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   Abstract—This  paper  addresses  the  problems  of  input-to-state
stabilization and integral input-to-state stabilization for a class of
nonlinear  impulsive  delayed  systems  subject  to  exogenous  dis-
turbances. Since the information of plant’s states, time delays, and
exogenous  disturbances  is  often  hard  to  be  obtained,  the  key
design challenge,  which we resolve,  is  the  construction of  a  state
observer-based controller.  For  this  purpose,  we firstly  propose  a
corresponding observer which is  independent of  time delays and
exogenous  disturbances  to  reconstruct  (or  estimate)  the  plant’s
states.  And  then  based  on  the  observations,  we  establish  an
observer-based control  design for the plant  to  achieve the input-
to-state stability (ISS) and integral-ISS (iISS) properties. With the
help  of  the  comparison  principle  and  average  impulse  interval
approach,  some  sufficient  conditions  are  presented,  and
moreover,  two  different  linear  matrix  inequalities  (LMIs)  based
criteria  are  proposed  to  design  the  gain  matrices.  Finally,  two
numerical  examples  and their  simulations  are  given  to  show the
effectiveness of our theoretical results.
    Index Terms—Average impulse interval,  input-to-state stabilization
(ISS),  nonlinear  impulsive  systems,  observer-based  control,  time
delays.
  

I.  Introduction

A S  an  important  subclass  of  hybrid  systems,  impulsive
systems  consist  of  three  main  components:  An  ordinary

differential  equation,  a  difference equation,  and an impulsive
law [1], [2]. These systems have drawn considerable attention
due to their wide applications in many challenging areas such
as  networked  control  systems  [3],  multi-agent  systems  [4],

optimization  problems  [5],  etc.  In  addition,  time  delays  are
ubiquitous  in  many  fields  of  science  and  engineering  and
might  bring  about  undesired  dynamics  such  as  oscillation,
instability,  and  some  complicated  phenomena,  see  [6]–[12].
Consequently,  considering  the  fact  that  many  dynamical
systems  are  affected  by  impulsive  effects  and  time  delays,
stability  properties  of  such  systems  which  are  also  called
impulsive  delayed  systems  have  been  extensively  inves-
tigated, see [13]–[20].

In  the  past  decades,  the  concept  of  input-to-state  stability
(ISS),  firstly introduced by Sontag in [21] and then extended
to delayed systems by Teel in [22], plays an important role in
characterizing  the  influences  of  external  inputs  on  nonlinear
systems.  Roughly  speaking,  the  ISS  property  implies  that  a
system can  be  asymptotically  stable  in  input-free  case  and  it
also  has  bounded  state  under  bounded  input.  As  a  natural
generalization of ISS, integral-ISS (iISS) is a weaker but still
very meaningful concept, see [23]. Recently, the problems of
ISS  and  iISS  were  investigated  for  (delay-free)  impulsive
systems  in  [24]–[26]  and  were  subsequently  also  studied  for
impulsive  delayed  systems  in  [14],  [16],  [17],  [20].  For
example,  [24]  firstly  developed  the  ISS-Lyapunov  function
method  to  impulsive  systems  with  external  inputs  affecting
both  the  continuous  dynamics  and  discrete  dynamics,  [14]
established  Razumikhin-type  theorems  for  ISS  and  iISS  of  a
class of impulsive delayed systems, and [20] investigated the
ISS property of time-delay systems subject to delayed impulse
effects.  Another  interesting  topic  that  has  been  investigated
extensively is the input-to-state stabilization problems, that is,
designing  control  laws  for  plants  such  that  the  closed-loop
systems  achieve  the  ISS  property  with  respect  to  exogenous
disturbances,  see  [27],  [28].  In  particular,  [29],  [30]  studied
the  input-to-state  stabilization  of  nonlinear  systems  from
impulsive  control  point  of  view.  However,  there  is  no  result
for  input-to-state  stabilization  that  takes  into  account  the
effects  of  impulsive  perturbations  and  time  delays.  It  is,
therefore, important and necessary to design a control scheme
for impulsive delayed systems to achieve ISS from impulsive
perturbation point of view.

It  is  well  known that  the  full  state  information  of  practical
systems  might  not  be  completely  measurable  due  to  the
limitation of implementation cost or measurement technology,
which  implies  that  the  state  feedback  is  generally  limited  in
control  engineering.  To this  end,  numerous interesting works
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have  considered  the  observer-based  output  feedback  control
approach,  that  is,  a  sort  of  dynamic  output  feedback  control
approach that can estimate plant’s states online, see [31]–[33].
Recently,  such  control  approach  has  been  widely  studied  for
impulsive  systems.  For  example,  [34]  proposed  an  observer-
based  fault-tolerant  control  method  for  a  class  of  hybrid
impulsive systems, [35] studied robust stabilization for a class
of  linear  impulsive  systems,  and  [36]  solved  the  observer-
based  quasi-synchronization  problem  of  delayed  dynamical
networks with impulsive effects. However, it should be noted
that  when  the  impulsive  systems  involve  unmeasurable  time
delays  and  unknown  exogenous  disturbances,  the  above-
mentioned  results  are  infeasible.  Since  such  undesirable
factors  may  complicate  the  problems  of  stability  analysis,
state  estimation,  and  controller  design,  it  is  natural  to  ask
whether  it  is  possible  to  design  an  observer-based  controller
for impulsive systems involving unmeasurable time delays to
achieve  the  ISS  performance  with  respect  to  exogenous
disturbances.  So  far,  to  the  authors’ best  knowledge,  this
problem has not been fully investigated yet, and remains to be
challenging, which motivates our present work.

Statement  of  Contributions: Motivated  by  the  above
discussions and practical requirements, our primary interest in
this paper is to design observer-based controllers for input-to-
state  stabilization  of  a  class  of  nonlinear  impulsive  systems
with  unmeasurable  time  delays  and  unknown  exogenous
disturbances.  Based on the comparison principle  and average
impulse  interval  approach,  some  stability  criteria  are  derived
and  the  observer-based  output  feedback  controllers  are
correspondingly designed. The effectiveness of the developed
results  is  illustrated  by  numerical  simulations.  The  main
contributions of this paper are summarized as follows.

1)  Differently  from  the  classical  state  observers  for  time-
delay  systems  in  [31],  [33],  [36],  [37],  in  which  the  constru-
ction of the state observers depends on the full information of
time delays, the state observer proposed in this paper is delay-
independent  and  can  be  applied  to  the  case  involving
unavailable and unmeasurable time delays.

2) The observer-based control for ISS of impulsive systems
has  been  extensively  studied,  such  as  [30]–[35].  However,
those results cannot be applied to the case involving both time
delays and exogenous disturbances. While in this paper, some
ISS  results  have  been  obtained,  in  which  an  observer-based
output  feedback  controller  which  does  not  need  the  full
information  of  time  delays  and  exogenous  disturbances  has
been designed.

3)  In  order  to  design  the  gain  matrices  of  observer-based
output feedback controllers conveniently, two different design
schemes  are  proposed  in  terms  of  linear  matrix  inequalities
(LMIs), which can be implemented in different cases.

The  remainder  of  this  paper  is  organized  as  follows.  In
Section  II,  we  precisely  explain  the  type  of  systems  consi-
dered and provide the relevant notations, assumptions, defini-
tions,  and  lemmas.  Main  results  are  proposed  in  Section  III.
Two numerical examples are given in Section IV to show the
effectiveness  of  the  proposed  design.  Finally,  Section  V

concludes the paper.  

II.  Preliminaries

K K∞
KL R

R+ Z+
Rn Rn×m

n×m
|| · || λmax(A) λmin(A)

A
A > 0 A < 0 A

AT A−1 A

⋆
S 1 ⊆ R

S 2 ⊆ Rk 1 ≤ k ≤ 2n PC(S 1,S 2) ≜ {υ : S 1→ S 2

υ(t−) υ(t+) υ(t+) = υ(t)} a,b ∈ R a < b
PC([a,b],Rk)

υ : [a,b]→ Rk ∥υ∥[a,b] ≜
supa≤s≤b ∥υ(s)∥ τ̄ > 0 PCk

τ̄ ≜ PC([t0−
τ̄, t0],Rk) ∥υ∥τ̄ ≜ ∥υ∥[t0−τ̄,t0]

Notations: We use the common definition of  class , ,
and  functions  from  [38].  Let  denote  the  set  of  real
numbers,  the set of nonnegative real numbers,  the set of
positive integer numbers,  and  the n-dimensional and

-dimensional  real  spaces  equipped  with  the  Euclidean
norm ,  respectively,  and  the  maximum
and  minimum  eigenvalues  of  symmetric  matrix ,
respectively.  or  denotes  that  the  matrix  is  a
symmetric  and  positive  or  negative  definite  matrix.  The
notations ,  denote the transpose and the inverse of ,
respectively. I is  the  identity  matrix  with  appropriate
dimensions  and  denotes  the  symmetric  block  in  one
symmetric  matrix.  For  any  interval  and  any  set

, ,  we  put  is
continuous everywhere except at  finite number of points t,  at
which ,  exist  and .  For , ,
let  denote the set of piecewise right continuous
function  with  the  norm  defined  by 

.  For  given ,  we  denote 
 and .

Consider the following nonlinear impulsive delayed system:
 

ẋ(t) = A0x(t)+A1 f (x(t))+Adg(x(t−τ(t)))+Bcu(t)

+Bdω(t), t , tk, t ≥ t0

x(t) = Dx(t−), t = tk, k ∈ Z+
y (t) =Cx (t)

x(s) = ϕ(s) ∈ PCn
τ̄, s ∈ [t0− τ̄, t0] (1)

x(t) ∈ Rn ẋ(t)
x(t) u(t) ∈ Rq ω(t) ∈ Rn

y(t) ∈ Rm

m ≤ n A0 ∈ Rn×n A1 ∈ Rn×n

Ad ∈ Rn×n Bc ∈ Rn×q Bd ∈ Rn×n C ∈ Rm×n D ∈ Rn×n

τ(t)
τ(t) ∈ [0, τ̄] τ̄ > 0 f (x(·)) = ( f1(x1(·)), . . . , fn(xn(·)))T ∈ Rn

g(x(·)) = (g1(x1(·)), . . . ,gn(xn(·)))T ∈ Rn

{tk}k∈Z+ 0 ≤ t0 < t1 < · · · < tk→∞
k→∞

x(t) = x(t+) ≜ limh→0+ x(t+h)

where  is  the  state,  is  the  upper  right-hand
derivative  of ,  is  the  control  input,  is
the  bounded  exogenous  disturbance,  and  is  the
output  (or  measurement)  with ; , ,

, , , ,  and  are
constant  matrices;  is  the  time-varying  delay  satisfying

 with ; 
and  are  the  nonlinear
functions  satisfying  certain  conditions  which  will  be  given
later. To prevent the occurrence of accumulation points, such
as Zeno phenomenon, we only consider that the impulse time
sequence  satisfies ,  as

.  Here,  we  always  assume  that  the  solutions  of  all
systems  studied  in  this  paper  are  right  continuous,  for
instance, .

l f
j lgj

| f j(s1)− f j(s2)| ≤ l f
j |s1− s2| |g j(s1)−g j(s2)| ≤ lgj |s1− s2|

s1, s2 ∈ R j = 1, . . . ,n f (0) = g(0) = 0
L f = diag(l f

j ) Lg = diag(lgj )

Assumption 1: For nonlinear functions f and g, the structure
is known, and there are positive constants  and  such that

 and  for
all , .  In  particular, .
Denote  and  for later use.

In general, the plant’s states might not be fully available due
to  the  physical  limitation  or  the  implementation  cost  [32],
[37],  which  means  that  it  is  very  hard  to  apply  a  full  state
feedback  control  for  the  plant  in  such  case.  Thus,  a  state
observer  can  be  constructed  to  estimate  the  plant’s  states  by
utilizing  the  available  measurements.  In  this  paper,  the
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assumption and processing of nonlinear part are not new [39],
[40],  but  we  consider  the  case  that  the  information  of  time
delays  and  exogenous  disturbances  cannot  be  completely
obtained.  To  this  end,  we  firstly  consider  the  following  state
observer  which is  independent  of  time delays and exogenous
disturbances:
 

˙̂x(t) = A0 x̂(t)+A1 f (x̂(t))+Adg(x̂(t))+Bcu(t)

+L(y(t)− ŷ(t)), t , tk, t ≥ t0

x̂(t) = Dx̂(t−), t = tk, k ∈ Z+
ŷ(t) =Cx̂(t)

x̂(t0) = ϕ̂ ∈ Rn (2)
x̂(t) ∈ Rn x(t) ŷ(t) ∈ Rm

m ≤ n L ∈ Rn×m
where  is  the  estimate  of ,  is  the
observer output with , and  is the observer gain
matrix to be designed. The control law is then given by
 

u(t) = Kx̂(t) (3)
K ∈ Rq×nwhere  is  the  control  gain  matrix  to  be  designed.

Under control input (3), the plant can be rewritten as
 

ẋ(t) = (A0+BcK)x(t)+A1 f (x(t))+Adg(x(t−τ(t)))
+Bdω(t)−BcKe(t), t , tk, t ≥ t0

x(t) = Dx(t−), t = tk, k ∈ Z+
y(t) =Cx(t)

x(s) = ϕ(s) ∈ PCn
τ̄, s ∈ [t0− τ̄, t0] (4)

e(t) ≜ x(t)− x̂(t)where  is  the  estimation  error  between  the
plant  and  the  observer.  It  then  follows  from systems  (2)  and
(4) that the dynamics of the error system is derived as follows:
 

ė(t) = (A0−LC)e(t)+A1F(e(t))+AdG(e(t))+Bdω(t)

−Adg(x(t))+Adg(x(t−τ(t))), t , tk, t ≥ t0

e(t) = De(t−), t = tk, k ∈ Z+
e(s) = ϕ̄(s) ≜ ϕ(s)− ϕ̂ ∈ PCn

τ̄, s ∈ [t0− τ̄, t0] (5)
F(e(·)) ≜ f (x(·))− f (x̂(·)) G(e(·)) ≜ g(x(·))−g(x̂(·))where  and .

According  to  systems  (2)  and  (5),  we  obtain  the  augmented
closed-loop impulsive system as follows:
 

ż(t) = Ã0z(t)+ Ã1F̃(z(t))+ ÃdG̃(z(t))+ ǍdG̃(z(t−τ(t)))
+ B̃dω̃(t), t , tk, t ≥ t0

z(t) = D̃z(t−), t = tk, k ∈ Z+
z(s) = χ(s) ∈ PC2n

τ̄ , s ∈ [t0− τ̄, t0] (6)
with the following vectors:
 

z(·) =
[x(·)
e(·)
]
∈ R2n, F̃(z(·)) =

[ f (x(·))
F(e(·))

]
∈ R2n

 

χ(s) =
[
ϕ(s)
ϕ̄(s)

]
, G̃(z(·)) =

[g(x(·))
G(e(·))

]
∈ R2n

 

ω̃(t) =
[
ω(t)
ω(t)

]
∈ R2n

and the following constant matrices:
 

Ã0 =

[A0+BcK −BcK
0 A0−LC

]
, Ã1 =

[A1 0
0 A1

]
 

Ãd =

[ 0 0
−Ad Ad

]
, Ǎd =

[Ad 0
Ad 0

]
 

B̃d =

[Bd 0
0 Bd

]
, D̃ =

[
D 0
0 D

]
.

For  further  discussion,  we  introduce  some  definitions  and
lemmas.

{tk}k∈Z+

β ∈ KL
γ ∈ K∞ ϕ ∈ PCn

τ̄

ω(t) x(t)

Definition 1 [14]: For given impulse time sequence ,
system  (1)  is  said  to  be  stabilized  to  input-to-state  stability
(ISS)  by  controller  (3),  if  there  exist  functions  and

 such  that  for  any  and  any  exogenous
disturbance , the solution  of system (4) satisfies
 

∥x(t)∥ ≤ β(∥ϕ∥τ̄, t− t0)+γ(∥ω∥[t0,t]), ∀t ≥ t0.

{tk}k∈Z+

β ∈ KL α,γ ∈ K∞
ϕ ∈ PCn

τ̄ ω(t)
x(t)

Definition 2 [14]: For given impulse time sequence ,
system  (1)  is  said  to  be  stabilized  to  integral-ISS  (iISS)  by
controller  (3),  if  there  exist  functions  and 
such that for any  and any exogenous disturbance ,
the solution  of system (4) satisfies
 

α(∥x(t)∥) ≤ β(∥ϕ∥τ̄, t− t0)+
w t

t0
γ(∥ω(s)∥)ds, ∀t ≥ t0.

{tk}k∈Z+
{tk}k∈Z+

F
F

Remark  1: The  above  definitions  depend  on  the  choice  of
the  sequence .  However,  it  is  often  of  interest  to
characterize ISS (iISS) over classes of  sequences .  To
this  end,  the  system is  said  to  be  stabilized  to  uniformly  ISS
(iISS)  over  a  given  class  if  the  system  is  ISS  (iISS)  for
every  sequence  in  with  functions β and γ that  are
independent of the choice of the sequence, see [24].

{tk}k∈Z+ τ∗

N0 τ∗

Definition 3 [24]: The average impulse interval (AII) of the
impulse time sequence  is said to be not less than , if
there exist positive constants  and  such that
 

N(T, t) ≤ T − t
τ∗
+N0, ∀T ≥ t ≥ t0 (7)

N(T, t)
{tk}k∈Z+ (t,T ] N0

F +[τ∗,N0]

where  is  the  number  of  impulses  of  the  sequence
 occurring on the interval , and  is the elasticity

number.  Denote  such  kind  of  impulse  time  sequences  by  set
 for later use.

h1(t),h2(t) ∈ PC([t0− τ̄,+∞),
R+) φ(t) ∈ PC([t0,+∞),R+) λ̄1 ∈ R
λ̄2 ∈ R+ µ̄ ∈ R+

Lemma  1  [16]: Let  functions 
,  and .  If  there  exist ,

, and  such that
 

D+h1(t) ≤ λ̄1h1(t)+ λ̄2h1(t−τ(t))+φ(t), t , tk, t ≥ t0

h1(tk) ≤ µ̄h1(t−k ), k ∈ Z+
and
 

D+h2(t) > λ̄1h2(t)+ λ̄2h2(t−τ(t))+φ(t), t , tk, t ≥ t0

h2(tk) ≥ µ̄h2(t−k ), k ∈ Z+
h1(t) ≤ h2(t) t0− τ̄ ≤ t ≤ t0 h1(t) ≤ h2(t)

t ≥ t0
then  for all  implies that 
for all .

h(t) ∈ PC([t0− τ̄,+∞),R+) λ̄1 ∈ R λ̄2 ∈ R+
µ̄ ∈ R+

Lemma 2 [16]: Assume  that  there  exist  a  function
 and  constants , ,  and

 such that
 

D+h(t) ≤ λ̄1h(t)+ λ̄2h(t−τ(t))+φ(t), t , tk, t ≥ t0

h(tk) ≤ µ̄h(t−k ), k ∈ Z+
t ≥ t0it then holds that for all , 
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h(t) ≤ µ̄N(t,t0)h(t0)eλ̄1(t−t0)+
w t

t0
µ̄N(t,s)eλ̄1(t−s)

× [λ̄2h(s−τ(s))+φ(s)]ds. (8)

λ̄1

Remark 2: The proof of Lemma 2 is similar to that in [16].
However, one can see that the main difference is that we only
need  that  is  a  real  constant,  which  can  lead  to  wider
applications.  

III.  Main Results

The  purpose  of  this  paper  is  to  derive  some  sufficient
conditions  for  input-to-state  and  integral  input-to-state
stabilization of system (1) via observer-based control  (2) and
(3).  To  do  this,  we  firstly  find  sufficient  conditions  for
uniformly  ISS  (iISS)  of  system  (6),  which  means  that  the
system  (1)  is  stabilized  to  uniformly  ISS  (iISS)  under  the
given  observer-based  control  scheme.  The  proof  is  based  on
Lemmas 1 and 2.

K ∈ Rq×n L ∈ Rn×m

2n×2n P > 0 R > 0 2n×2n
Qi > 0 i = 1,2,3 N0, τ

∗, λ1, λ2
µ > 1 τ∗ > lnµ/(λ1−µN0λ2) > 0 ĽT Q3Ľ < λ2P

Theorem 1: Given matrices  and , if there
exist  matrices , ,  diagonal matrices

, ,  and  positive  constants ,  and
, such that , ,

 
Π PÃ1 PÃd PǍd PB̃d

⋆ −Q1 0 0 0
⋆ ⋆ −Q2 0 0
⋆ ⋆ ⋆ −Q3 0
⋆ ⋆ ⋆ ⋆ −R


< 0 (9)

 −µP D̃T P
⋆ −P

 ≤ 0 (10)

Π = PÃ0+ ÃT
0 P+ L̂T Q1L̂+ ĽT Q2Ľ+λ1P L̂ = diag{L f ,

L f } ∈ R2n×2n Ľ = diag{Lg,Lg} ∈ R2n×2n

F +[τ∗,N0]

where , 
,  and ,  then  by  the

observer-based controller (3) with (2), system (1) is stabilized
to uniformly ISS (iISS) over the class .

V(t) = zT (t)Pz(t)
t ∈ [tk−1, tk) k ∈ Z+

V(t)

Proof: Consider  a  Lyapunov  function  for
the augmented system (6).  For , ,  taking the
right-upper Dini derivative of , with (6) we obtain
 

D+V(t) = 2zT (t)P[Ã0z(t)+ Ã1F̃(z(t))+ ÃdG̃(z(t))

+ ǍdG̃(z(t−τ(t)))+ B̃dω̃(t)]

≤ zT (t)(Π+Θ)z(t)+2zT (t)PB̃dω̃(t)− ω̃T (t)Rω̃(t)

−λ1zT (t)Pz(t)+ zT (t−τ(t))ĽT Q3Ľz(t−τ(t))
+ ω̃T (t)Rω̃(t)

≤ −λ1zT (t)Pz(t)+λ2zT (t−τ(t))Pz(t−τ(t))
+ ω̃T (t)Rω̃(t)

≤ −λ1V(t)+λ2V(t−τ(t))+φ(∥ω̃(t)∥) (11)
Θ = PÃ1Q−1

1 ÃT
1 P+PÃdQ−1

2 ÃT
d P+PǍdQ−1

3 ǍT
d P

φ(∥ω̃(t)∥) = λmax(R)∥ω̃(t)∥2 t = tk k ∈ Z+
where  and

. For , , with the help of
(10), we get
 

V(tk) = zT (tk)Pz(tk) = zT (t−k )D̃T PD̃z(t−k )

≤ µzT (t−k )Pz(t−k ) = µV(t−k ). (12)
Based on (11) and (12), we derive the following comparison

system:
 

v̇(t) = −λ1v(t)+λ2v(t−τ(t))+φ(∥ω̃(t)∥)+ε, t , tk

v(tk) = µv(t−k ), k ∈ Z+
v(s) = λmax(P)∥χ(s)∥2, s ∈ [t0− τ̄, t0]. (13)

vε(t)
ε > 0

V(t) ≤ v(t) ≤ vε(t) t ≥ t0

Assume that  is the corresponding maximal solution of
system (13) for any given . Based on Lemma 1, it can be
deduced  that  for  all .  It  then  follows
from Lemma 2 that:
 

vε(t) ≤ µN(t,t0)vε(t0)e−λ1(t−t0)+
w t

t0
µN(t,s)e−λ1(t−s)

× [λ2vε(s−τ(s))+φ(∥ω̃(s)∥)+ε]ds (14)
t ≥ t0for all . Using Definition 3, we have

 

e−λ1(t−s)µN(t,s) ≤ e−λ1(t−s)µ
t−s
τ∗ +N0

= e(−λ1+
lnµ
τ∗ )(t−s)µN0

= ηe−λ3(t−s) (15)
λ3 = λ1− lnµ/τ∗ > 0 η = µN0where  and . Substituting (13) and

(15) into (14) yields that
 

vε(t) ≤ ηvε(t0)e−λ3(t−t0)+
w t

t0
ηe−λ3(t−s)[λ2vε(s−τ(s))

+φ(∥ω̃(s)∥)+ε]ds

≤ ϱe−λ3(t−t0)+
w t

t0
ηe−λ3(t−s)[λ2vε(s−τ(s))

+φ(∥ω̃(s)∥)+ε]ds (16)
ϱ = ηλmax(P)∥χ(s)∥2τ̄ ς(λ) = ηλ2eλτ̄+λ−λ3

ς(0) = ηλ2−λ3 < 0
ς(+∞) = +∞ ς

′
(λ) = 1+ηλ2τ̄exp(λτ̄) > 0

λ > 0 ηλ2 exp(λτ̄)+λ−λ3 = 0
λ4 0 < λ4 < λ

0 < ηλ2 exp(λ4τ̄) < λ3−λ4

where .  Denote .  It
follows  that .  Moreover,  it  is  easy  to  see
that  and . Thus, there
exists  a  constant  such  that .
Moreover,  let  be  a  positive constant  satisfying ,
one may observe that .

t ≥ t0− τ̄In the following, we shall show that for all :
 

vε(t) < ϱe−λ(t−t0)+ ϱ̃
w t

t0
e−λ4(t−s)φ(∥ω̃(s)∥)ds+

ηε

λ3−ηλ2
(17)

ϱ̃where  is a positive constant satisfying
 

ϱ̃ ≥ η(λ3−λ4)
λ3−λ4−ηλ2eλ4τ̄

.

φ(|ω̃(t)|) ≡ 0 t0− τ̄ ≤ t ≤ t0We  start  by  setting  for  all  and
defining
 

Υ(t) ≜ ϱe−λ(t−t0)+ ϱ̃
w t

t0
e−λ4(t−s)φ(∥ω̃(s)∥)ds+

ηε

λ3−ηλ2
.

t ∈ [t0− τ̄, t0] η > 1For , in view of , we have
 

vε(t) = λmax(P)∥χ(t)∥2

≤ ηλmax(P)∥χ(t)∥2τ̄ = ϱ < Υ(t).

t ∈ (t0,+∞)
t∗ = inf{t > t0,vε(t) ≥ Υ(t)} t∗

vε(t∗) = Υ(t∗) t∗

vε(t∗) ≥ Υ(t∗)

For ,  if  (17)  is  not  true,  then  one  may  define
. If  is not an impulse point, it then

holds that . If  is an impulse point, it then holds
that . Therefore, 
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vε(t) < Υ(t), t ∈ [t0− τ̄, t∗)
vε(t∗) ≥ Υ(t∗). (18)

From (16) and (18), we observe that
 

vε(t∗) ≤ ϱe−λ3(t∗−t0)+
w t∗

t0
ηe−λ3(t∗−s)[λ2vε(s−τ(s))

+φ(∥ω̃(s)∥)+ε]ds

≤ ϱe−λ3(t∗−t0)+
w t∗

t0
ηe−λ3(t∗−s)

[
λ2
(
ϱe−λ(s−τ(s)−t0)

+ ϱ̃
w s−τ(s)

t0
e−λ4(s−τ(s)−ξ)φ(∥ω̃(ξ)∥)dξ

+
ηε

λ3−ηλ2

)
+φ(∥ω̃(s)∥)+ε

]
ds

≤ ϱe−λ3(t∗−t0)+∆1+∆2+∆3+∆4

where
 

∆1 =
w t∗

t0
ηλ2ϱe(λ3−λ)s+λ(τ̄+t0)−λ3t∗ds

 

∆2 =
w t∗

t0
η
( λ2ηε

λ3−ηλ2
+ε
)
e−λ3(t∗−s)ds

 

∆3 =
w t∗

t0
λ2ηϱ̃e−λ3(t∗−s)

w s−τ(s)

t0
e−λ4(s−τ(s)−ξ)

×φ(∥ω̃(ξ)∥)dξds
 

∆4 =
w t∗

t0
ηe−λ3(t∗−s)φ(∥ω̃(s)∥)ds.

ηλ2 exp(λτ̄)+λ−λ3 = 0Using , we have
 

∆1+∆2 =
ηλ2eλτ̄

λ3−λ
ϱ[e−λ(t

∗−t0)− e−λ3(t∗−t0)]

+
ηε

λ3−ηλ2
[1− e−λ3(t∗−t0)]

< ϱ[e−λ(t
∗−t0)− e−λ3(t∗−t0)]+

ηε

λ3−ηλ2
.

ϱ̃ ≥ η(λ3−λ4)/(λ3−λ4−ηλ2 exp(λ4τ̄)) λ3 >

λ4

In  view  of  and 
, we have

 

∆3+∆4 ≤ λ2ηϱ̃eλ4τ̄
w t∗

t0
e−(λ3−λ4)(t∗−s)

w s−τ(s)

t0
e−λ4(t∗−ξ)

×φ(∥ω̃(ξ)∥)dξds+
w t∗

t0
ηe−λ4(t∗−s)φ(∥ω̃(s)∥)ds

≤
(λ2ηϱ̃eλ4τ̄

λ3−λ4
+η
)w t∗

t0
e−λ4(t∗−s)φ(∥ω̃(s)∥)ds

≤ ϱ̃
w t∗

t0
e−λ4(t∗−s)φ(∥ω̃(s)∥)ds.

vε(t∗) < Υ(t∗)
ε→ 0+

It  then  holds  that ,  which  is  a  contradiction
with (18) and thus (17) holds. Let , it leads to
 

λmin(P)∥z(t)∥2 ≤ V(t) ≤ vε(t) ≤ Υ(t), ∀t ≥ t0. (19)

Then, the following proof is separated into two parts.

F +[τ∗,N0]
Part  I: In  this  part,  we  aim  to  prove  that  system  (1)  is

stabilized  to  uniformly  ISS  over  the  class .  Using
(19), we get 

∥z(t)∥2 ≤ λmax(P)
λmin(P)

η∥χ(s)∥2τ̄e−λ(t−t0)

+
ϱ̃λmax(R)
λmin(P)

w t

t0
e−λ4(t−s)∥ω̃(s)∥2ds

≤ λmax(P)
λmin(P)

η∥χ(s)∥2τ̄e−λ(t−t0)

+
ϱ̃λmax(R)
λmin(P)

∥ω̃(s)∥2[t0,t]
w t

t0
e−λ4(t−s)ds

≤ λmax(P)
λmin(P)

η∥χ(s)∥2τ̄e−λ(t−t0)

+
ϱ̃λmax(R)
λ4λmin(P)

∥ω̃(s)∥2[t0,t]

t ≥ t0for all , which implies that
 

∥z(t)∥ ≤ p1∥χ(s)∥τ̄e−λ(t−t0)/2+ p2∥ω̃(s)∥[t0,t], ∀t ≥ t0

p1 =

√
λmax(P)
λmin(P) η p2 =

√
ϱ̃λmax(R)
λ4λmin(P)

z(t) χ(t) ω̃(t)
∥z(t)∥ ≥ ∥x(t)∥ t ≥ t0 ∥χ(s)∥τ̄ ≥ ∥ϕ(s)∥τ̄ s ∈ [t0− τ̄, t0]

∥ω̃(s)∥[t0,t] ≥ ∥ω(s)∥[t0,t] s ∈ [t0, t]
q1 ≥ 1 q2 ≥ 1

where  and .  Recalling  the
definitions  of , ,  and ,  one  can  see  that

 for all ,  for ,
and  for .  Then,  there  exist
constants  and  such that
 

∥x(t)∥ ≤ p1q1∥ϕ(s)∥τ̄e−λ(t−t0)/2+ p2q2∥ω(s)∥[t0,t], ∀t ≥ t0

F +[τ∗,N0]
which  implies  that  system  (1)  is  stabilized  to  uniformly  ISS
over the class .

Part II: In the following, we shall investigate the uniformly
iISS property. By (19), we have
 

λmin(P)∥z(t)∥2 ≤ ηλmax(P)∥χ(s)∥2τ̄e−λ(t−t0)

+
w t

t0
e−λ4(t−s)λmax(R)∥ω̃(s)∥2ds

≤ ηλmax(P)∥χ(s)∥2τ̄e−λ(t−t0)

+
w t

t0
λmax(R)∥ω̃(s)∥2ds

t ≥ t0
q̃1 ≥ 1 q̃2 ≥ 1
for all . Similarly, we can obtain that there exist constants

 and  such that
 

λmin(P)∥x(t)∥2 ≤ p̃1q̃1∥ϕ(s)∥2τ̄e−λ(t−t0)

+
w t

t0
p̃2q̃2∥ω(s)∥2ds, ∀t ≥ t0

p̃1 = ηλmax(P) p̃2 = λmax(R)

F +[τ∗,N0]

where  and . Thus, one can see that
system  (1)  is  stabilized  to  uniformly  iISS  over  the  class

. ■
N0 = 1

τ∗

Remark 3: In particular, if we consider the case that ,
then  one  can  see  that  the  minimal  impulse  interval  is  used
instead of the average impulse interval, which implies that two
consecutive impulse  instants  must  be  separated by at  least 
units  of  time.  Then,  we  can  derive  the  following  corollary
from Theorem 1.

K ∈ Rq×n L ∈ Rn×m

2n×2n P > 0 R > 0 2n×2n
Qi > 0 i = 1,2,3 τ∗, λ1, λ2 µ > 1

τ∗ > lnµ/(λ1−µλ2) > 0 ĽT Q3Ľ < λ2P

Corollary 1: Given matrices  and , if there
exist  matrices , ,  diagonal matrices

, ,  and positive constants ,  and ,
such  that , ,  (9),  and
(10),  then  by  the  observer-based  controller  (3)  with  (2),
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Fτ∗ Fτ∗ {tk}k∈Z+
tk − tk−1 ≥ τ∗

system (1) is stabilized to uniformly ISS (iISS) over the class
, where  denotes the class of impulse sequences 

satisfying .
D =
√
µI µ > 1Next,  consider  the  case  that  with ,  we  can

formulate Theorem 1 as follows.
D =
√
µI µ > 1

K ∈ Rq×n L ∈ Rn×m 2n×2n
P > 0 R > 0 2n×2n Qi > 0 i = 1,2,3

N0, τ
∗, λ1 λ2 τ∗ >

lnµ/(λ1−µN0λ2) > 0 ĽT Q3Ľ < λ2P

F +[τ∗,N0]

Corollary  2: Suppose  that  with .  Given
matrices  and , if there exist  matrices

, ,  diagonal  matrices , ,  and
positive  constants ,  and ,  such  that 

, ,  and  (9),  then  by  the
observer-based controller (3) with (2), system (1) is stabilized
to uniformly ISS (iISS) over the class .

Remark  4: In  Theorem  1,  Corollaries  1,  and  2,  the  matrix
inequality  (9)  is  nonlinear,  which  limits  the  design  of  gain
matrices K and L via  the  MATLAB LMI  Toolbox.  To  over-
come  this  difficulty,  two  different  cases  are  fully  considered
and  some  necessary  matrix  transformations  need  to  be  app-
lied, which leads to the following results.

Bc
N0, λ1, λ2

µ > 1 τ∗ n×n
P1 > 0 P2 > 0 R1 > 0 R2 > 0 n×n
Qi j > 0 i = 1,2,3 j = 1,2 X ∈ Rn×n

Y ∈ Rn×m τ∗ > lnµ/(λ1−µN0λ2) > 0 ĽT Q3Ľ < λ2P

Theorem 2: Suppose that the control input matrix  is full
column  rank.  For  given  positive  constants ,  and

,  if  there  exist  a  positive  constant ,  matrices
, , , ,  diagonal  matrices
, , ,  and  constant  matrices ,

,  such that , ,
(10), and
 

Π̃ PÃ1 PÃd PǍd PB̃d

⋆ −Q1 0 0 0
⋆ ⋆ −Q2 0 0
⋆ ⋆ ⋆ −Q3 0
⋆ ⋆ ⋆ ⋆ −R


< 0 (20)

where
 

Π̃ =

Π̃11 −X
⋆ Π̃22

 , P =
[P1 0

0 P2

]
, R =

[R1 0
0 R2

]
 

Qi =

[Qi1 0
0 Qi2

]
, i = 1,2,3

with
 

Π̃11 = P1A0+AT
0 P1+X+XT +LT

f Q11L f

+LT
g Q21Lg+λ1P1

 

Π̃22 = P2A0+AT
0 P2−YC−CT YT +LT

f Q12L f

+LT
g Q22Lg+λ1P2

F +[τ∗,N0]
K = (BT

c Bc)−1BT
c P−1

1 X L = P−1
2 Y

then by the observer-based controller (3) with (2), system (1)
can  be  stabilized  to  uniformly  ISS  (iISS)  over  the  class

.  Furthermore,  the  gain  matrices  are  given  by
 and .
X = P1BcK Y = P2LProof: Assume that  and .  One  can  see

that
 

Π̃11 = P1A0+AT
0 P1+P1BcK +KT BT

c PT
1 +LT

f Q11L f

+LT
g Q21Lg+λ1P1

 

Π̃22 = P2A0+AT
0 P2−P2LC−CT LT PT

2 +LT
f Q12L f

+LT
g Q22Lg+λ1P2

which means that
 

Π̃ = PÃ0+ ÃT
0 P+ L̂T Q1L̂+ ĽT Q2Ľ+λ1P.

X = P1BcK Y = P2L
K = (BT

c Bc)−1BT
c P−1

1 X
L = P−1

2 Y

Hence,  all  conditions  in  Theorem  1  are  satisfied.  Fur-
thermore,  it  follows  from  and  that  the
gain matrices can be calculated as  and

. ■

N0, λ1, λ2 µ > 1
τ∗ n×n

M1 > 0 Λ1 > 0 Λ2 > 0 Ni j > 0 i = 1,2,3 j = 1,2
X̃ ∈ Rq×n Ỹ ∈ Rn×n

τ∗ > lnµ/(λ1−µN0λ2) > 0 ĽT N3Ľ < λ2M

Theorem  3: Suppose  that  the  output  matrix C is  full  row
rank.  For  given  positive  constants ,  and ,  if
there  exist  a  positive  constant ,  diagonal  matrices

, , , , , ,  and
constant  matrices , ,  such  that

, ,
 

Ξ Ã1M Ãd M Ǎd M B̃d M
⋆ −N1 0 0 0
⋆ ⋆ −N2 0 0
⋆ ⋆ ⋆ −N3 0
⋆ ⋆ ⋆ ⋆ −Λ

 < 0 (21)

 [−µM MD̃T

⋆ −M

]
≤ 0 (22)

where
 

Ξ =

[
Ξ11 −BcX̃
⋆ Ξ22

]
, M =

[M1 0
0 M1

]
, Λ =

[
Λ1 0
0 Λ2

]
 

Ni =

[Ni1 0
0 Ni2

]
, i = 1,2,3

with
 

Ξ11 = A0M1+M1AT
0 +BcX̃+ X̃T BT

c +LT
f N11L f

+LT
g N21Lg+λ1M1

 

Ξ22 = A0M1+M1AT
0 − Ỹ − ỸT +LT

f N12L f

+LT
g N22Lg+λ1M1

F +[τ∗,N0]
K = X̃M−1

1 L = Ỹ M−1
1 CT (CCT )−1

then by the observer-based controller (3) with (2), system (1)
can  be  stabilized  to  uniformly  ISS  (iISS)  over  the  class

.  Furthermore,  the  gain  matrices  are  given  by
 and .

P = diag{P1,P1} P1 = M−1
1 R =

M−1ΛM−1 Qi = M−1NiM−1 i = 1,2,3 X̃ = KM1 Ỹ = LCM1
P̂ = diag{P,P,P,P,P} P̌ = diag{P,P}

Ξii P1 i = 1,2

Proof: Assume  that  with , 
, , , , ,

,  and .  Firstly,  pre-multi-
plying and post-multiplying  with , , we have
 

P1Ξ11P1 = P1A0+AT
0 P1+P1BcK +KT BT

c PT
1

+LT
f Q11L f +LT

g Q21Lg+λ1P1

 

P1Ξ22P1 = P1A0+AT
0 P1−P1LC−CT LT PT

1

+LT
f Q12L f +LT

g Q22Lg+λ1P1.

Then, one can see that
 

PΞP = PÃ0+ ÃT
0 P+ L̂T Q1L̂+ ĽT Q2Ľ+λ1P.
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P̂
Next,  pre-multiplying  and  post-multiplying  both  sides  of

(21) with , it holds that
 

PΞP PÃ1 PÃd PǍd PB̃d

⋆ −PN1P 0 0 0
⋆ ⋆ −PN2P 0 0
⋆ ⋆ ⋆ −PN3P 0
⋆ ⋆ ⋆ ⋆ −PΛP


< 0

ĽT N3Ľ < λ2M
L̃T Q3L̃ < λ2P

P̌

X̃ = KM1 Ỹ = LCM1

K = X̃M−1
1 L =

Ỹ M−1
1 CT (CCT )−1

which  implies  that  the  condition  (9)  holds.  Secondly,  pre-
multiplying and post-multiplying both sides of 
with P,  we  have .  Thirdly,  pre-multiplying  and
post-multiplying  both  sides  of  (22)  with ,  we  can  obtain
(10).  Hence,  all  conditions  in  Theorem  1  are  satisfied.
Furthermore, it follows from  and  that the
gain  matrices  can  be  calculated  as  and 

. ■
Remark 5: There have been various results on input-to-state

stabilization  of  linear  (nonlinear)  systems  involving  un-
measurable  states  in  the  literature,  see  [30],  [34],  [35],  [37],
[41]. Similarly to those results, the output feedback controller
we designed is also based on a state observer. One can see that
the possible time delays are excluded in [30], [34], [35]. In the
framework  of  time  delays,  [37]  studies  the  observer-based
input-to-state  stabilization  problem  for  nonlinear  delayed
system. However, the state observer proposed in [37] depends
on the full information of time delays. That is, the time delays
need  to  be  fully  available  and  measurable.  Although  the
observer designed in [41] does not require the full information
of network-induced delays, the state delays of system itself are
excluded.  In  this  paper,  we  propose  an  observer-based
controller  which  can  stabilize  nonlinear  impulsive  systems
involving unmeasurable time delays and unknown exogenous
disturbances  to  ISS  (iISS),  where  the  information  of  time
delays  and  exogenous  disturbances  is  not  needed.  Moreover,
the  destabilizing  effects  of  impulsive  perturbations  are  also
considered in this paper, which leads to wider applications.

τ∗ > lnµ/(λ1−µN0λ2) > 0 ĽT Q3Ľ < λ2P

P1 P2 R1 R2 Qi j > 0 i = 1,2,3 j = 1,2

τ∗

λ1 λ2

λ1 λ2

µ > 1

Remark 6: Theorem 2 presents some LMI-based conditions
to design observer-based control input u such that system (1)
is stabilized to ISS (iISS). When using Theorems 2 and 3, it is
necessary  to  give  proper  parameters  such  that  inequalities

, ,  (10), and (20) hold.
Then the feasible solutions of those inequalities, that is, X, Y,

, , , ,  and , , ,  can be derived
by the MATLAB LMI Toolbox. Based on the above analysis,
the gain matrices can be designed by such known matrices and
the low bound of the AII constant  can be derived. From the
algorithm  point  of  view,  since  positive  constants  and 
describe  the  possible  convergence  rate  of  the  Lyapunov
function V, it is desirable to give a larger  and a smaller 
when  solving  LMIs  in  Theorem  2.  In  addition,  the  positive
constant  describes  the  possible  jump  amplitude  of  the
Lyapunov function V at impulse instants. Thus, a smaller μ is
preferred  for  the  feasibility  of  LMI  in  (10).  Similarly,  the
above analysis is suitable to Theorem 3.

Bc BT
c Bc

Remark 7: In Theorem 2,  we assume that  the control  input
matrix  is  full  column  rank,  which  implies  that  is
invertible.  Such  assumption  is  crucial  for  the  design  of  the

CCT
controller  gain K.  While  in  Theorem  3,  we  assume  that  the
output  matrix C is  full  row  rank,  which  implies  that  is
invertible.  Such  assumption  is  crucial  for  the  design  of  the
observer  gain L.  One  can  see  that  the  proposed  results  in
Theorems  2  and  3  can  be  applied  for  different  cases.  Hence,
they are different but complementary to each other. Moreover,
how  to  derive  some  less  conservative  conditions  for  the
general case is an interesting topic. This issue will be explored
in our future work.  

IV.  Numerical Examples

In  this  section,  we  present  two  numerical  examples  and
relevant  simulations  to  demonstrate  the  validity  of  the  above
designed observer-based control schemes.

Example  1: Consider  the  following  nonlinear  delayed
system:
 

ẋ(t) = A0x(t)+A1 f (x(t))+Adg(x(t−τ(t)))+Bcu(t)

+Bdω(t), t ≥ 0

y (t) =Cx (t) (23)
with
 

A0 =

[−2.85 2.2
1.35 −0.25

]
, A1 =

[0.2 0.1
0.2 0.15

]
, Bd =

[
1 0
0 1

]
 

Ad =

[
0.2 0.1
−0.2 0.01

]
, f (x(·)) = g(x(·)) =

[tanh(x1(·))
tanh(x2(·))

]
τ(t)

τ(t) ∈ [0 0.2] ω(t)
u(t) = 0

τ(t) = 0.2|sint| ω(t) = [0.8cost 1.1sint]T

[ϕ1(s) ϕ2(s)]T = [−1.5 1.4]T s ∈ [−0.2,0]

where  the  time  delay  is  unmeasurable  and  satisfies
, and the exogenous disturbance  is unknown

but bounded. When there is no control input (i.e., ), by
simulation, Fig. 1 shows that  the system (23)  is  not  ISS with
the  choice  of , ,  initial
condition  for .  In the
following, we consider two different cases.
 

0 5 10 15 20 25 30
Time (s)

x(
t)
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x1(t)
x2(t)

 
x(t)Fig. 1.     Trajectories of  without control input.

 
BcCase I: The control input matrix  is full column rank. In

this case, we will design the observer-based controller (3) with
(2)  such  that  system  (23)  with  the  following  impulsive
perturbations:
 

x(t) =
√
µx(t−), t = tk, k ∈ Z+ (24)

Bc = [0.5 0.3]T C = [0 7]
λ1 = 5.8 λ2 = 0.28 µ = 2.56 N0 = 2

τ∗

achieves  the  ISS  property  based  on  Theorem  2.  We  firstly
assume  that  and .  Then,  for  given

, , ,  and ,  by  calculating  the
range  of  values  for  and  solving  the  LMIs,  we  obtain
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τ∗ ∈ (0.2371,+∞) and the following gain matrices:
 

K = [−1.1754 −13.6241] , L = [4.4384 2.3577]T . (25)

F +[τ∗,2]
τ∗ ∈ (0.2371,+∞)

{tk}k∈Z+ = {t3n−2 = n−0.9, t3n−1 = n−0.8, t3n = n}n∈Z+ ∈
F +[1/3,2] τ(t) = 0.2|sint| ω(t) = [0.8cost
1.1sint]T [ϕ1(s) ϕ2(s)]T = [−1.5 1.4]T

s ∈ [−0.2,0]

Thus, according to Theorem 2, system (23) and (24) can be
stabilized  to  uniformly  ISS  over  the  class  with

. For simulations, we take impulse time sequ-
ence 

 and  still  consider , 
,  initial  condition  for

. Moreover, the observer-based controller (3) with
(2) is given with the designed gains in (25). One can see that
Fig. 2 shows the control signals, Fig. 3 shows the trajectories
of plant states, and Fig. 4 shows the trajectories of observation
error  signals.  The  corresponding  simulations  reflect  the
validity of our results.

Bc = [0 5.2]T C = [3 6]
λ1 = 5 λ2 = 0.32 µ = 2.56 N0 = 2

τ∗ ∈ (0.3238,+∞)

Case II: The output matrix C is full row rank. In this case,
to  study  the  input-to-state  stabilization  of  system  (23)  and
(24),  we  suppose  that  and .  If  we
choose  parameters , , ,  and ,
then by Theorem 3, we can obtain  and
 

K = [−0.7025 −1.0576] , L = [−13.6643 8.9721]T .

τ(t) ω(t) ϕ(s)
{tk}k∈Z+

Thus, using the above calculated solutions, the ISS property
of system (4) is achieved. In simulations, , , ,  and

 are  same  as  those  in  Case  I.  The  corresponding
simulations are shown in Figs. 5–7.
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e(t) [ϕ̄1 ϕ̄2]T = [−2.7 2.8]TFig. 7.     Trajectories of  with the initial condition 

in Case II.
 

Example  2: To  further  demonstrate  the  flexibility  and
effectiveness  of  the  proposed  design  scheme,  we  consider  a
chemical  reactor  system  with  two  reactors A and B [42],  as
shown  in Fig. 8.  Based  on  mass  balances,  when  there  is  no
impulse,  the  dynamics  of  the  reactants  can  be  modeled
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approximately as follows:
 

ẋ1(t) = − kAx1(t)− 1
θA

x1(t)+
1− rB

vA
x2(t)+ω1(t)

ẋ2(t) = − kBx2(t)− 1
θB

x2(t)+
ϑ

vB
u(t)+ω2(t)

+
rA

vB
x1(t−τ(t))+ rB

vB
x2(t−τ(t))

y (t) = x1(t) (26)
x1(·) x2(·) y(t)

kA kB θA θB
rA rB vA vB

τ(t)
τ(t) ∈ [0 0.5]

ω1(t) ω2(t)

kA = 1
kB = 0.5 θA = θB = 2 rA = 0.5 rB = 0.25 vA = vB = 0.5
ϑ = 0.5

where  and  are the compositions;  is  the output;
 and  are the reaction constants;  and  are the reactor

residence times;  and  are the recycle flow rates;  and 
are the reactor volumes; ϑ is the feed rate; the time delay 
is unmeasurable and satisfies , and the exogenous
disturbances  and  are unknown but bounded. Some
other information on system (26) can be found in [42]. For the
chemical  reactor  system  (26),  we  consider  that ,

, , , , ,  and
. Then, we obtain the following system:

 

ẋ(t) = A0x(t)+Ad x(t−τ(t))+Bcu(t)+Bdω(t), t ≥ 0

y (t) =Cx (t) (27)
with
 

A0 =

[−1.5 1.5
0 −1

]
, Ad =

[0 0
1 0.5

]
, Bc =

[
0
1

]
, C =

[
1
0

]T
 

Bd =

[
1 0
0 1

]
, x(t) =

[x1(t)
x2(t)

]
, ω(t) =

[
ω1(t)
ω2(t)

]
.

u(t) = 0

τ(t) = 0.5|cost| ω(t) = [0.2sint 0.25cost]T

[ϕ1(s) ϕ2(s)]T = [0.8 −0.3]T s ∈ [−0.5,0]

When there is no control input (i.e., ), by simulation,
Fig. 9 shows that the system (27) is not ISS with the choice of

, ,  initial  condition
 for .

λ1 = 5.7 λ2 = 1.6
µ = 1.69 N0 = 2
τ∗ ∈ (0.4643,+∞)

In  practice,  many  chemical  reactions  are  affected  by
discontinuous  perturbations  at  certain  instants,  which  may
lead  to  sudden  changes  in  the  states  of  the  chemical  reactor
system.  To  describe  it,  we  consider  such  sudden  changes  as
the impulsive perturbations in the form of (24). Moreover, due
to  the  complexity  of  the  chemical  reactor  system,  the  full
information of system states is hard to be obtained. Thus, it is
more realistic to design the observer-based controller (3) with
(2)  for  the  input-to-state  stabilization  of  system  (27)  with
impulses  (24).  If  we  choose  parameters , ,

,  and ,  then  by  Theorem  2,  we  can  obtain
 and the following gain matrices: 

K = [−6.0982 −3.7710] , L = [10.8932 52.6284]T .

u(t)

{tk}k∈Z+ = {t3n−2 = 1.5n−1.4, t3n−1 = 1.5n−1.1, t3n =

1.5n}n∈Z+ ∈ F +[0.5,2] τ(t) = 0.5|cost| ω(t) =
[0.2sint 0.25cost]T [ϕ1(s) ϕ2(s)]T = [0.8
−0.3]T s ∈ [−0.5,0] u(t)

Thus,  by  using above solutions,  the  observer-based control
input  can be obtained, which can be used to stabilize sys-
tem (24)–(27)  to  ISS.  For  simulations,  we  take  impulse  time
sequence 

 and still consider , 
,  initial  condition 

 for .  The  corresponding  control  input 
can  be  found  in Fig. 10.  With  such  control  input,  the
simulation results  are shown in Figs. 11 and 12.  One can see
that  the  designed  controller  can  render  the  resulting  closed-
loop system as  ISS,  which  illustrates  the  effectiveness  of  the
observer-based output feedback control approach.
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V.  Conclusions

The  paper’s  key  design  idea  is  how  to  develop  a  novel
control  scheme  to  stabilize  a  class  of  impulsive  delayed
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Fig. 8.     Chemical reactor system.
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systems  to  ISS  and  iISS  when  the  information  of  the  plant’s
states cannot be adequately obtained. We have constructed an
observer  to  estimate  the  plant’s  states  and  designed  an
observer-based control scheme for input-to-state stabilization.
Using the Lyapunov method and comparison principle,  some
criteria have been presented for the ISS property of the closed-
loop system and moreover,  the corresponding observer-based
controller  has  been  designed.  Finally,  the  advantage  and
effectiveness  of  our  results  have  been  demonstrated  by
simulation  results.  Since  practical  systems  are  often  affected
by the  random noises  [43],  another  interesting  direction  is  to
develop observer-based control for input-to-state stabilization
of impulsive stochastic nonlinear systems.
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