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   Abstract—In  the  conventional  robust  optimization  (RO)
context,  the  uncertainty  is  regarded  as  residing  in  a  predeter-
mined and fixed uncertainty set.  In many applications,  however,
uncertainties  are  affected  by  decisions,  making  the  current  RO
framework  inapplicable.  This  paper  investigates  a  class  of  two-
stage RO problems that involve decision-dependent uncertainties.
We introduce a class  of  polyhedral  uncertainty sets  whose right-
hand-side vector has a dependency on the here-and-now decisions
and seek to derive the exact optimal wait-and-see decisions for the
second-stage  problem.  A  novel  iterative  algorithm  based  on  the
Benders  dual  decomposition  is  proposed  where  advanced
optimality cuts and feasibility cuts are designed to incorporate the
uncertainty-decision  coupling.  The  computational  tractability,
robust feasibility and optimality, and convergence performance of
the  proposed  algorithm  are  guaranteed  with  theoretical  proof.
Four  motivating  application  examples  that  feature  the  decision-
dependent  uncertainties  are  provided.  Finally,  the  proposed
solution methodology is verified by conducting case studies on the
pre-disaster highway investment problem.
    Index Terms—Benders  decomposition,  decision-dependent  uncer-
tainty, endogenous uncertainty, robust optimization (RO).
  

I.  Introduction
  

A.  Background

UNCERTAINTIES  widely  exist  in  real-world  decision-
making  problems  and  various  mathematical  programm-

ing techniques, including scenario-based or chance-constrained

stochastic  programs,  robust  optimization  (RO)  [1]  and
distributionally  robust  optimization  [2],  have  been  developed
to  fit  in  different  characteristics  of  the  applications  [3].  RO
seeks  a  risk-averse  solution  by  explicitly  considering  the
worst-case  effect  of  all  possible  realizations  of  the  uncertain
parameter  within  a  pre-determined  uncertainty  set.  It  appeals
especially when the decision maker has no knowledge of  the
probability distributions of the uncertain parameters, or when
the feasibility  of  the  system over  the  entire  uncertainty  set  is
prioritized.  Due  to  its  salient  advantages  on  modeling
capability,  feasibility,  and  computational  tractability  [4],  RO
has  gained increasing  popularity  over  the  recent  decades  and
encompassed a wide variety of applications including process
scheduling  [4]–[6],  power  system  planning  and  scheduling
[7]–[10], and network optimization [3], [11], [12], etc.

In  the  context  of  RO,  the  uncertainty  sets  are  usually
assumed to be a priori  and fixed.  The underlying assumption
is  that  the  decision  maker’s  strategies  would  not  alter  the
range of uncertainty realization. In many real-world decision-
making  problems,  however,  uncertainties  can  depend  on  the
strategies  chosen by the  decision makers  and are  assumed as
endogenous.  For  example,  in  a  batch-process  scheduling
problem, the processing time or the production yield of a task
is endogenously uncertain since it  retains a physical meaning
only when the optimizer decides to operate the associated task
in  a  given  period  [4]–[6],  [13].  Another  example  is  the
demand  response  program  on  buildings’ electricity  con-
sumption  [8].  For  buildings  participating  in  the  program,  the
reserve  demand  requested  from  the  system  operator  is
uncertain and of endogenous nature due to its dependency on
the reserve capacity provided by the building in the day-ahead
market.  The  uncertainties  affected  by  decisions  are  called
decision-dependent  uncertainties  (DDUs)  or  endogenous
uncertainties. In this paper, we use these two terms interchan-
geably  without  distinction.  Also,  we  refer  to  decision-
independent  uncertainties  (DIUs)  or  exogenous  uncertainties
as  those  not  altered  by  decisions.  Consideration  of  DDUs  in
RO  problems  can  provide  considerably  less  conservative
solutions,  attributed to the fact that DDUs can be proactively
controlled by the optimizer. However, differently from DIUs,
the  presence of  DDUs brings  great  challenges  to  solving RO
problems,  mainly  due  to  the  mutual  influences  between
uncertainties  and  decisions.  In  this  paper,  we  propose  a
convergence-guaranteed  algorithm  to  efficiently  solve  the
two-stage RO problems with DDUs.  
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B.  Literature Review
Regarding  RO  under  DDUs,  existing  works  can  be

categorized  into  two  classes,  based  on  whether  there  are
recourse  or  wait-and-see  decisions  after  the  revelation  of
uncertainty realization:

1)  Static  RO  Under  DDUs: In  static  RO,  which  is  also
called  single-stage  RO,  all  the  decisions  are  here-and-now,
i.e.,  to  be  determined  before  observing  the  uncertainty
realization.  In  [14]  and  [15],  variable  budgeted  static  RO  is
studied,  where  the  budget  parameter  that  regulates  the
conservatism  of  the  uncertainty  set  is  modeled  as  an  affine
function  with  respect  to  the  decision  variables.  In  [16],
polyhedral  and  conic  uncertainty  sets  are  introduced  where
decisions control the upper bounds of the uncertain variables.
In  [3]  and  [4],  uncertainties  are  governed  by  binary-valued
materialization  indicator  variables.  The  materialization
indicator attains the values of 1 if the corresponding uncertain
parameter  retains  a  physical  meaning  in  the  problem  and  0
otherwise. The DDU-involved RO models in the above works
maintain  the  advantage  of  computational  tractability  of
conventional  RO  problems,  since  a  robust  counterpart  of
mixed-integer linear programming (MILP) formulation can be
derived by applying the strong duality theory and McCormick
envelopes convex relaxation.

2) Adaptive RO Under DDUs: Adaptive robust optimization
(ARO), or called adjustable RO [17], is established in a two-
stage or a more general multi-stage setting where recourse or
wait-and-see  decisions  are  incorporated  in  response  to  actual
uncertainty  realization.  The  computational  complexity  of
ARO  lies  in  the  fact  that  multi-level  programming  problems
with  more  than  two  decision  levels  are  non-deterministic
polynomial-time  (NP)-hard  [18].  To  overcome  this  intrinsic
computational  burden as  well  as  the  challenges  raised by the
coupling relationship between the here-and-now decisions and
the  uncertainties,  affine  decision  rules  parameterized  in  the
uncertainty  realizations  and  the  here-and-now  decisions  are
postulated  on  the  wait-and-see  decisions  in  [5],  [19]–[21].
Differently  from  the  aforementioned  approximate  affine
policies,  the decision rules  in  [22]  are  generated with the aid
of  multi-parametric  programming  technique,  rendering  the
exact  solution  to  the  ARO  problem;  however,  computation
burden of solving the second-stage problem parametrically as
an  explicit  function  of  the  here-and-now  decisions  and  the
uncertainty  is  transferred  off-line  but  not  eliminated.  In  the
line  of  primal  cut  algorithms  [23],  [24],  [9]  proposes  an
improved  column-and-constraint  generation  (C&CG)  algori-
thm  based  on  a  worst-case  scenario  mapping  technique.  Its
application,  however,  is  limited  to  a  high-dimensional  rec-
tangle decision-dependent uncertainty set (DDUS).

Compared with conventional ARO problems, the challenges
of  solving  DDUs-incorporated  ARO  problems  reside  in  the
fact that the existing cutting plane algorithms [23]–[26], with
constraints  generated  by  whether  primal  or  dual  information
of  the  second-stage  problem,  fail  to  warrant  finite  con-
vergence  to  the  global  optimum  when  the  uncertainty  set
depends on the here-and-now decision variable which changes
with iterations. This is because in that case the optimality cuts
and  feasibility  cuts  generated  with  concrete  uncertain

parameter values may become invalid and ruin the optimality
of  the  solution,  or  even  render  an  infeasible  master  problem
which  falsely  implies  that  the  original  ARO  problem  is  not
robust feasible. Moreover, since the vertices of the uncertainty
set  change  with  the  here-and-now  decision,  it  is  difficult  to
justify the finite convergence of these cutting plane algorithms
by  completely  enumerating  the  vertices  of  the  polyhedral
uncertainty  set.  To  the  best  of  the  authors’ knowledge,  the
solution  approach  for  ARO  under  DDUs  with  a  generic
decision-dependency and without any assumption on approxi-
mation policies has not been addressed.  

C.  Contribution and Organization
The main contributions of this paper are twofold:
1)  From  a  Modeling  Perspective: This  paper  addresses  a

generic  two-stage  robust  optimization  model  with  a  class  of
polyhedral  DDUSs  whose  right-hand-side  vector  has  a
dependency  on  the  here-and-now decisions.  Differently  from
[3],  [4],  [6],  [14]–[16]  that  contemplate  the  static  RO
involving  endogenous  uncertainty,  our  two-stage  RO  grants
more  feasibility  by  the  implementation  of  wait-and-see
decisions  after  the  revelation  of  uncertainty  realization.
Compared  with  [5],  [20],  [21]  that  are  established  in  a  two-
stage or multi-stage setting and postulate affine decision rules
on  the  wait-and-see  decisions,  our  model  seeks  to  derive  the
exact optimal solution to the second-stage problem. In view of
the  DDUS,  we  extend  the  polyhedral  uncertainty  sets  with
reduced decision-dependency considered in [6], [8], [9], [15],
[16] into a generic form where both the shape and size of the
uncertainty  set  may  be  altered  by  decisions.  Due  to  the
aforementioned improved modeling capability, our model can
considerably  eradicate  the  conservatism  effects  of  RO  by
proactively  controlling  the  level  of  uncertainties  and  inhe-
rently  capture  the  trade-off  between  the  robustness  and  con-
servatism of the solution.

2) From a Solution Standpoint: To solve the two-stage RO
model  with  DDUs,  we  propose  a  novel  iterative  solution
algorithm  involving  one  master  problem  and  two  sub-
problems,  based  on  the  Benders  dual  decomposition.
Compared  with  the  C&CG  algorithm  [23],  [24]  which  is
widely  applied  to  conventional  two-stage  RO  problems,  the
proposed algorithm overcomes the challenges stemming from
endogenous  worst-case  uncertainty  scenarios  by  using  only
dual information of the second-stage problem. Also differently
from  classical  Benders  dual  cutting-plane  algorithms
[25]–[27],  advanced  optimality  cuts  and  feasibility  cuts  are
designed  to  accommodate  the  coupling  between  uncertain
parameters  and  decision  variables.  Performance  of  the
proposed algorithm, including convergence and optimality, is
guaranteed  with  a  strict  proof.  To  implement  the  algorithm,
we  derive  the  robust  counterpart  of  the  master  problem  and
the  reformulations  of  the  sub-problems,  maintaining  the
computational tractability of the proposed solution algorithm.

The  remainder  of  the  paper  is  organized  as  follows.  The
remainder  of  this  section  introduces  the  notation.  The
mathematical formulation of the two-stage RO with DDUs is
provided in Section II. Section III proposes the solution appr-
oach  based  on  modified  Benders  decomposition.  Section  IV
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addresses  some  implementation  issues  of  the  proposed
algorithm,  including  the  derivation  of  a  tractable  robust
counterpart of the master problem which is a static RO and the
reformulation  of  the  bi-level  sub-problems  into  MILPs.  In
Section  V,  four  examples  are  provided as  the  applications  of
the  proposed  model  and  solution  methodology.  And  we
present  a  case  study  on  the  pre-disaster  highway  network
investment problem. We conclude the paper in Section VI.

Rn

Rm×n m×n Z Z+

[n] ≜ {1, . . . ,n}
[0] ≜ ∅ x ∈ Rn

A ∈ Rm×n xT AT

x,y ∈ Rn

xT y =
∑n

i=1 xiyi xi, yi

x◦ y = (x1y1, ..., xnyn)T

X ⊆ Rn vert (X) ⌊a⌋

X\Y ≜ {x : x ∈ X, x < Y}

Notation:  is  the  set  of n-dimensional  real  vectors  and
 is the set of  real matrices.  ( ) denotes the set of

(positive)  integers.  denotes  the  set  of  integers
from  1  to n and .  For  a  vector  (a  matrix

),  ( )  denotes  its  transpose.  We  use 1 and 0 to
denote  vectors  of  ones  and  zeros,  respectively.  For ,
we denote the inner product  where  stand
for  the i-th  entries  of x and y,  respectively.  The  Hadamard
product is defined as , i.e., the element-
wise  product  of  two  equally-sized  vectors  or  matrices.  For  a
polytope ,  is the set of the vertices of X.  is
the  largest  integer  less  than  or  equal  to a.  We  define  the
difference of set X and Y as .  

II.  Problem Formulation
  

A.  Two-Stage RO With DDU
The  two-stage  RO  with  DDU  (TRO-DDU)  problem  is

formulated as
 

min
x

{
f (x)+ max

w∈W(x)
min

y∈Y(x,w)
cT y
}

(1a)

 

s.t. x ∈ X∩XR (1b)
where
 

W(x) =
{
w ∈ Rnw |Gw ≤ g+h(x)

}
(1c)

 

Y(x,w) =
{
y ∈ Rny |Ax+By+Cw ≤ b,y ≥ 0

}
(1d)

 

XR = {x ∈ X| ∀w ∈W(x),Y(x,w) , ∅} . (1d)
x ∈ RnR ×ZnZ

nx = nR +nZ X ⊆ RnR×
ZnZ f (x) : RnR ×ZnZ → R1

w ∈ Rnw W(x) : RnR ×ZnZ 7→ 2R
nw

G ∈ Rr×nw g ∈ Rr

h(x) : RnR ×ZnZ → Rr

y ∈ Rny

c ∈ Rny

Y(x,w) : RnR ×ZnZ ×Rnw 7→ 2R
ny

A ∈ Rm×nx , B ∈ Rm×ny , C ∈ Rm×nw b ∈ Rm

XR ⊆ RnR ×ZnZ

W(x)
Y(x,w)

The here-and-now decision  is a mixed-integer
variable  vector  with  a  dimension  of . 

 is  the  feasible  region  of x.  is  the
cost function with respect to x. The DDU parameter is denoted
by  and  the  DDUS  of w is ,
which  is  essentially  a  set-valued  map  parameterized  by x
where  is  a  constant  matrix,  is  a  constant
vector  and  is  a  vector-valued  function
with respect to x. The wait-and-see decision vector is .
We consider  the  case  that  the  second-stage  decision  problem
is  a  linear  program  (LP)  and  denotes  the  cost
coefficient  of y. ,  which  is
essentially  a  set-valued  map  parameterized  by x and w,
denotes  the  feasible  region  of y with  a  specific  form  in  (1d)
where  and  are
constant  parameters.  The  constraint  set 
defined in (1e) is the set of x that are robust feasible. A here-
and-now decision x is called robust feasible [1], [26] if for any
realization of the uncertain w within  there exists at least
one feasible wait-and-see decision y lying within . The

f (x)+ cT y
TRO-DDU  problem  (1)  aims  at  minimizing  the  total  cost  of
the  two  stages,  which  is ,  under  the  worst-case
uncertainty  realization.  The  following  assumptions  are  made
on problem (1).

f (x)
X∩XR , ∅ W(x)

x ∈ X Y(x,w) x ∈ X w ∈W(x)

Assumption 1: 1)  is a convex function; 2) X is a convex
set; 3) ;  4) X is bounded,  is bounded for any

 and  is bounded for any  and .
Under  Assumption  1-1)  and  1-2),  the  nominal  problem  of

(1)  is  a  convex  minimization  problem.  Assumption  1-3)  and
1-4)  imply  that  the  TRO-DDU  problem  (1)  is  feasible  and
bounded, thus there exists the optimal solution to (1).

W(x)

The  TRO-DDU  problem  distinguishes  itself  from  the
existing literature by the consideration of the DDU w and the
DDUS . Regarding the generality of the DDU modeling
in the TRO-DDU problem (1), we have the following remark.

W(x)

W(x)
h(x) = 0

Remark 1 (Decision-Dependent Uncertainty Set): The poly-
hedral DDUS  in (1c), whose right-hand-side vector has
a  dependency  on x,  covers  the  formulations  proposed  in  the
existing  literature  [8],  [9],  [14]–[16],  [20],  [21].  It  provides
generic  modeling  capability  since  both  the  shape  and  size  of
the uncertainty set can be altered by x. Moreover,  in (1c)
applies  readily  with  DIUs  by  setting .  Though  the
coefficient  matrix G is  fixed  in  (1c),  the  solution  strategy
proposed in Sections III and IV can be easily extended to the
cases in [3]–[5] where x affects the coefficient matrix through
certain binary-valued functions with respect to x.

Regarding the difficulty in solving TRO-DDU problem (1),
we have the following remark.

Remark  2: The  well-known  C&CG  algorithm  is  no  longer
applicable to TRO-DDU problem (1) since finite convergence
to  the  global  optimum  is  not  warranted  in  the  presence  of
DDUs.

x1

w1 ∈W(x1)
x2

w1 <W(x2)
w1

1) Failure in Robust Feasibility and Optimality: The cutting
planes  in  the  C&CG  algorithm  with  recourse  decision
variables  in  the  primal  space  are  generated  with  concrete
values of the uncertain parameter for each identified scenario;
and  these  cuts  can  become  invalid  when  the  uncertainty  set
depends  on  the  here-and-now  decision x which  varies  with
iterations. For example, given a here-and-now decision , the
identified worst-case uncertainty realization  would
never  come  true  if  another  here-and-now  decision  is
adopted  and ;  and  in  that  case,  the  feasibility  and
optimality  cuts  generated  according  to  no  longer  necess-
arily  perform  a  relaxation  to  problem  (1)  and  may  ruin  the
optimality of the solution, or even render an infeasible master
problem.

W(x)

2) Failure in Finite Convergence: The finite convergence of
C&CG algorithm is justified by a complete enumeration of the
vertices  of  the  uncertainty  set.  However,  in  problem  (1),  the
vertices  set  of  polytope  changes  with x which  varies
with  iterations,  thus  the  C&CG  algorithm  no  longer  necess-
arily terminates within a finite number of iterations.  

III.  Solution Method
  

A.  Equivalent Transformation
1) Robust Optimality: Looking at the inner-level problem in
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S (x)
(1), we denote the following max-min bi-level optimization by

:
 

S (x) = max
w∈W(x)

min
y∈Y(x,w)

cT y. (2)

S (x) S (x)By noting the duality of the inner problem in ,  can
be  equivalently  transformed  into  the  following  bi-linear
maximization problem:
 

S (x) =max
w,u

uT (b−Ax−Cw) (3a)

 

s.t. w ∈W(x), u ∈ U ≜
{
u|BT u ≤ c,u ≤ 0

}
(3b)

u ∈ Rm

Ax+By+Cw ≤ b
where  is  the  dual  variable  that  corresponds  with  the
constraints . Then, problem (1) is equivalent
to
 

min
x

f (x)+S (x) s.t. x ∈ X∩XR. (4)

α ∈ R1Introducing  a  supplementary  variable ,  then  problem
(4) can be further rewritten in an epigraph form as
 

min
x,α

f (x)+α

 

s.t. x ∈ X∩XR, S (x) ≤ α. (5)

XR

2)  Robust  Feasibility: The  robust  feasibility  of  decision x,
i.e.,  whether x lies  in ,  can  be  examined  by  solving  the
following relaxed bi-level problem:
 

R(x) =max
w

min
y,s

1T s (6a)

 

s.t. w ∈W(x) (6b)
 

Ax+By+Cw ≤ b+ s (6c)
 

y ≥ 0, s ≥ 0 (6d)
s ∈ Rm

R(x) ≤ 0
x ∈ XR R(x) > 0

w∗ ∈W(x)

R(x) R(x)

where  is  the  slack  variable  vector  introduced  to  relax
the feasible region of y defined in (1d). If , x is robust
feasible,  i.e., .  Else  if ,  there  must  exist  a
realization  such  that  no  feasible  wait-and-see
decision y is  available.  It  is  useful  to  write  the  dual  of  the
inner  minimization  problem in .  Then  is  equivalent
to the single-level bi-linear optimization problem as follows:
 

R(x) =max
w,π

πT (b−Ax−Cw) (7a)

 

s.t. w ∈W(x) (7b)
 

π ∈ Π ≜
{
π|BTπ ≤ 0,−1 ≤ π ≤ 0

}
(7c)

π ∈ Rm

x ∈ XR R(x) ≤ 0
where  is  the  dual  variable  vector  corresponding  with
constraints (6c). Since  if and only if , problem
(5) can be further written as
 

min
x,α

f (x)+α

 

s.t. x ∈ X,S (x) ≤ α, R(x) ≤ 0. (8)
From  the  above  transformation,  we  derive  problem  (8)

which is the surrogate model of TRO-DDU problem (1).  

B.  Modified Benders Decomposition Algorithm
Next, we have the overall Algorithm 1 to solve problem (8)

where the master problem (MP) involved is formulated as 

min
x,α

f (x)+α (9a)
 

s.t. x ∈ X, α ≥ −M (9b)
 

α ≥ u∗Tj (b−Ax−Cw) , ∀w ∈W(x), j ∈ [ku] (9c)
 

0 ≥ π∗Tj (b−Ax−Cw) , ∀w ∈W(x), j∈ [kπ]. (9d)

Regarding  the  difference  between  the  proposed  modified
Benders  dual  decomposition  (Algorithm  1)  and  the  existing
algorithms such as  the  C&CG algorithm and classic  Benders
dual cutting-plane algorithms, we give a remark as below.

Algorithm  1 Modified  Benders  Dual  Decomposition  Algorithm
for TRO-DDU Problem (1)

ε > 0

Input: The  TRO-DDU  problem  (1),  a  sufficiently  large  positive
number M, and the convergence tolerance .

xk

(UBk +LBk)/2

Output: The  optimal  solution  and  the  optimal  value
.
k = 0, ku = 0, kπ = 0 UB0 = M LB0 = −M.1: Initialize , , 

2: while True do
k = k+13: 　 Update ;

(xk ,αk)4: 　 Solve the MP (9) which is a static RO and let  be the
optimum;

LBk =

f (xk)+αk

5: 　Update  the  lower  bound  of  the  optimal  objective  by 
;

R(xk) (wk ,πk) =

argR(xk)

6: 　 Solve  sub-problem  in  (7)  and  denote  by 
;

R(xk) > 07: 　   if  then
kπ = kπ +1 π∗kπ = π

k8: 　　    Update  and set ;

UBk = UBk−1

9: 　 　 Update  the  upper  bound  of  the  optimal  objective  by
;

10: 　 else
S (xk) (wk ,uk) =

argS (xk)

11: 　　Solve  sub-problem  in  (3)  and  denote  by 
;

UBk =

f (xk)+S (xk)

12: 　  　Update the upper bound of the optimal objective by 
;

ku = ku +1 u∗ku
= uk13: 　      Update  and set ;

|UBk −LBk | < ε14:　  　if  then
15:　 　 　Break;
16:　  　end
17: 　end
18: end

R(xk) S (xk)
wk

R(xk) S (xk) πk

uk

Remark  3 (Advanced  Optimality  and  Feasibility  Cuts):
Constraints  (9c)  and  (9d),  which  are  appended  to  the  master
problem  with  iterations,  are  called  optimality  cuts  and
feasibility  cuts,  respectively.  They  are  designed  to  have  the
following salient  features to adapt to the DDUS: 1) Concrete
worst-case  uncertainty,  i.e.,  the  solution  to  or 
denoted  by ,  is  not  involved  in  the  optimality  cuts  or  the
feasibility cuts. This is different from the C&CG algorithm, as
it  incorporates  the  coupling  relationship  between x and w;
2) Dual information of sub-problems  and , i.e., 
and ,  are  utilized  to  generate  the  feasibility  cuts  and
optimality  cuts,  inspired  by  the  Benders  dual  decomposition.
However, these cuts are designed to be no longer hyperplanes,
but  a  set  of  static  robust  constraints,  to  comprise  a  cluster  of
endogenous worst-case uncertainty realizations.
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Regarding  the  extensive  adaptability  of  Algorithm  1,  we
have the following remark.

W(x)

R(x) S (x)

Remark 4 (Adaptability to DDU Formulations): Algorithm 1
is  designed  to  be  applicable  to  a  wide  range  of  DDU
formulations.  Note  that  the  explicit  formulation  of  DDUS

 is  not  involved  in  Algorithm  1,  nor  in  the  theoretical
justification  of  its  performance.  Thus,  Algorithm  1  does  not
preclude  the  implementation  of  more  DDUS  structures
besides  polyhedrons,  such  as  ellipsoidal  and  conic  sets.
However, considering the difficulty in solving master problem
(9) and sub-problems  and , here we focus on a class
of polyhedral uncertainty sets with decision dependency in the
right-hand-side vector, as formulated in (1c).

We  justify  the  convergence  and  optimality  of  Algorithm 1
by the following theorem.

x∗

O(p+q)
xk xk ∈ X∩XR | f (xk)+S (xk)−

f (x∗)−S (x∗)| < ε

Theorem 1: Let q be the number of vertices of U defined in
(3b) and p be the number of vertices of Π defined in (7c). Let

 denote the optimal solution to the TRO-DDU problem (1).
Then,  Algorithm  1  terminates  within  iterations  and
outputs the solution  such that  and 

.
Theorem  1  indicates  that  the  proposed  modified  Benders

dual  decomposition  algorithm  is  finitely  convergent  to  the
optimum. Proof of Theorem 1 can be found in Appendix.  

IV.  Robust Counterpart and Big-M Reformulation

R(xk) S (xk)

In  this  section,  we  show  that  the  implementation  of
Algorithm  1  is  computationally  tractable,  by  deriving  the
robust  counterpart  of  the  master  problem  (9)  and  refor-
mulations of sub-problems  and .  

A.  Robust Counterpart of the Master Problem
In  Algorithm  1,  the  master  problem  (9)  involves  static

robust  constraints  (9c)  and  (9d).  Without  loss  of  generality,
we illustrate how to deal with the robust constraint (9c) in the
master problem by substituting it with its robust counterpart.

(α, x)
u∗j

The  following  robust  constraint  with  respect  to  with
given :
 

α ≥ u∗Tj (b−Ax−Cw) , ∀w ∈W(x) (10)

is equivalent to
 

α ≥ u∗Tj (b−Ax)+max
wu

j

−u∗Tj Cwu
j (11a)

 

s.t. Gwu
j ≤ g+h(x) (11b)

wu
j

u∗j

where  we  substitute w by  for  denoting  variable  in
constraint  formed  by .  Next,  the  following  two  cases  are
discussed:

λT h(x)
λ ∈ Rr

nx
x ∈ {0,1}nx h(x) = Hx

1)  A  Bi-Linear  Term  can  be  Precisely  Linearized
Through the Big-M Method Where  is an r-Dimensional
Variable  and  x  is  an -Dimensional  Variable: To  illustrate
this, we take  and  as an example. Duality
of  the  inner-level  problem in  (11)  is  deployed,  thus  (11)  can
be reformulated as
 

α ≥ u∗Tj (b−Ax)+min
λ j

(g+Hx)Tλ j

 

s.t. GTλ j = −CT u∗j , λ j ≥ 0 (12)

λ j ∈ Rrwhere  is  the  dual  variable  corresponding  with
constraint (11b). Note that constraint (12) is equivalent to
 

α ≥ u∗Tj (b−Ax)+gTλ j+ xT HTλ j

 

GTλ j = −CT u∗j , λ j ≥ 0 (13)

xT HTλ j

η j ∈ Rnx

η j = x◦ (HTλ j)

by dropping the minimization operation. Since x is binary, the
bi-linear  term  can  be  exactly  linearized  through  the
big-M method by introducing supplementary variable 
and a large enough positive number M, where .
Then,  constraint  (13)  has  the  following  equivalent  formul-
ation:
 

α ≥ u∗Tj (b−Ax)+gTλ j+1Tη j (14a)
 

−Mx ≤ η j ≤ Mx (14b)
 

HTλ j−M(1− x) ≤ η j ≤ HTλ j+M(1− x) (14c)
 

GTλ j = −CT u∗j , λ j ≥ 0 (14d)
 

λ j ∈ Rr, η j ∈ Rnx (14e)
which  constitutes  the  robust  counterpart  of  constraint  (10).
The robust  counterpart  of feasibility cuts (9d) can be derived
in  a  similar  way.  Thus  the  master  problem  (9)  has  the
following MILP robust counterpart:
 

min
x,α,β,λ,η,γ,µ

β+α (15a)

 

s.t. x ∈ X, α ∈ R1, β ∈ R1 (15b)
 

β ≥ a1
i

T
x+a0

i , ∀i ∈ [I] (15c)
 

(14a)− (14e), ∀ j ∈ [ku] (15d)
 

0 ≥ π∗Tj (b−Ax)+gTγ j+1Tµ j,

GTγ j = −CTπ∗j , γ j ≥ 0,

−Mx ≤ µ j ≤ Mx,

HTγ j−M(1−x) ≤ µ j ≤ HTγ j+M(1− x),

γ j ∈ Rr, µ j ∈ Rnx ,

∀ j ∈ [kπ]

(15e)
f (x)

a1
i ∈ Rnx , a0

i ∈ R1(i ∈ [I])
f (x)

where the convex function  is substituted by its piecewise
linearization form as in (15c) and the optimality cuts and the
feasibility  cuts  are  substituted  by  their  robust  counterparts.

 are  constant  parameters  for  the
piecewise linearization of .

λT h(x)2)  Otherwise: If  a  bi-linear  term  cannot  be  exactly
linearized by the big-M method, we deploy the Karush-Kuhn-
Tucker (KKT) conditions of the inner-level problem in (11) as
follows:
 

GTλ j = −CT u∗j (16a)
 

λ j ≥ 0 ⊥Gwu
j ≤ g+h(x) (16b)

λ j ∈ Rr

z j ∈ {0,1}r

where  is  the  dual  variable  corresponding  with
constraints  (11b),  and  (16b)  denotes  the  complementary
relaxation  condition.  The  nonlinearity  of  complementary
condition (16b)  can be eliminated through the big-M method
by  introducing  the  binary  supplementary  variable .
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Thus,  the  optimality  cut  (11)  has  the  following  equivalent
robust counterpart:
 

α ≥ u∗Tj (b−Ax)−u∗Tj Cwu
j (17a)

 

GTλ j = −CT u∗j (17b)
 

0 ≤ λ j ≤ M(1− z j) (17c)
 

0 ≤ g+h(x)−Gwu
j ≤ Mz j (17d)

 

z j ∈ {0,1}r , λ j ∈ Rr, wu
j ∈ Rnw (17e)

where  the  complementary  relaxation  condition  (16b)  is
substituted by (17c)  and (17d).  The robust  counterpart  of  the
feasibility  cut  (9d)  can  be  derived  similarly.  Thus  the  master
problem  (9)  has  the  following  robust  counterpart  which  is  a
mixed-integer programming problem.
 

min
x,α,β,λ,z,wu,γ,v,wπ

β+α

 

s.t. x ∈ X, α ∈ R1, β ∈ R1

 

β ≥ a1T
i x+a0

i , ∀i ∈ [I]

(17a)− (17e), ∀ j ∈ [ku]
 

0 ≥ π∗Tj (b−Ax)−π∗Tj Cwπ
j ,

GTγ j = −CTπ∗j ,

0 ≤ γ j ≤ M(1− v j),

0 ≤ g+h(x)−Gwπ
j ≤ Mv j,

v j ∈ {0,1}r , γ j ∈ Rr, wπ
j ∈ Rnw ,

∀ j ∈ [kπ].

(18)
  

B.  Reformulation of Sub-Problems

R(x)
S (x)

S (x) R(x)
R(x)

In  Algorithm  1,  the  robust  feasibility  examination  sub-
problem  in  (7)  and  the  robust  optimality  sub-problem

 in (3) both have bi-linear objective, imposing difficulties
on the solving. Next, we provide linear surrogate formulations
of  and .  Since  they  have  similar  structure,  without
loss of generality we only focus on .

R(x) in (7) can be equivalently rewritten into
 

max
π∈Π

{
πT (b−Ax)+ max

w∈W(x)
−πT Cw

}
(19)

where  the  here-and-now  decision x is  given  by  solving  the
master  problem.  We deploy  the  KKT condition  of  the  inner-
level LP problem in (19) as follows:
 

ζ ≥ 0 ⊥Gw ≤ g+h(x) (20a)
 

GT ζ = −CTπ (20b)
ζ ∈ Rr

w ∈W(x)

z ∈ {0,1}r

−πT Cw (g+h(x))T ζ

R(x)

where  is  the  dual  variable  corresponding  with
constraint  in  (19).  The  complementary  constraints
(20a) can be linearlized by introducing binary supplementary
variable . Then, the complementary constraints (20a)
can be substituted with its equivalent linear formulations, like
what  we  have  done  to  (16b).  Moreover,  since  strong  duality
holds, we substitute the  in (19) by . Then,
sub-problem  is  equivalent  to  the  following  MILP
problem: 

max
π,w,z,ζ

πT (b−Ax)+ (g+h(x))T ζ

 

s.t. 0 ≤ ζ ≤ M(1− z)
 

0 ≤ g+h(x)−Gw ≤ Mz
 

GT ζ = −CTπ
 

π ∈ Π, w ∈ Rnw , z ∈ {0,1}r , ζ ∈ Rr. (21)
  

V.  Applications

The  proposed  model  and  solution  algorithm  cater  for  a
variety  of  application  problems.  In  this  section,  we  provide
four  motivating  DDU-featured  examples  that  can  be
formulated  into  the  proposed  TRO-DDU  model  (1).  For  the
first  three  applications,  we  focus  on  the  endogeneity  of  the
uncertainties by constructing the DDUS and do not go into the
details  of  problem  formulation.  For  the  last  application,  pre-
disaster network investment, detailed problem statements and
numerical  case  studies  are  provided  with  an  out-of-sample
analysis.  

A.  Application 1: Batch Scheduling Problem
This  case  is  from  [13]  (Section  8)  where  stochastic

programming formulations with endogenous uncertainties are
established.  Here  we reform the  characterization of  DDUs to
fall in the scope of RO. Consider a chemical process network
as shown in Fig. 1.
 

C

D

B A

Process 1

Process 3

Process 2
 
Fig. 1.     Illustration of Application 1.
 

θi,t
i ∈ I = {1,2,3} t ∈ T

θi,t
xi,t ∈ {0,1}

Here, chemical A is produced in Process 3 from chemical B
while chemical B can be produced in Process 2 from chemical
D  or  produced  in  Process  1  from  chemical  C.  If  needed,
chemicals A, B, C, and D can be purchased from market. Now
there  is  a  demand  for  chemical  A  that  must  be  satisfied  and
decisions on which specific processes should be operated are
made  to  maximize  the  net  profit.  The  per  unit  yields  of  the
three  processes,  denoted  by  for  each  process

 and time , are uncertain. The endogeneity
stems  from  the  fact  that  retains  a  physical  meaning  only
when  process i is  operated  at  time  period t.  Let 
denote  the  binary  decision  of  operating  process i at  time t,
then the DDUS for θ is constructed as
 

W(x) =



θ ∈ R|T ||I| :
−xi,t M ≤ θi,t ≤ xi,t M, ∀i ∈ I, t ∈ T
θ̃i,t +M(xi,t −1) ≤ θi,t, ∀i ∈ I, t ∈ T
θi,t ≤ θ̃i,t +M(1− xi,t), ∀i ∈ I, t ∈ T
(1−δ)θ0

i,t ≤ θ̃i,t, ∀i ∈ I, t ∈ T
θ̃i,t ≤ (1+δ)θ0

i,t, ∀i ∈ I, t ∈ T


(22)

θ0
i,t θi,t xi,t θ̃i,twhere  is the nominal value of  when  equals 1,  is
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the  supplementary  variable  and M is  a  sufficiently  large
positive constant.  

B.  Application 2: Shortest Path Over an Uncertain Network
The second case comes from [16] (Example 2), considering

to  find  the  shortest  path  from  the  origin  node  A  to  the
destination node B over a network with uncertain arc lengths,
as shown in Fig. 2.
 

E F G D

BCA
d0

2 = 31

d0
1 = 15.3 d0

9 = 13

d0
6 = 64

d0
3 = 16 d0

7 = 70

d0
8 = 25.5d0

5 = 20.6d0
4 = 23

 
Fig. 2.     Illustration of Application 2.
 

E
e ∈ E de

Let  denote the arcset of the graph and the uncertain length
for an arc  is denoted by . The uncertain arc lengths d
lie in the DDUS as follows:
 

W(x) =


de = d0

e (1+0.5ξe), ∀e ∈ E
d ∈ R|E|| 0 ≤ ξe ≤ 1−0.8xe, ∀e ∈ E∑

e∈E ξe ≤ 1

 (23)

d0
e de ξe

de
e ∈ E xe ∈ {0,1}

ξe xe
ξe xe = 0

ξe

ξe E

where  denotes  the  nominal  value  of  and  is  the
uncertain parameter that controls the value of . For each arc

,  is  the  binary  decision  that  determines  the
variation range of . If  attains the value of 1, the maximum
possible uncertainty of  is reduced to 0.2. Else when ,
the  maximum  possible  uncertainty  of  is  left  at  1.  For
simplicity,  it  is  assumed  that  at  most  one  of  the  arcs  can
achieve such uncertainty reduction.  In  addition,  it  is  required
in (23) that the sum of  over the entire  is at most 1.  

C.  Application 3: Frequency Reserve Provision
The  third  application  comes  from  [8].  Consider  a  smart

building  participating  in  the  demand  response  program  on
electricity  consumption.  The  building  is  asked  by  the  grid
operator  to  adjust  its  electricity  consumption  within  a  pre-
specified  reserve  capacity.  The  building  is  rewarded  for
providing  this  reserve  service  and  the  payment  depends  on
both the size of the reserve capacity and the actually deployed
reserve energy.

Rt(Xt) = [−Xt,Xt]
Xt ≥ 0

rt

rt ∈ Rt(Xt) Xt

Xt

λDA
t Xt rt

λRT
t rt

Consider  a  symmetric  reserve  capacity 
where  is the size of reserve capacity at  time t.  For the
smart  building,  the  operator’s  real-time  reserve  deployment
request  is endogenously uncertain at the planning stage. The
endogeneity  stems  from  the  fact  that  the  range  of  reserve
deployment  that  the  smart  building  admits  is  fundamentally
affected by its decisions on the reserve capacity. Specifically,

 and  is  the  building’s  day-ahead  decision.  It  is
assumed that providing reserve capacity of size  is rewarded
by  and  offering  reserve  energy  of  size  is  compen-
sated  by .  The  frequency  reserve  provision  problem  is
formulated  to  maximize  the  building’s  profit  while  always
satisfying inner technical and comfort constraints.  

D.  Application 4: Pre-Disaster Network Investment
In  this  subsection,  a  pre-disaster  highway  network

investment  problem  is  provided,  including  its  problem
formulation and a case study. This application is motivated by
the work of [28] where the decision maker aims to strengthen
the highway system in advance to prevent link failures due to
earthquakes.  By  contrast,  we  model  the  problem  into  a  two-
stage RO with DDUs for the case that link failure probabilities
are not known.

The  goal  is  to  guarantee  the  existence  of  a  path  between a
given  origin-destination  (O-D)  pair  after  the  earthquake  and
concurrently  minimize  the  post-disaster  travel  cost  from  the
origin node to the destination node and the costs of necessary
pre-disaster  investment.  Endogenous  uncertainties  arise  from
the  fact  that  the  post-disaster  state  of  each  link,  either
functional or non-functional, is uncertain but can be altered by
pre-disaster reinforcement.

N = (V,E)
1) Problem Formulation: The high-way network is modeled

into a directed graph  with node set V and arc set E.
To characterize the functionality of the highway system after
the disaster, two nodes in the graph N are specified: D denotes
the  destination  node  which  is  the  district  with  the  highest
expected damage in the earthquake, and O denotes the origin
node which usually refers to the district with the most support
resources.

xe ∈ {0,1}1
e ∈ E xe

we ∈ {0,1}1
e ∈ E we

we

We  use  binary-valued  variable  to  denote  the
investment  decision  on link .  takes  the  values  of  1  if
there  is  an  investment  on  link e and  0  otherwise.  Let

 denote  the  decision-dependent  uncertain  post-
disaster state of link .  attains the value of 1 if the link
e is not functional after the occurrence of the disaster and the
value  of  0  otherwise.  Strengthened  links  have  guaranteed
functionality after the disaster and the non-strengthened links
are  subject  to  random  failures.  Thus  the  realization  of  is
restricted by
 

we ≤ 1− xe, ∀e ∈ E (24a)
 ∑

e∈E
we ≤ ⌊ψ

∑
e∈E

(1− xe)⌋ (24b)

ψ ∈ [0,1]

we

we

where  is  the  robustness  budget  to  reduce
conservativeness.  Note  that  the  constraint  matrix  of  (24)
satisfies total unimodularity, thus the binary-valued  can be
relaxed  to  be  continuous  without  any  compromise  [3].  Thus,
the budgeted DDUS for  is constructed as
 

W(x) =
{
we ∈ R1, ∀e ∈ E : (24a)− (24b), 0 ≤ we ≤ 1

}
. (25)

To verify the post-disaster connectivity from O to D as well
as find the path from O to D with minimal traversal costs after
the disaster, the following second-stage optimization problem
is considered:
 

min
y

∑
e∈E

ceye

 

s.t. y ∈ Y(w) (26)
Y(w) ⊆ R|E|where  is  defined  through  the  following  constr-

aints:
 

0 ≤ ye ≤ 1−we, ∀e ∈ E (27a)
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 ∑
e=(O, j)∈E

ye−
∑

e=( j,O)∈E
ye = 1 (27b)

 ∑
e=(D, j)∈E

ye−
∑

e=( j,D)∈E
ye = −1 (27c)

 ∑
e=(i, j)∈E

ye−
∑

e=( j,i)∈E
ye = 0, ∀i ∈ V\{O,D} (27d)

ce ∈ R1

ye ∈ {0,1}1

ye

and  denotes  the  length  of  link e.  The  objective  is  to
minimize the traversal  cost  from O to D in  the network.  The
wait-and-see decision variable  takes the values of 1
if the path from O to D goes through link e and 0 otherwise.
Note  that  in  (27),  the  binary-valued  is  substituted  by  its
continuous  relaxation  (27a)  since  the  constraint  matrix  of y
satisfies total unimodularity property. There exists a path from
O to D after the occurrence of the disaster if and only if (26)
has  at  least  one  feasible  solution  and  the  optimal  solution  to
(26) implies the path with least traversal cost from O to D in
the network.

Next, the mathematical formulation of the two-stage robust
pre-disaster highway network investment problem is given
 

min
x∈XR

∑
e∈E

aexe+ max
w∈W(x)

min
y∈Y(w)

∑
e∈E

ceye

 (28a)

 

s.t. xe ∈ {0,1}1 , we ∈ R1, ye ∈ R1, ∀e ∈ E (28b)
 

x ∈ XR ≜ {x : ∀w ∈W(x),Y(w) , ∅} (28c)
ae ∈ R1 W(x)

Y(w)

W(x)

λ ∈ R1

λ⌊ψ∑e∈E(1− xe)⌋

where  denotes the investment cost of link e.  and
 are defined in (25) and (27), respectively. The objective

is to minimize the traversal costs between the O-D pair under
the worst-case uncertainty realization as well as the necessary
investment  cost.  Constraint  (28c)  guarantees  the  existence  of
at  least  one  path  from O to D after  the  disaster  under  any
realization  of w in  the  uncertainty  set .  The  proposed
modified Benders dual decomposition algorithm is applied to
solve problem (28). Note that given a variable ,  the bi-
linear item  can be precisely linearized, thus
the  robust  counterpart  of  the  master  problem in  Algorithm 1
can be formulated into an MILP problem.

(1,6) O = 1, D = 6

2)  Basic  Results: The computational  results  are  based on a
network with  8  nodes and 9 links,  as  demonstrated in Fig. 3.
The relevant data are from [28].  The traversal costs (lengths)
and investment costs of links are provided in Table I. The O-D
pair is  chosen as ,  i.e., .  For the nominal 9-
link network, there are 4 possible paths from O to D, as listed
in Table II.  If  all  links  remain  functional,  the  shortest  path
from O to D is  Path  1  (1-3-5-9)  with  a  length  of  13.52.  The
program  runs  on  an  Intel  Core-i5  1.6-GHz  computer  and  is
coded with YALMIP. CPLEX 12.6.0 is utilized as the solver.

UB0 = 4000,
LB0 = 0, ε = 0.01, ψ = 0.3

UB = LB = 1100.65
UBk LBk

The  proposed  modified  Benders  dual  decomposition
algorithm  is  applied  with  an  initialization  of 

.  The  algorithm  reaches  converg-
ence  of  after  8  rounds  of  iterations  and
the evolution process of  and  is shown in Fig. 4. The
optimal  robust  investment  (the  here-and-now  decision)  is  on
Link  3,  Link  8,  and  Link  9.  For  all  possible  network
realizations  under  this  pre-disaster  investment  scheme,  the
worst-case is the failure on Link 5 after the earthquake. In that

case,  the  shortest  post-disaster  path  from O to D (the  wait-
and-see  decision)  is  Path  3  with  a  length  of  20.65.  The
correctness  of  the  computational  results  can  be  verified  by
enumeration.

3)  Comparative  Study: To  emphasize  the  necessity  and
superiority of the proposed algorithm for DDU-involved two-
stage RO problems, existing cutting plane algorithms that are
theoretically applicable to  only the case of  DIUs are adopted
to  solve  the  same  problem  in  (28).  In  both  the  classical
Benders  decomposition  algorithm  and  the  C&CG  algorithm,
the  master  problem  becomes  infeasible  at  the  second  round,
then  the  solution  procedure  interrupts  without  convergence.
This  is  because  the  worst-case  uncertainty  realization
identified on the first round is a failure in Link 9, under which
there is no path from O to D. This situation can be eliminated
by  strengthening  Link  9;  however,  the  invalid  feasibility  cut
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Fig. 3.     The 8-node 9-link network.
 

 

TABLE I 

Link Lengths and Investment Costs

Link e 1 2 3 4 5 6 7 8 9
ce 6.41 8.09 1.97 6.35 2.87 4.11 2.27 3.91 2.27
ae 500 620 160 780 260 220 500 120 800

 

 

TABLE II 

Paths for O-D Pair (1,6)

Links Length

Path 1 1-3-5-9 13.52

Path 2 2-4-5-9 19.58

Path 3 2-6-7-8-9 20.65

Path 4 1-3-4-6-7-8-9 27.29
 

 

4000

3000

2000

1000

0
1 2 3 4 5 6 7 8

Upper bound
Lower bound

Iteration

O
bj

ec
tiv

e 
va

lu
e

 
UBk LBkFig. 4.     Evolution of the  and .
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generated  with  this  concrete  scenario  is  appended  to  the
master  problem  and  the  consequent  infeasibility  falsely
implies  that  there  is  no  feasible  solution  to  the  original
problem (28). The observations in this comparative case study
verify the statements in Remark 2.

4) Sensitivity Analysis: We present the impact of robustness
budget ψ on the optimal solution to problem (28). In this case,
7 robustness parameters ψ from 0 to 0.6 with a gradient of 0.1
are introduced and the results  are displayed in Table III.  It  is
observed  that,  as ψ increases,  the  optimal  objective  value
including  investment  costs  and  worst-case  traversal  costs
increases accordingly. This is because the decision maker has
to  enhance  more  links  to  hedge  against  the  increasing
uncertainties  on  link  failures.  However,  the  optimal  pre-
disaster  investment  saturates  when ψ is  greater  than  or  equal
to  0.5.  This  is  due  to  the  fact  that  no  matter  how large ψ is,
there  always  exists  a  path  between  the  O-D  pair  if  links
1,3,5,9 (Path 1) are all reinforced.

29 = 512 wo ∈ {0,1}9 ,
o ∈ [512] x∗

5)  Out-of-Sample  Analysis: Finally,  an  out-of-sample
analysis is carried out to verify the performance of the robust
investment  decision.  Steps  of  the  out-of-sample  assessment
are as follows [29]: a) Considering all possible states of the 9
links,  we  generate  scenarios,  namely 

.  b)  Given  derived  by  solving  (28),  for  each
scenario o,  the  following  relaxed  second-stage  problem  is
solved:
 

min
yo,so+,so−

∑
e∈E

ceyo
e +P

∑
i∈V

(so+
i + so−

i ) (29a)

 

s.t. 0 ≤ yo
e ≤ 1−wo

e(1− x∗e), ∀e ∈ E (29b)
 

so+, so− ∈ R8, so+ ≥ 0, so− ≥ 0 (29c)
 ∑

e=(O, j)∈E
yo

e −
∑

e=( j,O)∈E
yo

e = 1+ so+
O − so−

O (29d)

 ∑
e=(D, j)∈E

yo
e −

∑
e=( j,D)∈E

yo
e = −1+ so+

D − so−
D (29e)

 ∑
e=(i, j)∈E

yo
e −

∑
e=( j,i)∈E

yo
e = so+

i − so−
i , ∀i ∈ V\{O,D}

(29f)
so+, so−

P ∈ R1

where non-negative slack variables  are introduced to
the flow conservation constraints (29d)–(29f) and penalized in
the objective (29a).  The penalty cost  coefficient  is  set
as 5000 in this case. Problem (29) is a modified version of the

x∗ wo
yo∗, so+∗, so−∗

Cav

sav

second-stage  problem  (26)  with  a  given  here-and-now
decision  and  the  given  uncertainty  realization .  Denote
the  solution to  (29)  by .  c)  At  last,  the  average
sampled  second-stage  cost  and  the  average  sampled
infeasibility level  are computed as follows:
 

Cav =
1

512

∑
o∈[512]

∑
e∈E

ceyo∗
e +P

∑
i∈V

(so+∗
i + so−∗

i )


sav =

1
512

∑
o∈[512]

∑
i∈V

(
so+∗

i + so−∗
i

)
.

(30)

Cav sav

so+
i so−

i

Table IV shows the out-of-sample assessment results for the
robust  optimal  solution  under  different  values  of  the
robustness  budget ψ.  It  is  observed that  and  decrease
with  the  increasing ψ,  indicating  that  a  bigger ψ leads  to  a
more robust  solution that  can hedge against  a  higher level  of
uncertainties, but also accordingly generates higher investment
cost  in  the  first  stage.  Comparison  with  the  deterministic
model  is  also  provided  in Table IV.  We  can  see  that
disregarding uncertainty would give rise to significantly high
second-stage  costs  (due  to  the  penalty  on  the  slack  variables

 and )  and  infeasibility  level.  By  choosing  a  proper
robustness budget ψ, the decision maker can achieve the trade-
off  between  the  first-stage  investment  costs  and  the  second-
stage feasibility level.
 

TABLE IV 

Results From the Out-of-Sample Analysis

ψ Investment cost Reinforced links Cav sav

Deterministic 0 – 6775.8122 1.3535

0.1 0 – 6775.8122 1.3535

0.2 800 9 4875.2299 0.9727

0.3 1080 3,8,9 3528.4452 0.7031

0.4 1560 3,5,6,8,9 1575.22 0.3125

0.5 1720 1,3,5,9 13.52 0

0.6 1720 1,3,5,9 13.52 0
  

VI.  Conclusions

In  this  paper,  a  novel  two-stage  RO  model  with  DDUs  is
proposed.  We introduce  a  class  of  polyhedral  DDUSs whose
right-hand-side  vectors  are  in  a  dependency  of  the  here-and-
now  decision.  Solution  methodology  for  the  problem  is
designed  based  on  modified  Benders  decomposition,  robust

 

TABLE III 

Impact of Robustness Parameter ψ

ψ Total cost Investment cost Travel cost Reinforced links Worst-case non-functional links Shortest path

0 13.52 0 13.52 – – Path 1

0.1 13.52 0 13.52 – – Path 1

0.2 820.65 800 20.65 9 5 Path 3

0.3 1100.65 1080 20.65 3,8,9 5 Path 3

0.4 1579.58 1560 19.58 3,5,6,8,9 1 Path 2

0.5 1733.52 1720 13.52 1,3,5,9 7,8 Path 1

0.6 1733.52 1720 13.52 1,3,5,9 6,7,8 Path 1
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counterpart  derivation,  and  linearization  techniques.  Com-
putational  tractability  and  convergence  performance  of  the
proposed algorithm is guaranteed by a strict proof.

Case  studies  on  the  pre-disaster  highway  network  invest-
ment  problem  verify  that  the  proposed  DDU-incorporated
two-stage RO model is an amenable framework for addressing
decision-making  problems  under  endogenous  uncertainties.
The  optimality  and  feasibility  of  the  robust  solution  are
validated  by  enumeration  in  this  case.  Furthermore,  the
computational  studies  elucidate  that  the  DDU-involved  two-
stage  RO  model  inherently  captures  the  trade-off  between
uncertainty mitigation (line investment) and the corresponding
expenses  (line  investment  costs)  and  provides  less  con-
servative robust results.

Though  we  focus  on  polyhedral  DDUS  whose  right-hand-
side  vector  has  a  general  correlation  with  the  here-and-now
decision,  the  proposed  solution  framework  based  on  the
modified  Benders  decomposition  in  Section  III  is  also
applicable  to  DDUSs with  ellipsoidal  or  conic  structure.  The
limitation  of  the  work  in  this  paper  lies  in  the  fact  that  the
duality-based  Benders  decomposition  is  conditional  upon  the
second-stage  problem  which  is  an  LP.  Also,  uncertain
parameters that are of discrete or binary nature would prohibit
us  from  formulating  the  robust  counterpart  of  the  master
problem as described in Section IV. These issues remain to be
addressed in our future study.  In addition,  as  an extension of
this  work,  future  study  could  combine  the  optimality  and
feasibility  cuts  (9c)  and  (9d)  with  the  so-called  Pareto  cuts
[30],  or  extend  the  robust  counterpart  (17)  to  incorporate
primal  cuts  with  recourse  decision  variables  in  the  primal
space, to further improve the convergence rate in practice.  

Appendix

Before we give the proof of Theorem 1, a crucial lemma is
provided as follows.

x∗

k ∈ Z+
Lemma 2: Let  denote the optimal solution to TRO-DDU

problem (1). For any :
a) LBk ≤ f (x∗)+S (x∗) ≤ UBk ;
b) ∀ j ∈ [kπ] π∗j ∈ vert (Π) ∀ j1, j2 ∈ [kπ]

j1 , j2 π∗j1 , π
∗
j2

 , .  Moreover,  and
, there is ;

c) ∀ j ∈ [ku] u∗j ∈ vert (U) ∀ j1, j2 ∈ [ku−1]
j1 , j2 u∗j1 , u∗j2 j ∈ [ku−1]
u∗ku
= u∗j

 , .  Moreover,  and
,  there  is .  If  there  exists  such  that
, then Algorithm 1 terminates at k.

Proof of Lemma 2.
R(x)

S (x)
Assertion a): Recalling the formulation of  function  in

(7) and  in (3), problem (8) can be rewritten as
 

min
x∈X,α∈R1

f (x)+α

 

s.t. πT (b−Ax−Cw) ≤ 0, ∀w ∈W(x), ∀π ∈ Π
 

uT (b−Ax−Cw) ≤ α, ∀w ∈W(x), ∀u ∈ U. (31)

f (x∗)+S (x∗)

u∗j ∈ U
j ∈ [ku] π∗j ∈ Π j ∈ [kπ]

LBk

Since the TRO-DDU problem (1), problem (8) and problem
(31) are equivalent,  is also the optimal objective
value  of  (31).  Also  note  that  the  master  problem  (9)  is  a
relaxation  to  minimization  problem  (31)  since  for  all

 and  for all . Thus, the optimal objective
value of problem (9), which is denoted by , is less than or

LBk ≤ f (x∗)+S (x∗)
equal  to  the  optimal  objective  value  of  problem  (31),  i.e.,

.

UBk = UBk−1 R(xk) > 0 UBk = f (xk)+S (xk)
R(xk) = 0 UBk ≥ f (x∗)+S (x∗)

UB0 = M > f (x∗)+S (x∗)
UBk−1 ≥ f (x∗)+S (x∗) k ∈ Z+

UBk = UBk−1 UBk ≥ f (x∗)+S (x∗)
UBk = f (xk)+S (xk) R(xk) = 0
UBk = f (xk)+S (xk) ≥ f (x∗)+S (x∗) xk

xk ∈ XR R(xk) = 0 f (x∗)+S (x∗)

Recall  the  updating  rule  of  the  upper  bound  which  is
 when  and  when

.  Next,  we  prove  by  induction.
First of all, . Suppose for the sake of
induction  that  where .  Then,  if

,  we  have  directly.  Else  if
 when ,  then  we  have

 since  is  a  feasible
solution  to  the  TRO-DDU  problem  (1)  (by  recalling  that

 if  and  only  if )  and  is  the
optimal objective value of TRO-DDU problem (1).

π∗j ∈ vert(Π)Assertion  b):  can  be  easily  verified  by  noting
that  the  optimal  solution  of  a  bi-linear  program  with
polyhedral  feasible  region  can  be  achieved  at  one  of  the
vertices of the polytopes [31].

∀ j1, j2 ∈ [kπ] j1 , j2 π∗j1 , π
∗
j2

j1, j2 ∈ [kπ] j1 , j2 π∗j1 = π
∗
j2

j1 < j2 j1 ∈ [ j2−1]
j1, j2 ∈ Z+ π∗j2 R(xk j2 )

R(xk j2 ) > 0

Next,  we  prove  that  and , .
Suppose  for  the  sake  of  contradiction  that  there  exist

 and  such  that .  Without  loss  of
generality we assume that ,  and thus  since

.  Suppose  is  the  optimal  solution  to ,
there must be , implying that
 

max
w∈W(x

k j2 )
π∗Tj2 (b−Axk j2 −Cw) > 0. (32)

π∗j1 = π
∗
j2

Since , we have
 

max
w∈W(x

k j2 )
π∗Tj1 (b−Axk j2 −Cw) > 0. (33)

xk j2Recall that  is the optimal solution to the master problem
with the following feasibility cuts:
 

0 ≥ π∗j
T (b−Ax−Cw) , ∀w ∈W(x), j ∈ [ j2−1]. (34)

j1 ∈ [ j2−1]Since , there must be
 

0 ≥ π∗Tj1 (b−Axk j2 −Cw), ∀w ∈W(xk j2 ) (35)

which contradicts with (33).

u∗j ∈ vert(U)
Assertion  c): Similarly  to  the  proof  of  Lemma  2–b),

 can  be  verified  by  noting  that  the  optimal
solution  of  bi-linear  programming  over  a  polytope  can  be
achieved at one of its vertices.

j1, j2 ∈ [ku] j1 , j2
u∗j1 = u∗j2 u∗j1 S (xk j1 ) u∗j2

S (xk j2 )
j1 < j2 j1 ∈ [ j2−1] j1, j2 ∈ Z+

(xk j2 ,αk j2 )
j1 ∈ [ j2−1]

Suppose  there  exist  and  such  that
. We assume that  is the optimum to  and 

is  the  optimum  to .  Without  loss  of  generality,  we
assume  that ,  and  thus  since .
Since  is the optimal solution to the master problem
with the following optimality cuts and ,
 

α ≥ u∗Tj (b−Ax−Cw) , ∀w ∈W(x), j ∈ [ j2−1] (36)

then, we have
 

αk j2 ≥ u∗Tj1 (b−Axk j2 −Cw), ∀w ∈W(xk j2 ) (37)

which is equivalent to
 

αk j2 ≥ max
w∈W(x

k j2 )
u∗Tj1 (b−Axk j2 −Cw). (38)
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Recalling the updating rule of lower bound, we have
 

LBk j2 = f (xk j2 )+αk j2

(i)
≥ f (xk j2 )+max

w∈W(x
k j2 )

u∗Tj1 (b−Axk j2 −Cw)

(ii)
= f (xk j2 )+max

w∈W(x
k j2 )

u∗Tj2 (b−Axk j2 −Cw)

(iii)
= f (xk j2 )+S (xk j2 )

(iv)
= UBk j2

(39)

u∗j1 = u∗j2 u∗j2
S (xk j2 )

UBk j2 ≤ LBk j2

LBk j2 ≤ f (x∗)+S (x∗) ≤ UBk j2

LBk j2 = UBk j2 = f (x∗)+S (x∗)
k j2

where i) comes from the  relationship  in  (38), ii) comes from
the  fact  that , iii) comes  from the  fact  that  is  the
optimum to ,  and iv) comes  from the  updating  rule  of
the upper bound. Thus, we have . According to
Lemma  2-a), .  Thus,  we  have

 and the Algorithm 1 terminates
at  iteration .  This  completes  the  proof  of  the  statement  in
Lemma 2-c). ■

The proof of Theorem 1 is given as follows.

O(p+q)

Proof  of  Theorem  1: First,  we  prove  that  Algorithm  1
terminates  within  a  finite  round  of  iterations  through  a
complete  enumeration  of  the  vertices  of  the  polyhedral
feasible regions of the dual multipliers. According to Lemmas
2-b) and 2-c), no vertex of Π or U will be appended twice to
the  master  problem.  Thus,  the  termination  condition  must  be
met within  iterations.

xk xk

xk ∈ X
R(xk) = 0 xk ∈ XR

x ∈ XR R(x) = 0
xk ∈ X∩XR

Next,  we  prove  the  feasibility  of  solution .  Since  is
generated  through  master  problem  (9), .  Moreover,
since Algorithm 1 terminates with , we have 
by  recalling  that  if  and  only  if .  Thus,

.
xk

LBk ≤ f (x∗)+S (x∗) ≤ UBk

|UBk −LBk | < ε
R(xk) = 0 |UBk − f (x∗)−S (x∗)| < ε
UBk = f (xk)+S (xk) | f (xk)+S (xk)− f (x∗)−S (x∗)| <
ε xk

Finally,  we  prove  the  optimality  of  solution .  According
to Lemma 2-a), . Together with the
fact that the Algorithm 1 terminates with  and

,  we  have .  Recalling  that
,  we  have 

, which justifies the optimality of . ■
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