forest in a meta-learning framework. The merits of the proposed
MORF  come  from  the  following  two  components:  A  tree-wise
weighting net (TWW-Net) and a grouped feature selection (GFS)
module. First, the TWW-Net assigns each tree in the forest with a
specific  weight  that  is  mapped  from the  classification  loss  of  the
corresponding  tree.  Hence,  all  the  trees  possess  varying  weights,
which  is  helpful  for  alleviating  the  tree-wise  prediction  variance.
Second, the GFS module enables a dynamic forest rather than a
fixed one  that  was  previously  used,  allowing for  random feature
perturbation.  During  training,  we  alternatively  optimize  the
parameters  of  the  CNN  backbone  and  TWW-Net  in  the  meta-
learning  framework  through  calculating  the  Hessian  matrix.
Experimental results on two medical image classification datasets
with  ordinal  labels,  i.e.,  LIDC-IDRI  and  Breast  Ultrasound
datasets,  demonstrate  the  superior  performances  of  our  MORF
method over existing state-of-the-art methods.

    Index Terms—Convolutional  neural  network  (CNNs),  medical
image classification, meta-learning, ordinal regression, random forest.
  

I.  Introduction

M EDICAL  image  classification  has  been  assisted  by  the
deep  learning  technique  [1]–[8]  and  has  achieved

tremendous  progress  in  the  past  decade.  Early  detection  and
treatment  of  some  diseases,  such  as  cancers,  are  critical  for
reducing  mortality.  Fortunately,  it  is  implicit  in  medical
images that the image information across the different clinical
stages  exhibits  an  ordinal  relationship,  which  can  be  used  to
improve  model  generalization.  For  example,  computed
tomographic  (CT)  images  of  lung  nodule  [9]  are  given  with
the  malignancy  scores  from  1  to  5,  where  1  means  highly
unlikely  to  be  malignant,  3  is  indeterminate,  and  5  is  highly
likely  to  be  malignant.  The  majority  of  existing  lung  nodule
classification  methods  conduct  binary  classification  while
discarding indeterminate or unsure nodules [3], [8], [10]–[14].
In  other  words,  the  unsure  nodules  that  are  between  benign
and  malignant  and  cannot  be  classified  by  radiologists  based
on  current  scans  become  useless  [15].  As  shown  in Fig. 1,  a
large number of nodules are indeterminate and then discarded
in  the  binary  classification  problem.  It  is  evident  that  the
images  with  ordinal  labels  represent  the  development  of  the
lesions,  as  do  other  diseases  such  as  breast  cancer.  Conside-
ring that deep learning methods are data-hungry and that these
medical  images  differ  from  natural  images  in  fewer
discriminative  patterns,  leveraging  the  ordinal  relationship
among limited medical data for training deep learning models
is becoming an important topic.

Generally, most medical image classification methods work
by feeding medical images into convolutional neural networks
(CNNs)  and  updating  the  parameters  of  the  CNNs  based  on
cross-entropy  (CE)  loss.  However,  CE  loss  is  inferior  for
fitting  the  ordinal  distribution  of  labels.  Therefore,  ordinal
regression-based  methods  have  been  explored  for  medical
image  classification  with  ordinal  labels  [15]–[17].  A  simple
solution  is  to  construct  a  series  of  binary  classification  prob-
lems  and  evaluate  the  cumulative  probabilities  of  all  binary
classifiers  [16],  [17].  However,  those  binary  classifiers  are
trained  separately,  which  ignores  the  ordinal  relationship.
Recently,  the  unsure  data  model  (UDM)  [15],  neural-stick
breaking (NSB) [18], unimodal method [19], and soft ordinal
label  (SORD)  [20]  have  been  proposed  to  improve  ordinal
regression  performance  based  on  rectified  label  space  or  the
probability calculation of the output of the CNNs.

Another  method  of  ordinal  regression  without  changing
target  distributions  is  based  on  the  combination  of  random
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forest  and  CNNs,  which  has  been  evaluated  to  successfully
estimate  human  age  using  facial  images  [4],  [5],  [21].  These
models  regard  the  largest  probability  among  all  the
dimensions  of  the  learned  tree-wise  distributions  as  the  final
prediction. To incorporate the global ordinal relationship with
forest-based  methods,  Zhu et  al. proposed  the  convolutional
ordinal regression forest (CORF) to allow the forest to predict
the  ordinal  distributions  [22].  However,  these  forest-based
methods  suffer  from  the  following  two  drawbacks:  1)  The
compositions  of  all  trees  depend  on  the  random  selection  of
split nodes from the feature vector of the fully-connected (FC)
layer, and the structure of the constructed forest is fixed at the
very beginning of training, leading to poor generalization due
to  the  lack  of  the  random  perturbation  of  features,  as

suggested in [23]; and 2) There exists the tree-wise prediction
variance  (tree-variance)  because  the  final  prediction  of  the
forest is the average of the results obtained by all trees, i.e., all
trees  share  the  same  weights  and  contribute  equally  to  the
final prediction.

To  address  the  aforementioned  problems,  we  propose  a
meta  ordinal  regression  forest  (MORF)  for  medical  image
classification  with  ordinal  labels. Fig. 2 shows  the  overall
framework of MORF including three parts: A CNN backbone
parameterized by θ to  extract  feature  representation from the
input  medical  image,  a  tree-wise  weighting  network  (TWW-
Net)  parameterized  by ϕ to  learn  the  tree-wise  weights  for
reduced  tree-wise  prediction  variance,  and  a  grouped  feature
selection (GFS) module to construct the dynamic forest that is
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Fig. 1.     The histogram of averaged malignant scores of nodules in LIDC-IDRI dataset. The red dashed lines split the nodules into three groups; i.e., benign
(≤ 2.5), unsure ( ), and malignant (≥ 3.5).
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Fig. 2.     The proposed MORF framework. Left: The deep ordinal regression forest with random construction of forest, which is followed by the TWW-Net.
Right:  The  deep  ordinal  regression  forest  followed  by  the  TWW-Net,  where  the  forest  is  constructed  from  the  GFS.  During  the  meta  train  stage,  the  GFS
features are used to guide the update of θ. The MORF framework involves three parts of parameters: θ (CNN), π (leaf nodes, i.e., the ordinal distributions), and

 (TWW-Net). Note that the parameter  on the right side is the first-order derivative calculated via (8). And  is used to obtain the TWW-Net parameter 
through (9).
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equipped  with  random  feature  perturbation.  We  adopt  the
meta-learning framework to optimize the parameters θ and ϕ
alternatively  [24],  [25].  The  way  we  use  meta-learning  is
similar  to  those  in  [24],  [25],  which  calculates  the  second
derivatives,  i.e.,  Hessian matrix,  via  meta data  or  meta tasks.
The main difference is that our meta data are selected features
via the GFS module rather than the original images; the meta
data  in  [24]  are  a  subset  of  the  validation  set  that  contains
equal  numbers  of  images  of  all  classes,  which  may  be
infeasible  in  medical  cases  because  some  classes  have  fewer
samples.  With  meta-learning  optimization,  CNN  parameters
can  be  updated  with  the  guide  of  the  dynamic  forest,  which
can achieve better generalizability.

The  main  contributions  of  this  paper  are  summarized  as
follows.

1) We propose a meta ordinal regression forest (MORF) for
medical  image  classification  with  ordinal  labels,  which
enables the forest on top of the CNNs to maintain the random
perturbation  of  features.  The  MORF  comprises  a  CNN
backbone, a TWW-Net, and a GFS module.

2) TWW-Net assigns each tree in the forest with a specific
weight  and alleviates  the tree-wise variance that  exists  in  the
previous  deep  forest-related  methods.  Furthermore,  we
provide  a  theoretical  analysis  on  the  weighting  scheme  of
TWW-Net and demonstrate  how the meta data  can guide the
learning of the backbone network.

3)  The  GFS  module  only  works  in  the  meta  training  stage
for generating the dynamic forest that incorporates the feature
random perturbation. Combined with the TWW-Net, the final
trained  model  can  be  further  enhanced  through  the  random-
ness of the dynamic forest.

4)  The experimental  results  on two medical  image classifi-
cation  datasets  with  ordinal  labels  demonstrate  the  superior
performance  of  MORF  over  existing  methods  involving
classification  and  ordinal  regression.  Furthermore,  we  also
verify  that  our  MORF  can  enhance  the  benign-malignant
classification when leveraging the unsure data into the training
set on the LIDC-IDRI dataset.

We  note  that  this  work  extends  our  previous  conference
paper [26] with the following major improvements:

1)  We  further  explore  the  relationship  between  our  re-
constructed  dynamic  forest  and  the  random  forest,  which
unveils  that  our  MORF has stronger  generalizability  than the
previous  deep  forest  methods  due  to  its  retained  random
perturbation during training.

2)  We  improve  GFS  module  by  using  random  selection
without  replacement,  where  the  resulting  dimension  of  FC
output should be equal to the number of split nodes in a forest.
This improvement can avoid selecting unused elements during
meta-training stage and achieve further performance gain.

3)  We  provide  the  detailed  training  algorithm  and  the
theoretical  analysis  on  the  meta  weighting  scheme of  TWW-
Net.

4)  For  the  LIDC-IDRI  dataset,  we  demonstrate  that  the
binary classification on the benign and malignant classes can
be improved by MORF. Most importantly, when we added the
unsure  data  into  the  training  set,  the  binary  classification
results on the test set are improved further.

5) We conduct extra experiments on a new breast ultrasound
images (BUSI) dataset [27] to evaluate the performance of the
methods.  

II.  Related Work

In this section, we review the related work on the following
three  aspects:  1)  CNN-based  methods  for  medical  image
classification with emphasis on lung nodule classification and
breast cancer diagnosis, 2) ordinal regression methods, and 3)
meta-learning methods.  

A.  CNN-Based Medical Image Classification
Medical image classification, such as lung nodule and breast

tumor  classification,  has  benefited  from  advanced  CNN
architectures  and  learning  strategies.  In  this  paper,  we  focus
on medical image classification with ordinal labels.

Lung  Nodule  Classification: Liu et  al. combined  statistical
features  and  artificial  neural  networks  to  detect  lung  nodules
in  full-size  CT  images  [28].  Shen et  al. applied  a  single
column network to classify lung nodule images with different
sizes  [12].  Dou et  al.  [13]  explored  an  ensemble  of
subnetworks,  each  of  which  has  a  specific  convolutional
kernel  size.  Cao et  al. trained  two  3-D  networks  on  original
data and augmented data, and combined them for lung nodule
detection  [29].  However,  3-D  networks  are  difficult  to  train
with limited medical data [30], [31]. Another kind of method
combines low-level and high-level features that come from U-
Net-like network architectures [8], [32]–[36], which can avoid
information  loss  through  the  concatenation  of  different
features.

Breast  Cancer Diagnosis: Breast  cancer  diagnosis  has  also
been enhanced by deep learning [2],  [18],  [37]–[45].  In [41],
[46],  the  authors  conducted  the  CNN-based  image  fusion,
feature fusion, and classifier fusion methods to classify breast
tumors  in  ultrasound  (US)  images.  Wu et  al. explored  the
binary  classification  (benign  and  malignant)  of  breast  cancer
based  on  the  proposed  view-wise,  image-wise,  breast-wise,
and  joint  learning  approaches  [43].  Akselrod-Ballin et  al.
combined  CNN  learned  features  with  the  electronic  health
records  to  improve the  early  detection of  breast  cancer  using
mammograms [44].  Dhungel et  al. applied a pretrained CNN
model  in  the  classification  of  breast  cancer  and  verified  the
effectiveness  of  deep  features  against  traditionally  hand-
crafted  features  [45].  Hagos et  al. incorporated  symmetry
patches  with  the  symmetric  locations  of  positive  tumor
patches  to  help  improve breast  cancer  classification perform-
ance [46].

All  the  methods  we  reviewed  above  did  not  take  into
account  the  progression  of  the  diseases  that  implies  the
intrinsic ordinal relationship among the classes. In this paper,
we use widely-used backbone networks such as VGG [47] and
ResNet  [1]  to  verify  the  effectiveness  of  our  method  in
exploring ordinal relationship.  

B.  Ordinal Regression
Ordinal  regression  is  a  classical  problem  that  predicts

ordinal labels [16], [17], [48], such as facial age [22], aesthetic
image  classification  [49],  and  medical  image  malignancy
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(N −1) N −1

ranking  [15],  [18],  [19].  Beckham  and  Pal  enforced  each
element of the FC output to obey unimodal distributions such
as  Poisson  and  Binomial  [19].  The  unimodal  method
surpassed  the  normal  cross-entropy  baseline.  Neural  stick-
breaking  (NSB)  was  proposed  in  [18],  whose  output  is  a

-dimensional  vector  representing  boundaries
where N is  the  number  of  classes.  NSB  guaranteed  that  the
cumulative  probabilities  would  monotonically  decrease.  The
unsure  data  model  (UDM)  is  a  strategy-driven  method  and
focuses  more  on  the  fact  that  normal  samples  and  disease
samples  should  be  classified  with  high  precision  and  high
recall,  respectively  [15].  The  UDM  incorporates  some
additional  parameters  associated  with  techniques  like  ordinal
regression,  class  imbalance,  and  their  proposed  strategies.
Although  the  UDM  outperforms  the  unimodal  method  and
NSB,  it  requires  more  effort  to  tune  the  model  to  obtain  the
optimal  additional  parameters.  Soft  ordinal  label  (SORD)
converted  the  ground  truth  labels  of  all  classes  in  a  soft
manner  by penalizing the distance between the true rank and
the label value [20].

The methods discussed above contain a deep neural network
(DNN) backbone followed by a modified classifier (FC layer)
except  for  the SORD method.  This pipeline cannot avoid the
redundant  use  of  the  FC feature  and  may  lead  to  overfitting.
Recently appeared deep random forest-based methods targeted
this problem. The deep neural decision forest (DNDF) defines
a  differentiable  partition  function  for  each  split  node  [5].
Hence,  the  forest  can  be  updated  jointly  with  the  deep
networks  through  backpropagation.  The  label  distribution
learning forest (LDLF) extended DNDF to output a predicted
distribution [21].  However,  the  DNDF and LDLF have diffi-
culty guaranteeing the global ordinal relationship of the predic-
tions  of  leaf  nodes.  Convolutional  ordinal  regression  forest
(CORF) was proposed to incorporate the constraint of ordinal
relation in  the  loss  function,  which enabled the  output  of  the
forest to be globally ordinal (monotonically decrease) [22].

In this paper, our MORF further improves the efficiency of
the  FC  feature  and  incorporates  random  perturbation  of
features for the forest. Moreover, our MORF enables different
trees  to  have  specific  weights  through  the  guidance  of  the
meta data.  

C.  Meta Learning
Meta-learning  is  tailored  for  learning  the  meta  knowledge

from the predefined meta task set or meta dataset. It is widely
used  in  few-shot  learning.  Model-agnostic  meta-learning
(MAML) [50] learns the parameter initialization from the few-
shot  tasks,  and  the  new  tasks  only  take  a  few  training  steps
while  achieving  better  generalization  than  fine-tuning.  Jamal
and Qi proposed extending the MAML to avoid overfitting on
existing training tasks by proposing a maximum-entropy prior
that  introduces some inequality measures in the loss function
[51]. Liu et al. enhanced the generalizability of the main task
from  the  predefined  auxiliary  task  using  meta-learning  [25].
Meta-weight-net is a novel weighting network to address class
imbalance  and  noisy  label  problems  [24].  In  summary,  these
meta-learning  methods  involve  optimizing  two  groups  of
parameters jointly. The meta training algorithm of our MORF

is similar to that of [24],  but differs in its construction of the
meta data and weighting behavior over the decision trees. The
construction of the meta data in [24] is to select a subset of the
validation set with an equal number of samples for each class
for meta training, whereas the meta data in MORF are feature
level.  

III.  Methods

In  this  section,  we  first  formulate  the  problem  of  ordinal
regression  forest  for  medical  images.  Then,  we introduce  the
meta ordinal regression forest (MORF) framework in order of
the  training  objective,  TWW-Net,  and  GFS  module.  Finally,
we  present  the  meta-learning  optimization  algorithm  and  the
corresponding theoretical analysis.  

A.  Problem Formulation

h : X→Y X
Y

Y = {y1,y2, . . . ,yC} y1 ≤ y2 ≤ · · · ≤
yC yc ∈ Y

y1 y2 y3

Ordinal  regression  solves  the  problem  that  the  data
belonging  to  different  classes  have  an  ordered  label,  which
implies that an intrinsic ordinal relationship exists among the
data. It learns a mapping function , where  repre-
sents  the  input  space  and  is  the  ordinal  label  space.  Here,

 has  the  ordinal  relationship 
,  where C is  the  number  of  classes.  In  this  study, 

denotes  the  stage  of  the  progression  of  diseases;  taking  the
lung  nodule  classification  [9]  as  an  example, C equals  3  and

, ,  and  represent  benign,  unsure  and  malignant,
respectively.

y ∈ Y
d = (d1,d2, . . . ,dC−1)T ∈

D dc = 1 y > yc dc = 0

d1 ≥ d2 ≥ · · ·
≥ dC−1

dc

To  solve  this  kind  of  ordinal  classification  problem,  the
given label  can  be  converted  to  an  ordinal  distribution
label,  i.e.,  a  one-dimensional  vector 

 [22],  where  if ,  otherwise .  Practically,
we  will  obtain  an  accurate d for  a  given  image,  and  the d
should  maintain  a  monotonically  decreasing  property  across
all the elements. Therefore, we impose a constraint 

 on d during training [22]. Under the framework of the
ordinal  regression  forest  (ORF)  [4],  [21],  [22],  the  ordinal
label  is  given  by  the  leaf  nodes  in  the  ORF,  and  the
probability of the given sample x falling into the l-th leaf node
is defined as
 

p(l|x;θ) =
∏
n∈N

sn(x;θ)1[l∈Ll
n]
(
1− sn(x;θ)1[l∈Lr

n]
)

(1)

Ll
n Lr

n
N

sn

sn : X→ {0,1}
sn sn(x;θ) =

σ( fη(n)(x;θ)) σ(·) f (·;θ)

f (·;θ) η(n)

η(n) η(n)

where  and  represent  the  subsets  of  leaf  nodes  held  by
left and right subtrees of the split node n, respectively, and 
is the number of split nodes in one tree.  is the split function
that determines which node (left or right) a sample should be
assigned to, i.e., . Following [4], [5], [21], [22],
we  formulate  as  a  probabilistic  function: 

, where  is the sigmoid function,  is the
backbone network (e.g.,  a CNN with an FC layer on the top)
and the output of  is a one-dimensional vector;  is an
index  function  that  is  used  to  assign  elements  selected  from
this  one-dimensional  vector  to  all  split  nodes  in  the  forest.
Actually,  is implemented by randomly selecting an -th
element for each n-th split node.

p(l|x;θ)
g : X→D

When we obtain  the  probability ,  the  output  of  one
tree can be defined as a mapping , 
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g(x;θ,T ) =
∑
l∈L

p(l|x;θ)πl (2)

T L
πl

πl = (π1
l ,π

2
l , . . . ,π

C−1
l )T

where  denotes one decision tree, and  a set of leaf nodes.
 holds  the  ordinal  distribution  of  the l-th  leaf  node;  i.e.,

.  In  this  paper,  the  parameter π can  be
updated  jointly  with  that  of  the  backbone  network  through
back-propagation, which has been illustrated in [4], [21], [22].
Then,  the  final  prediction  of  the  forest  is  the  average  of
outputs of all trees
 

P(x) =
1
T

T∑
t=1

g(x;θ,Tt) (3)

where T is  the  total  number  of  trees.  Here,  all  the  trees
contribute  equally  to  the  final  prediction  as  well  as  that  in
previous deep forest methods such as the CORF [22], whereas
in  our  MORF  model,  we  assign  each  tree  a  specific  learned
weight.  

B.  Meta Ordinal Regression Forests
The total framework of the MORF contains a CNN with an

FC layer  as  backbone  network  parameterized  by θ,  a  TWW-
Net parameterized by ϕ,  and the leaf nodes parameterized by
π. Note that the π is updated according to [22].

ωt

1)  Objective  Function: As  mentioned  above,  all  trees  in
ORF  and  CORF  are  assigned  the  same  weights,  which  can
increase the inevitable tree-wise prediction variance. To cope
with  this  drawback,  we  propose  multiplying  the  tree-wise
losses  with  specific  weights.  Therefore,  the  gradients  of θ,
backpropagated  from  the  losses  of  all  the  trees,  can  be
affected  by  the  weights .  Therefore,  our  training  objective
function is defined as
 

θ∗ = arg min
θ

Ltr(θ) =
1
N

N∑
i=1

1
T

T∑
t=1

ωi
tR

i
t(θ) (4)

Ri
t

ωt

where N is  the  number  of  training  images,  denotes  the
classification  loss  generated  by  (2),  and  represents  the
specific  weight  for  the t-th  tree  that  is  learned by the TWW-
Net,  which  will  be  subsequently  introduced.  Different  from
[24], (4) imposes the weights on the different trees w.r.t.  one
training sample i, rather than on the different samples.

ωt

2)  Tree-Wise  Weighting  Network: Here,  we  introduce  the
TWW-Net  that  is  used  for  learning  the  weights  in  (4).

Vt

Rt Rt
Vt Vt wt

Similarly to the meta-weight-net [24], TWW-Net is practically
implemented as a group of multilayer perceptrons (MLPs), ,
and each MLP acts as a weight learning function for a specific
tree because of the universal approximation property of MLPs
[52].  In Fig. 2,  we  can  see  that  the t-th  tree  generates  a
classification  loss ,  then  will  be  fed  into  the  correspon-
ding weighting net , and finally  outputs the weight  for
the t-th tree. This process can be formulated as
 

wt = Vt(Rt(θ);ϕt). (5)
Vt

ϕ = {ϕ1,ϕ2, . . . ,

ϕT }

Therefore,  TWW-Net  is  composed  of T weighting  net ,
where T is  the  number  of  trees.  Here  we  use 

 to represent the set of parameters of TWW-Net, and they
are updated together which will be described in Section III-C.
Through  (5),  a  TWW-Net  can  assign  different  weights  to
different trees.

Combined  with  (4),  the  training  objective  function  can  be
modified as follows:
 

θ∗(ϕ) = arg min
θ

Ltr(θ;ϕ)

=
1
N

N∑
i=1

1
T

T∑
t=1

V i
t ×
[
Ri

t(θ,π;S tr);ϕt
]

×Ri
t(θ,π;S tr) (6)

S trwhere  denotes the training set.
3)  Grouped  Feature  Selection  (GFS): Although  we  have

incorporated  the  tree-wise  weights  in  the  training  objective
function, the structure of the forest is still fixed. Therefore, we
introduce  the  GFS  module  to  construct  the  dynamic  forest
with  random  feature  perturbation  in  this  section.  Then,  we
explore the relationship between the GFS and random forest.

N
N

As  shown  in Fig. 3,  the  GFS  first  ranks  all  the  activation
values of the final FC feature vector. Then it splits the ranked
elements  into  groups  (denoted  by  different  colors),  where

 equals the number of split nodes in one decision tree. Both
the elements inside and outside of one group are in descending
order, and each tree randomly selects its own nodes across all
the  groups.  Hence,  one  tree  contains  the  features  globally
across  the  FC  feature,  and  it  retains  the  local  random
perturbation  of  the  feature  that  is  critical  for  the  random
forest.  After  repeating  these  procedures  on  all  the  trees,  the
dynamic  forest  is  constructed.  Note  that  the  final  trained

 

... ...

... ...

Descending sort

... ...FC output vector:

Grouping

Random 
selection 

from a group

Tree 1 Tree 2 Tree T 
Fig. 3.     The proposed grouped feature selection (GFS) assigning each tree with features of different groups. Note that the number of groups (colored boxes) in
GFS equals the number of split nodes in one decision tree.
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model  of  MORF  is  also  equipped  with  a  forest  that  is  fixed
from  the  beginning  of  training,  and  the  GFS  module  only
works in the training stage and has no impact on the forest at
the time of inference. Note that, the number of groups corres-
ponds to the number of split nodes in one tree, i.e., the number
of groups increases along with an increase of tree depth.

Relationship  Between  GFS  and  Random  Forest: Random
forest  (RF)  is  a  classical  ensemble  learning  method,  which
benefits from base learners that have feature and data random
perturbations.  Specifically,  feature  perturbation  means  that
each  node  in  the  decision  trees  is  the  most  discriminative
attribute  in  a  subset  of  its  whole  attribute  set  [23].  Data
perturbation is satisfied for all  the deep forest-based methods
that  trained  over  shuffled  mini-batches,  however,  feature
perturbation  occurs  because  of  the  fixed  forest  structure  [4],
[21],  [22].  In Fig. 3(b),  we  can  see  that  each  split  node  is
randomly  selected  from  its  own  feature  set.  Although,  in
Fig. 3(a), all the nodes in the forest are also obtained through
random  selection  within  their  subsets  (indicated  by  different
colors)  of  the  FC  feature,  it  differs  from  the  RF  in  that  the
nodes in different trees share the same subsets, i.e.,  the GFS-
based  forest  also  maintains  the  node-wise  feature  random
perturbation.  Therefore,  the  MORF  with  GFS  possesses  the
merit  of  randomness  with  respect  to  all  the  split  nodes,  and
this  advantage  does  not  exist  for  previous  methods  [4],  [5],
[21], [22].  

C.  Optimization via Meta-Learning
When we obtain a dynamic forest, we expect it to guide the

update of the CNN with a fixed forest. Moreover, from (6) we
observe  that  the  objective  function  involves  two  parts  of
parameters, θ and ϕ, and θ is a function of ϕ, so we customize
a  meta-learning  framework  enabling  the  meta  data  to  guide
the  learning  of  the  target  model.  Here,  the  GFS  selected
features are regarded as the meta data, which is different from
those in [24].

θ∗ ϕ∗To obtain the optimal , we need to obtain the optimal .
Therefore,  we  optimize ϕ by  minimizing  the  following
objective function:
 

ϕ∗ = arg min
ϕ

Lmeta(θ∗(ϕ))

=
1
M

M∑
j=1

1
T

T∑
t=1

R j
t (θ∗(ϕt),π;S meta) (7)

θ∗

where M is  the number of meta data.  This objective function
indicates  that ϕ is  updated  based  on  the  optimal  backbone
parameter .

First, we take the derivative of (6) with respect to θ
 

θ̂(u) = θ(u)− α 1
N ×T

N∑
i=1

T∑
t=1

V i
t

[
Ri

t(θ
(u));ϕt

]
×∇θRi

t(θ)
∣∣∣∣
θ(u)

(8)

S tr S meta

(u)
θ̂

∇θRi
t(θ) θ̂

where α is the learning rate for θ. For simplicity, we omit the
parameters π and  the  datasets  and  in  the  above
equations.  The  superscript  denotes  the u-th  iteration.
Therefore,  in (8) represents the weights obtained through the
first  order  derivative .  Then,  we  can  use  to  update
the parameters ϕ

 

ϕ(u+1) = ϕ(u)−β 1
M

M∑
j=1

∇ϕ
[ 1
T

T∑
t=1

R j
t (θ̂(u))

]∣∣∣∣
ϕ(u)
. (9)

To go a step further, we derive (9) and obtain the following
equation:
 

ϕ(u+1) = ϕ(u)+
αβ

N

N∑
i=1

( 1
M

M∑
j=1

Gi j
)∑T

t=1 ∂V
i
t (R

i
t(θ

(u);ϕt))
∂ϕ

∣∣∣∣
ϕ(u)

(10)
where
 

Gi j =
1
T

T∑
t=1

∂R j
t (θ̂,π;S meta)

∂θ̂

∣∣∣∣
θ̂(u)
× 1

T

T∑
t=1

∂Ri
t(θ;S tr)
∂θ

∣∣∣∣
θ(u)

Ri
t

R j
t

stands for the similarity between two gradients−the gradient of
the i-th  training  data  computed  on  training  loss  and  the
gradient  of  the  mean  value  of  the  mini-batch  meta  data
calculated  on  meta  loss .  This  enforces  the  gradient  of  the
feature  of  training  data  to  approach  that  of  meta  data
generated  from  GFS.  Hence,  the  behavior  of  each  tree  is
guided by the meta gradient and is consistent with other trees.
Consequently, the predictions of different trees in our MORF
are  consistent,  i.e.,  have  lower  variance,  which  guarantees  a
more stable prediction.

Algorithm 1 Training Algorithm of MORF

S trInput: Training data , max iteration U.
θ(U)Output: Ordinal regressor parameter .

θ(0) ϕ(0)1 Initialize  and .
u = 0 U −12 for  to  do

S tr3 　　Sample a mini-batch of (x, d) from .
4 　　// Meta train (update ϕ):

θ(u)(ϕ(u))5 　　Forward: input (x, d) with .
FR

Rt(θ(u)(ϕ(u));S tr)
6 　　Randomly construct the forest  and compute tree-wise loss

.
θ̂(u)(ϕ(u))7 　　Compute the first order derivative  by (8).

θ̂(u)(ϕ(u))8 　　Forward: input (x, d) with .

Rt(θ̂(u)(ϕ(u));S meta)
9 　　Construct  the  forest  via  GFS  and  compute  tree-wise loss

.
ϕ(u+1)10 　　Update  by (9).

11 　　// Model train (update θ):
θ(u)(ϕ(u+1))12 　　Forward: input (x, d) with .

Rt(θ(u)(ϕ(u+1));S tr)

FR

13 　　Compute tree-wise loss  based on the const-
ructed  in Step 6.

θ(u+1)14 　　Update  by (11).
15 end

ϕ(u+1)After  we  obtain  the  updated  TWW-Net  parameters ,
the update rule of θ can be defined as
 

θ(u+1) = θ(u)−α 1
NT

N∑
i=1

T∑
t=1

V i
t

[
Ri

t(θ
(u));ϕ(u+1)

t

]
∇θRi

t(θ
(u))
∣∣∣∣
θ(u)
.

(11)
Rt(θ̂(u),π;S meta)

θ̂(ϕ)

In  (9),  the  tree-wise  loss  is  calculated  via
meta  data,  and  the  meta  data  are  feature  level.  During  the
training  procedure,  we  first  obtain  the  first-order  derivative

 in  (8)  by  taking  the  image x as  input,  and  the  forest  is
constructed based on this forward process as shown on the left
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θ̂(ϕ)side of Fig. 2. Then, we fix  in (8) and take the image x as
input,  and  the  forest  here  is  reconstructed  through  our  GFS
module as shown on the right  side of Fig. 2.  Once again,  the
globally  and  locally  selected  features  via  GFS  are  the  meta
data in our method.  This retains the structural  variability and
the random feature perturbation of the forest. Simultaneously,
our  training  scheme can  guide  the  behavior  of  learning  from
training  data  to  approach  that  of  learning  from  the  GFS
generated meta data. The details of the training procedure are
shown in Algorithm 1.

Note that the TWW-Net (ϕ) only works in the meta training
stage,  and  it  does  not  affect  the  prediction  in  inference.  In
other  words,  the  trained  model  contains  parameters θ and π,
which are required during inference.  

IV.  Experimental Setup And Results

In  this  section,  we  present  the  experimental  setup  and
evaluate  the  proposed  MORF method  on  the  LIDC-IDRI  [9]
and BUSI [27] datasets. The experiments reported the average
results through five randomly independent split folds, and for
the  accuracies,  we  reported  the  average  values  with  standard
deviations.  

A.  Data Preparation

1 mm

32×32×32

1)  LIDC-IDRI  Dataset  for  Lung  Nodule  Classification:
LIDC-IDRI  is  a  publicly  available  dataset  for  pulmonary
nodule  classification  or  detection,  which  involves  1010
patients.  Some  representative  cases  are  shown  in Fig. 4.  All
the nodules were labeled by four radiologists, and each nodule
was  rated  with  a  score  from  1  to  5,  indicating  malignant
progression of the nodule. In our experiments, we cropped the
region  of  interest  (ROI)  with  a  square  shape  of  a  doubled
equivalent  diameter  at  the  corresponding  center  of  a  nodule.
The averaged score of a nodule was used as the ground-truth
label during training. Note that the averaged scores also range
from  1  to  5,  and  we  regard  a  nodule  with  an  average  score
between  2.5  and  3.5  as  the  unsure  nodule,  benign  and
malignant  nodules  are  those  with  scores  that  are  lower  than
2.5  and  higher  than  3.5,  respectively  [15].  In  each  plane,  all
the  CT  volumes  were  preprocessed  to  have  spacing  in
each plane. Finally, we obtain the training and testing data by
cropping  the  volume  ROIs  located  at  the  anno-
tated centers.

128×128

2)  BUSI  Dataset  for  Breast  Cancer  Classification: The
BUSI  dataset  can  be  used  for  ultrasound  image-based  breast
cancer  classification  and  segmentation,  which  contains  780
images  of  three  classes:  133  normal,  487  benign,  and  210
malignant  images.  Some  representative  cases  are  shown  in
Fig. 4. We first resized the original 2-D images into the same
sizes ,  and  then  conducted  the  data  augmentations,
including flipping and adding random Gaussian noise, for the
training set of BUSI. Finally, the training and test sets contain
1872 images and 156 images for each fold, respectively.  

B.  Implementation Details
1)  Network  Architecture: We  applied  ResNet-18,  ResNet-

34,  and  VGG-16  [1],  [47]  as  backbone  networks  to  compare
our MORF with other methods. Because the scales of the two

32×32×32 32×32

datasets  are  relatively  small,  we  use  the  2-D  version  of  the
backbone networks to avoid the huge number of parameters in
3-D  networks.  Therefore,  the  input  of  the  model,  the

 volumes,  can  be  treated  as  patches  with
32 channels  each,  and the corresponding number of  channels
of  the  first  layer  is  set  as  32.  For  our  MORF,  the  output
dimension  of  the  final  FC  layer  equals  the  number  of  split
nodes  in  a  forest  due  to  the  GFS  using  random  selection
without replacement, and for CORF, it is set as 256.

2)  Hyperparameter  Setting: The  learning  rates  for  the
LIDC-IDR  and  the  BUSI  datasets  are  0.001  and  0.00005,
respectively,  and  are  decayed  by  0.1  every  120  epochs  (150
epochs in total); the sizes of a mini-batch size are 16, and the
weight  decay  values  for  the  Adam  optimizer  are  0.0001  and
0.00005,  respectively  [53].  The  loss  functions  used  in  the
MORF,  CORF,  and  each  tree-wise  loss  during  meta  training
are the standard CE loss [54]–[56].

n1 n2
n1 n2

n1 n2

The number of trees for the forest is 4 and the tree depth is
3.  In  practice,  the  TWW-Net  contains  several  MLPs,  where
the  number  of  MLPs  equals  the  number  of  trees.  For  the
LIDC-IDRI  dataset,  we  evaluated  whether  or  not  the  unsure
nodules were used for training or testing. Therefore, in Tables I
and II, we use the symbol Train( )-Test( ) to represent that
there  are  classes  of  data  for  training,  and  classes  for
testing. The values of  and  are 3 (with unsure data) or 2
(without unsure data). All of our experiments are implemented
with  the  PyTorch  [57]  framework  and  trained  with  an
NVIDIA GTX 2080 Ti GPU.  

C.  Training With Unsure Data for Lung Nodule Classification
In this  section,  we focus on the standard 3-class  classifica-

tion of lung nodules. Following [15], we also care more about
the  recall  of  malignant  lesions  and  the  precision  of  benign
lesions,  which  fits  more  appropriately  with  the  clinical
diagnosis.

In Table I,  we  illustrate  the  results  of  the  CE  loss-based
methods,  the  related  ordinal  regression  methods,  and  our
MORF as  well  as  its  conference  version  denoted  as  MORFc.

 

Normal Benign Malignant

Benign Unsure Malignant

(b) Examples in BUSI

(a) Examples in LIDC-IDRI

 
Fig. 4.     Some examples in the BUSI [27] and LIDC-IDRI [9] datasets.  For
the LIDC-IDRI dataset, we provide four examples each class.
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When using different backbones, the MORF achieves the best
accuracies and F1 scores of malignant and benign. For all the
backbones,  the  MORF  also  maintains  the  higher  recall  of
malignant and precision of benign. Under the meaning of the
clinical  diagnosis,  the  MORF  is  better  able  to  reduce  the
missing  diagnosis  rate,  i.e.,  there  will  be  fewer  unsure  and
malignant  nodules diagnosed as  benign,  and fewer malignant
nodules  missing  a  diagnosis.  Most  importantly,  MORF
obtains  the  best  precision  for  malignancy,  demonstrating  a
lower misdiagnosis rate.

Under  the  setting  of  Train(3)-Test(2)  where  training  data
include  all  unsure  data,  the  feature  space  will  be  more
complicated  compared  with  the  binary  classification  setting.
However,  the  left  part  of Table II shows  that  the  MORF
significantly  outperforms  the  other  methods  significantly  on
all measured metrics. We emphasize that the ordinal relation-
ship of  the data is  critical  to ordinal  regression which can be
regarded  as  a  fine-grained  classification,  and  the  accurate
feature  representation  determines  the  ability  of  the  final
classifier. Although both MORF and CORF [22] consider the
global  ordinal  relationship,  the  fixed  forest  of  the  CORF
degrades  its  performance  in  that  the  random  feature
perturbation is  omitted.  The MORF with reconstructed forest
via the GFS module enables the update of the parameter θ to
be  affected  by  the  feature  randomness,  hence  leading  to  a
significant  gain.  Therefore,  this  experiment  verifies  the

robustness of MORF against the influence of plugging unsure
samples into the training data. Most importantly, the results of
MORF on the left side of Table II are slightly better than those
on the right side. This indicates that using the unsure class is
helpful  for  improving  the  classification  of  the  other  two
classes, i.e., the unsure nodules act as a boundary between the
malignant  and  benign.  Especially  for  ResNet-18/34,  the
recalls of malignant and the precisions of benign of Train(3)-
Test(2)  are  higher  than  those  of  Train(2)-Test(2).  VGG-16
achieves comparable results under these two settings, and we
attribute  this  phenomenon  to  the  different  feature  spaces
learned by ResNet and VGG-16.

When  comparing  the  unsure  class  with  existing  methods,
Table I shows both MORF and MORFc achieve better results
than  other  methods  in  terms  of  recall  rather  than  precision.
Similarly  to  the  importance  of  recall  of  malignant  [15],  the
higher  recall  of  the  unsure  class  provides  us  with  significant
insights  that  there  will  be  fewer  unsure  nodules  likely  being
classified  as  benign  or  malignant.  Although  the  unsure  class
contains mixed benign and malignant samples, one should not
miss  any  malignant  samples  in  unsure  class.  That  is,  the
unsure  class  should  be  similar  to  malignant  class  that  the
recall  is  relatively  more  important  than  the  precision.
Therefore,  MORF  and  MORFc are  helpful  for  further
diagnosis of nodules, such as biopsy. Consequently, MORF is
more  suitable  for  real  clinical  circumstance  while  recomm-

 

TABLE I 

Classification Results on Test Set of Train(3)-Test(3) on LIDC-IDRI Dataset. The Values With Underlines Indicate the
Best Results While Less Important in the Clinical Diagnosis [15]. MORFc is the Conference Version of the Proposed

MORF [26]

Backbone Method Accuracy
Benign Malignant Unsure

Precision Recall F1 Precision Recall F1 Precision Recall F1

ResNet-18

CE loss ±0.0060.542 0.544 0.722 0.620 0.586 0.644 0.613 0.496 0.290 0.366

Poisson [19] ±0.0070.527 0.536 0.605 0.568 0.590 0.584 0.587 0.477 0.410 0.441

NSB [18] ±0.0070.534 0.517 0.807 0.630 0.607 0.673 0.638 0.500 0.160 0.242

UDM [15] ±0.0040.546 0.553 0.767 0.643 0.581 0.495 0.535 0.504 0.325 0.395

CORF [22] ±0.0040.568 0.569 0.713 0.633 0.632 0.613 0.623 0.523 0.385 0.443

MORFc [26] ±0.0040.573 0.695 0.623 0.657 0.627 0.683 0.654 0.479 0.685 0.564

MORF (ours) ±0.0030.634 0.706 0.691 0.698 0.783 0.752 0.768 0.412 0.441 0.426

ResNet-34

CE loss ±0.0070.534 0.540 0.722 0.618 0.625 0.644 0.634 0.443 0.270 0.335

Poisson [19] ±0.0060.540 0.577 0.502 0.537 0.714 0.545 0.618 0.458 0.520 0.512

NSB [18] ±0.0060.544 0.580 0.619 0.599 0.608 0.614 0.611 0.462 0.425 0.443

UDM [15] ±0.0040.536 0.537 0.659 0.592 0.578 0.554 0.566 0.510 0.390 0.442

CORF [22] ±0.0050.542 0.581 0.605 0.593 0.616 0.524 0.566 0.466 0.480 0.473

MORFc [26] ±0.0040.586 0.619 0.619 0.619 0.504 0.700 0.565 0.509 0.560 0.533

MORF (ours) ±0.0030.639 0.751 0.650 0.697 0.773 0.742 0.757 0.422 0.535 0.472

VGG-16

CE loss ±0.0080.517 0.538 0.668 0.596 0.562 0.495 0.526 0.456 0.360 0.402

Poisson [19] ±0.0050.542 0.548 0.794 0.648 0.568 0.624 0.594 0.489 0.220 0.303

NSB [18] ±0.0050.553 0.565 0.641 0.601 0.566 0.594 0.580 0.527 0.435 0.476

UDM [15] ±0.0020.548 0.541 0.767 0.635 0.712 0.515 0.598 0.474 0.320 0.382

CORF [22] ±0.0060.559 0.590 0.627 0.608 0.704 0.495 0.581 0.476 0.515 0.495

MORFc [26] ±0.0040.580 0.660 0.479 0.556 0.719 0.596 0.652 0.492 0.680 0.571

MORF (ours) ±0.0020.641 0.754 0.632 0.688 0.798 0.743 0.769 0.429 0.574 0.492
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ending  more  accurate  diagnosis  of  follow-ups.  It  is  noticed
that  this  superiority  does  not  hold  in  the  UDM method  [15].
On  the  other  hand,  for  a  certain  backbone,  both  the  MORF
and MORFc outperform the CE loss-based counterpart, which
exhibits their effectiveness on exploiting ordinal relationship.  

D.   Training  Without  Unsure  Data  for  Lung  Nodule  Classi-
fication

To  verify  the  effectiveness  of  MORF  on  binary  classifica-
tion,  we  compare  the  results  of  all  methods  training  without
unsure  data.  The  CE  loss  under  Train(2)-Test(2)  in Table II
(right)  is  the  conventional  binary  classifier  whose  output
dimension  is  2,  and  this  is  different  from  that  of  Train(3)-
Test(2) whose output dimension is 3. It is clear that the MORF
also  achieves  the  best  overall  accuracy,  precision  of  benign,
and recall of malignant using different backbones.

Through  the  comparison  in Table II,  we  can  see  that  the
unsure data largely affect the generalizability of the compared
methods. There are no severe fluctuations in the performance
of  MORF  under  the  two  settings,  indicating  that  MORF  is
able  to  distinguish  the  samples  with  ordinal  labels  regardless
of  whether  the  ordinal  margin  is  large  (without  unsure)  or
small (with unsure).

Here,  we  would  like  to  clarify  why  the  performance  in
Table I is much lower than that seen in Table II. This is due to

the imperfect performance of recognizing the unsure samples,
so that it becomes unavoidable to encounter the classification
errors of all classes.  

E.  Classification Results on BUSI Dataset
In Table III,  we  illustrate  the  results  of  all  the  methods  on

the  BUSI  dataset.  For  the  benign  and  malignant  classes,  we
also  focused  more  on  the  precision  of  benign  and  recall  of
malignant.  Differently  from  the  LIDC-IDRI  dataset,  we  can
see from Fig. 4 that  the first  order  in  the BUSI dataset  is  the
normal  class,  which does  not  contain  nodules.  Therefore,  the
benign  class  occupies  different  positions  in  the  orders  of  the
two  datasets.  Interestingly,  our  MORF  also  retains  the  best
precisions of benign and malignant recalls as shown in Table III.
This  demonstrates  the  discriminative  ability  of  MORF  in
recognizing  nodules  of  different  orders  without  the  influence
of the normal class that does not include nodules.

Clinically,  false  positives  of  the  normal  class  indicate  that
benign  or  malignant  nodules  are  falsely  classified  as  normal,
which  will  result  in  an  increase  of  missing  diagnosis;  in
contrast,  false  negatives  of  the  normal  class  will  cause  an
increase  in  misdiagnosis.  Since  the  precision  and  recall
correlate  with  false  positives  and  the  false  negative,  here  we
suggest that the precision and recall  of the normal class have
equal  importance  weights.  The  results  of  compared  methods

 

TABLE II 

Classification Results on Test Sets of Train(3)-Test(2) and Train(2)-Test(2) on LIDC-IDRI Dataset. The Values With Under-
lines Indicate the Best Results While Less Important in the Clinical Diagnosis [15]. In This Table, P., R., And F1 are
Abbreviations of Precision, Recall, and F1 Score, Respectively. B. is Short for Backbone. Morfc is the Conference

Version of the Proposed MORF [26]

Train(3)-Test(2) Train(2)-Test(2)

Backbone Method Acc.
Benign Malignant

Acc.
Benign Malignant

P. R. F1 P. R. F1 P. R. F1 P. R. F1

ResNet-18

CE loss ±0.0060.833 0.848 0.924 0.884 0.790 0.634 0.703 ±0.0050.855 0.879 0.915 0.897 0.793 0.723 0.756

Poisson [19] ±0.0040.818 0.820 0.942 0.877 0.809 0.545 0.651 ±0.0030.840 0.887 0.879 0.883 0.738 0.752 0.745

NSB [18] ±0.0050.781 0.814 0.906 0.858 0.761 0.505 0.607 ±0.0070.849 0.875 0.910 0.892 0.783 0.713 0.746

UDM [15] ±0.0040.793 0.855 0.870 0.862 0.741 0.624 0.677 ±0.0050.846 0.888 0.888 0.888 0.752 0.752 0.752

CORF [22] ±0.0030.815 0.811 0.959 0.878 0.862 0.495 0.628 ±0.0020.830 0.875 0.879 0.877 0.730 0.723 0.726

MORFc [26] ±0.0040.839 0.861 0.945 0.886 0.781 0.673 0.723 ±0.0050.848 0.881 0.901 0.891 0.771 0.733 0.751

MORF (Ours) ±0.0040.889 0.923 0.915 0.919 0.816 0.832 0.824 ±0.0030.886 0.915 0.919 0.917 0.820 0.812 0.816

ResNet-34

CE loss ±0.0050.824 0.852 0.928 0.888 0.811 0.594 0.686 ±0.0050.846 0.862 0.923 0.891 0.800 0.673 0.731

Poisson [19] ±0.0040.833 0.839 0.937 0.886 0.836 0.604 0.701 ±0.0060.840 0.867 0.906 0.886 0.769 0.693 0.729

NSB [18] ±0.0060.763 0.883 0.812 0.846 0.815 0.653 0.725 ±0.0050.846 0.856 0.933 0.893 0.815 0.653 0.725

UDM [15] ±0.0040.821 0.860 0.906 0.882 0.790 0.634 0.703 ±0.0030.870 0.891 0.923 0.907 0.817 0.752 0.784

CORF [22] ±0.0040.815 0.867 0.883 0.875 0.752 0.663 0.705 ±0.0050.851 0.895 0.887 0.891 0.757 0.772 0.764

MORFc [26] ±0.0030.830 0.872 0.883 0.877 0.735 0.713 0.723 ±0.0040.858 0.886 0.910 0.898 0.789 0.743 0.765

MORF (ours) ±0.0030.907 0.941 0.924 0.932 0.838 0.871 0.854 ±0.0030.901 0.906 0.955 0.930 0.887 0.782 0.831

VG-16

CE loss ±0.0070.775 0.848 0.848 0.848 0.816 0.614 0.701 ±0.0050.855 0.864 0.937 0.899 0.829 0.673 0.743

Poisson [19] ±0.0060.784 0.888 0.785 0.833 0.622 0.782 0.693 ±0.0050.824 0.858 0.897 0.877 0.770 0.663 0.713

NSB [18] ±0.0040.772 0.839 0.917 0.876 0.863 0.624 0.724 ±0.0050.852 0.869 0.924 0.896 0.805 0.693 0.745

UDM [15] ±0.0030.796 0.859 0.928 0.892 0.895 0.505 0.646 ±0.0040.867 0.898 0.910 0.904 0.796 0.772 0.784

CORF [22] ±0.0050.796 0.887 0.883 0.885 0.772 0.603 0.678 ±0.0070.864 0.918 0.879 0.898 0.786 0.802 0.794
MORFc [26] ±0.0040.824 0.856 0.892 0.875 0.739 0.673 0.705 ±0.0030.870 0.906 0.906 0.906 0.792 0.792 0.792

MORF (ours) ±0.0040.877 0.889 0.937 0.912 0.842 0.742 0.789 ±0.0040.877 0.893 0.933 0.912 0.835 0.752 0.792
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in Table III show that they are prone to preferring precision or
recall  of  the  normal  class.  For  example,  the  UDM  obtains  a
precision  of  1.000  when  using  ResNet-18  while  the  corres-
ponding recall is 0.259; the NSB achieves similar results with
a  large  margin  between  precision  and  recall.  However,  the
MORF  has  relatively  balanced  precisions  and  recalls,  and  it
also  maintains  the  best  F1  scores  when  applying  all  of  the
backbones.  

F.  Comparisons Between MORF and MORFc

From Tables I−III,  we  can  see  that  MORF  consistently
outperforms  MORFc in  terms  of  overall  accuracy,  which  is
benefited  from  the  improved  GFS  using  random  selection
without  replacement.  For  both  of  the  two  datasets,  MORF is
better  at  identifying  benign  and  malignant  classes  compared
with MORFc, and this guarantees the improvements of overall
performance.  Recalling  the  essential  difference  between
MORF and MORFc that GFS in MORF uses random selection
without replacement, as a result, MORF makes more efficient
use  of  FC  output  vector  while  MORFc could  be  affected  by
selection  of  unused elements  in  FC output  vector.  Therefore,
the results suggest that GFS without replacement will be more
conducive to distinctive feature learning that identifies benign
and malignant.  

G.  Tree-Wise Variance Reduction
As analyzed in Section III-C that all trees in our MORF are

var :=
(1/T )

∑T
t=1 |pt − p̂|2 pt p̂

var

var

influenced by the gradient of the meta loss through the TWW-
Net  weighting  scheme.  Here,  we  provide  experiments  to
verify  the  consistency  of  behaviors  of  different  trees.  This
experiment was conducted on LIDC-IDRI dataset. We estim-
ated  the  variance  over  predictions  of  all  trees: 

,  where  and  denote  the  prediction  of
the t-th tree and the final prediction, respectively. In Fig. 5, we
compare the predictions and the corresponding s on some
special  nodules  such  as  cavities  (Fig. 5(b)),  ground-glass
(Fig. 5(c)),  calcifications  (Figs. 5(d) and 5(f))  and  benign
nodule with larger sizes (Fig. 5(e)). For the prediction results,
the  MORF is  more  accurate  than  CORF on  various  kinds  of
nodules using different backbones. Especially for the ground-
glass nodules and the large benign nodules, the CORF makes
incorrect  predictions,  which  will  cause  severe  diagnosis  loss.
For the large malignant nodule (Fig. 5(a)) and the calcification
case  (Fig. 5(d)),  the  CORF  tends  to  regard  them  as  unsure
while delaying the treatment of the patient with the malignant
nodule.  This  defect  may  be  attributed  to  the  lower  feature
randomness in CORF. Moreover, the s of MORF are much
lower  than  those  of  CORF  in  all  cases.  This  indicates  the
behavioral  consistency  of  all  of  the  trees  in  MORF,  which
benefits from the guidance of meta GFS features and the meta
training procedure.

In Fig. 5,  we  also  provide  some  failure  cases  obtained  by
MORF and CORF, i.e., Figs. 5(g)−5(i). Fig. 5(g) is malignant
and its real malignant score is 3.75 which is referred to Fig. 1.

 

TABLE III 

Classification Results on Test Set of BUSI Dataset. The Values With Underlines Indicate the Best Results While Less
Important in the Clinical Diagnosis [15]. MORFc is the Conference Version of the Proposed MORF [26]

Backbone Method Accuracy
Normal Benign Malignant

Precision Recall F1 Precision Recall F1 Precision Recall F1

ResNet-18

CE loss ±0.0030.726 0.750 0.556 0.638 0.779 0.761 0.770 0.627 0.762 0.688

Poisson [19] ±0.0040.707 0.692 0.667 0.679 0.817 0.659 0.730 0.583 0.833 0.686

NSB [18] ±0.0050.751 0.875 0.259 0.400 0.739 0.932 0.824 0.763 0.690 0.725

UDM [15] ±0.0030.739 1.000 0.259 0.412 0.762 0.875 0.814 0.653 0.761 0.703

CORF [22] ±0.0060.758 0.875 0.519 0.651 0.723 0.920 0.809 0.827 0.571 0.676

MORFc [26] ±0.0030.764 1.000 0.481 0.650 0.816 0.807 0.811 0.632 0.857 0.727

MORF (ours) ±0.0030.809 0.882 0.556 0.682 0.850 0.841 0.845 0.717 0.905 0.800

ResNet-34

CE loss ±0.0070.751 0.917 0.407 0.564 0.757 0.886 0.816 0.690 0.690 0.690

Poisson [19] ±0.0050.701 0.606 0.740 0.667 0.811 0.682 0.741 0.600 0.714 0.652

NSB [18] ±0.0060.733 0.933 0.519 0.667 0.784 0.784 0.784 0.592 0.761 0.667

UDM [15] ±0.0030.707 0.642 0.333 0.439 0.753 0.795 0.773 0.640 0.762 0.696

CORF [22] ±0.0060.764 0.923 0.444 0.600 0.726 0.931 0.815 0.838 0.619 0.712

MORFc [26] ±0.0030.771 1.000 0.518 0.683 0.839 0.772 0.804 0.629 0.928 0.750

MORF (ours) ±0.0040.822 0.724 0.778 0.750 0.880 0.830 0.854 0.778 0.833 0.805

VGG-16

CE loss ±0.0060.688 0.571 0.148 0.235 0.710 0.863 0.779 0.651 0.667 0.658

Poisson [19] ±0.0050.713 0.618 0.778 0.689 0.861 0.636 0.732 0.603 0.833 0.700

NSB [18] ±0.0050.764 1.000 0.370 0.540 0.781 0.852 0.815 0.686 0.833 0.752

UDM [15] ±0.0040.777 0.928 0.481 0.634 0.782 0.897 0.835 0.714 0.714 0.714

CORF [22] ±0.0030.752 0.916 0.407 0.564 0.707 0.989 0.824 0.909 0.476 0.624

MORFc [26] ±0.0030.796 1.000 0.593 0.744 0.777 0.909 0.837 0.763 0.690 0.725

MORF (ours) ±0.0030.854 0.807 0.778 0.792 0.905 0.864 0.884 0.787 0.881 0.831
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However, both MORF and CORF make incorrect predictions,
and this is due to blur edges or shapes of the nodule. Fig. 5(h)
is  a  benign  nodule  in  our  study  with  malignant  score  2.5
which  is  an  upper  bound  of  score  range  of  benign  class.  We
can see that MORF is prone to classifying it as unsure, while
CORF obtains  predictions  of  benign. Fig. 5(i) is  a  malignant
nodule  with  malignant  score  3.5,  i.e.,  the  lower  bound  of
malignant,  and  the  predictions  are  incorrect  obtained  by  the
two  methods.  We  conclude  that  MORF  and  CORF  can  be
confused by the malignant or benign nodules whose malignant
scores  are  close  to  unsure  class,  and  MORF  prefers
predictions of unsure for them. This phenomenon also reflects
that MORF is more suitable for real clinical circumstance that
requires more nodules surrounding the unsure class for further
diagnosis.  

H.  Ablation Study
Here, we evaluated the effectiveness of the GFS module and

TWW-Net based on CORF. The experiments were conducted
on  the  LIDC-IDRI  dataset  under  the  Train(2)-Test(2)  setting
using the ResNet-18 backbone. Then, we evaluated the effects
of  the  number  and  depth  of  trees  in  MORF.  Finally,  we
conducted  a  significance  analysis  between  MORF  and  other
methods  through  predictions  on  the  LIDC-IDRI  testing  set
(Train(3)-Test(3)).

1) GFS Module: To verify the random feature perturbation
enforced  by  the  GFS,  we  added  the  GFS  to  CORF  termed
CORF+GFS. The forest of the CORF is fixed during training
and inference.  In contrast,  the CORF+GFS enables the forest
structure to be dynamic during training only, and the training
process  does  not  include the  meta  train  stage.  That  is  to  say,
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Fig. 5.     Some prediction results of MORF and CORF under Train(3)-Test(2) setting. The y axis represents the prediction results: 1, 2 and 3 represent benign,
unsure and malignant.  The GT denotes ground truth.  The black vertical  line on each bar  represents  the variance over  the predictions of  all  trees.  Green box
contains some representative nodules, and red box include some failure cases. The subfigures represent different classes of nodules: (a), (b), (c), (d), (g); and (i)
are malignant; (d), (e), (f), and (h) are benign.
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the  CORF  is  equipped  with  random  feature  perturbations.
From Table IV we  can  see  that  the  CORF+GFS  achieves
better performances than the vanilla CORF. This indicates that
the  training  of  the  CORF  benefits  from  the  GFS  in  that  the
GFS  generated  forest  endows  the  target  model  (θ)  with  the
generalizability increased by the random feature perturbation.
However,  the drawback of all  trees sharing the same weights
is not yet resolved. In addition, we observe that the precision
of  benign  and  the  recall  of  malignant  of  CORF+GFS  are
worse  than  those  of  CORF,  which  can  be  explained  as
follows:  GFS  is  specially  designed  to  improve  the  meta-
training  of  the  proposed  MORF  while  CORF  does  not  have
meta  training,  as  a  result,  the  GFS  shall  compromise  the
performance of CORF as expected.
 

TABLE IV 

Effectiveness Evaluation of GFS And TWW-Net on the
LIDC-IDRI Dataset, Under the Train(2)-Test(2) Setting

Using ResNet-18

Method Accuracy
Benign Malignant

Precision F1 Recall F1

CORF 0.830 0.893 0.874 0.772 0.739

CORF+GFS 0.843 0.881 0.886 0.733 0.744

CORF+TWW-Net 0.821 0.897 0.897 0.653 0.737

MORF 0.886 0.915 0.917 0.812 0.816

 
 

Gi j
Gi j

2) TWW-Net: The CORF+TWW-Net in Table IV is tailored
for  evaluating  the  TWW-Net  without  the  GFS,  i.e.,  the
structure  of  the  forest  is  also  fixed,  and  the  training  process
includes  the  meta  train  stage. Table IV shows  that
CORF+TWW-Net  performs  worse  than  the  CORF.  This  is
due  to  that  the  training  data  and  the  meta  data  are  the  same
and consequently, the two terms of the multiplication in  as
shown in (10) are the same. Therefore, the  is almost at the
orientation  of  the  largest  gradient,  and  this  phenomenon
happens  equally  to  all  training  samples.  So  we  argue  that  in
(10), CORF+TWW-Net could accelerate the update of ϕ, and
hence,  may  trigger  the  overfitting  of  TWW-Net.  In  other
words,  the  update  of θ is  not  guided  by  the  meta  data.
Consequently,  the  meta  weighting  scheme  of  TWW-Net

Gi j Gi j

should be driven by the model generalizability gain from GFS.
For  MORF  (i.e.,  CORF  +  GFS  +  TWW-Net),  the  update  of
parameters θ can  be  guided  by  GFS  generated  features,
therefore,  involves  gradients  of  GFS  features,  then 
will slow down the update of ϕ according to (10). Hence, the
combination  of  GFS  and  meta  training  with  TWW-Net
achieves trade-off between updating the parameters θ and ϕ.

3) Number and Depth of Trees: Here, we further discuss the
effects of the number and depth of trees. We fix one of them
and evaluate the settings with various values of the other. The
backbone network is VGG-16. Fig. 6 shows the performances
influenced by these  two factors  on the  LIDC-IDRI under  the
setting of Train(3)-Test(3) and BUSI datasets.

> 4

In Fig. 6,  we  can  see  that  the  setting  with  the  number  of
trees being 4 and the depth of trees being 3 achieves the best
performances for both of the datasets. Lower or higher values
of  number  and  depth  will  decrease  the  performances.  If  the
number of trees is fixed, there will be more nodes in a forest
which  requires  FC  output  vector  to  have  higher  dimension,
i.e.,  more  elements.  Then  the  parameters  of  the  framework
begin to increase,  and this  will  affect  the performance.  If  the
depth  of  trees  is  fixed,  we  observe  that  when  the  number  is
small, i.e., 2 or 3, MORF achieves lower performances on two
datasets.  This  indicates  that  fewer ensembled trees can affect
the  capability  of  the  MORF,  then  hinder  the  performance
improvement. In contrast, too many trees ( ) also results in
a decrease of  performance which is  attributed to more MLPs
for weights learning, i.e., there are more parameters to learn.  

I.  Significance Analysis
In order to show the significant differences between MORF

and  compared  methods,  we  compare  MORF  and  other
methods  through  conducting  the  Wilcoxon  signed-rank  test
[58]  with  respect  to  predicted  probabilities  on  test  set.  In
Table V, we can see that  all  the p-values obtained by MORF
and baseline methods are less than the significance level 0.05.
So  we  reject  the  null  hypothesis  that  MORF  possesses  the
same prediction distribution as baseline methods.  Finally,  we
conclude  that  MORF  is  significantly  better  than  the  baseline
methods.  
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Fig. 6.     Classification accuracies with varying values of the depth of trees and number of trees on (a) LIDC-IDRI and (b) BUSI datasets.
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V.  Conclusions

In  this  paper,  we  propose  a  meta  ordinal  regression  forest,
termed MORF, for improving the performances of the ordinal
regression  in  medical  imaging,  such  as  lung  nodule
classification  and  breast  cancer  classification.  The  MORF
contains  a  grouped  feature  selection  module  that  is  used  to
generate  a  dynamic  forest  with  feature  random  perturbation.
Another  critical  component  of  the  MORF  is  the  TWW-Net
which  assigns  each  tree  with  a  learned  weight,  and  this
enforces  the  predictions  of  different  trees  to  have  smaller
variance while maintaining stable performances. The parame-
ters  of  the  model  are  learned  through  the  meta-learning
scheme which can solve the problem of integrating two parts
of  parameters  into  one  training  loop,  and  it  brings  the
gradients  of  target  data  and  meta  data  to  be  closer.  Through
the  experiments,  we  have  verified  that  the  MORF  can  help
reduce  the  false  positives  and  the  false  negatives  of  the
relevant classes, which is significant to the clinical diagnosis.
Moreover, we have also verified that the accurate recognition
of the intermediate order can improve the classification of the
other classes on both sides.

In  the  future,  we  will  consider  to  explore  attention  mecha-
nism  for  achieving  better  generalizability  of  deep  random
forest  such  as  in  [59].  Also,  we  will  simplify  the  MORF
framework such as using the design of light weight network or
efficient loss functions [60], [61].
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