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Abstract— In this paper, a new feature of surface electromyo-
graphy (sEMG) by using discrete wavelet transform (DWT)
is proposed for motion recognition of upper limbs, and this
method can be eventually used for rehabilitation robot control.
Seven traditional features of sEMG are also extracted for
comparative study, they are integral of absolute value (IAV),
difference absolute mean value (DAMV), zero crossing (ZC),
variance (VAR), mean power spectral density (MPSD), mean
frequency (MF) and median frequency (MDF) respectively. For
comparing the recognition rate of the different motions of
the upper limb, each feature or their combination are used
to construct the feature vectors, and the BP neural network
with variable learning rate back propagation with momentum
(GDX) algorithm is used to classify these motion modes. The
experimental results summarize that the new feature extracted
by using DWT presents a higher recognition rate (98.9%) than
all of the traditional features, and the traditional features
combination can also greatly improve the recognition rate
(99%).

I. INTRODUCTION

There has been more and more people who suffered from
spinal cord injury (SCI) or stroke in the world. The treatment
to them is a long way because that the neurological damage
is very hard to recover. In clinics, the most common method
for SCI or stroke rehabilitation is locomotor training, such
as treadmill exercise or pedal exercise. Traditional locomotor
training machines can just help the patients do passive
exercise, and the active movement which has been proven
more useful for neurological rehabilitation [1], [2], [3] can
not be motivated. We have designed a rehabilitation robot
for lower limbs [4], passive exercise or active exercise can
been implemented based on this platform.

For arousing the interests of patients in rehabilitation
training, surface electromyography (sEMG) can be used to
detect the movement intent. SEMG is a weak electrical
potential which is generated by the muscle cells [5] when
these cells are electrically or neurologically activated, and
it is detected from superficial muscles by using surface
electrodes. The sEMG has many applications, for example,
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doctors in hospital use sEMG for the diagnosis of neurolog-
ical and neuromuscular problems, biomedical engineers or
rehabilitation professionals use sEMG as a control signal for
prosthetic devices such as prosthetic hands, arms, and lower
limbs [6], [7], [8].

Traditionally, sEMG signals are often used as a control
signal in three ways. The first method is studying the
relationship between sEMG and muscle force [9], [10], [11],
[12], the second method is studying the relationship between
sEMG and the exact body posture [13], [14], [15], and the
third method is studying the pattern recognition of sEMG
for different motion modes [16], [17], [18]. Specifically, for
the first aspect of sEMG application, peoples are committed
to find the relationship between sEMG and muscle forces,
thus many muscle force models has been built, such as Hill
muscle model [19] and Hammerstein muscle model [20].
Once the exact relationship be found, the patients’ active
force or torque which also present the patients’ movement
intention can be detected by the sEMG signals, and active
training of the rehabilitation robot are often controlled in this
manner. For example, in article [9], Christian provided two
approaches for active training of the exoskeleton robots by
using sEMG, one is dynamic human body model (DHBM),
and the other is direct force control (DFC), and the sEMG
is mainly used to compute the force the human body exerts
onto the robots. For the second aspect, peoples are committed
to find the relationship between sEMG and the exact body
posture. This question can also be described as calculating
the angle joint of body limbs according to sEMG. Once the
exact mapping relationship be found, the exoskeleton robots
or prosthetic devices can be controlled to arbitrary feasible
posture which is very meaningful for rehabilitation training.
For example, in article [13], Artemiadis provide a switching
regime model for decoding the sEMG activity of 11 muscles
to a continuous representation of arm motion in the 3-D
space, by using this method, the position of the arm can
been computed just through the sEMG signals. For the third
aspect, people are committed to classify different motion
modes of human body limbs according to sEMG. High
recognition rate and many number of motion modes are two
goals for this aspect. Features extraction and classification
methods are two key issues. For example, in article [16], the
natural logarithm of root mean square values is extracted as
the sEMG feature, and a fuzzy C-means clustering method
is used for classification of four movements, the recognition
rate reached to 92.7%±3.2%. Also in article [21], the author
proposed a log-linearized Gaussian mixture network to dis-
criminate sEMG patterns for controlling the human-assisting
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manipulator, and this method present high recognition rate
(more than 95%) for eight different hand gestures. Yi-Hung
Liu proposed a novel sEMG classifier called cascaded kernel
learning machine (CLKM) for the motion recognition of
upper limbs in [17] and the recognition rate reached to
93.24%.

For patients who have been severely damaged of the
lower limbs, sEMG signals can not be detected from lower
extremities muscles. Specifically in our research, we try
to find a method for rehabilitation robot control by de-
tecting the sEMG signals from the upper limbs. Patients
can be trained to produce desirable sEMG characteristics to
control the movement of the rehabilitation robot. Through
this way, the initiative of the patients can be aroused,
and thus can do a better favor to the rehabilitation. The
recognition rate is always the most important problem and
absolute accuracy is the goal for clinical application. For
improving the recognition rate of the upper limbs, a new
feature by discrete wavelet transform (DWT) is extracted.
For comparison, seven traditional sEMG features including
integral of absolute value (IAV), difference absolute mean
value (DAMV), zero crossing (ZC), variance (VAR), mean
power spectral density (MPSD), mean frequency (MF) and
median frequency (MDF) are also extracted. The BP neural
network with variable learning rate back propagation with
momentum (GDX) algorithm is used for classification. Ex-
perimental results summarize that the new feature extracted
after DWT present a better a result than the other seven
traditional features, and the recognition rate reach to 98.9%.
The traditional features combination can also greatly improve
the recognition rate (99%).

II. METHOD

A. Features extraction

There is no doubt that many noise signals will contaminate
the original sEMG signals during signals acquisition. The
noise signals may come from inherent noise in electronics
equipment such as industrial frequency interference (the
industrial frequency is 50 Hz in China), DC bias, and
baseline noise [22]. Motion artifact which is mainly caused
by electrode interface and electrode cable will also cause
irregularities in sEMG data [23]. The sEMG signals are
also affected by the firing rate of the motor units, and the
firing frequency region is 0 to 20 Hz. This kind of noise
is considered as unwanted and the removal of the noise is
very important [24]. The power density spectra of the sEMG
contains most of its power in the frequency range of 5-500
Hz at the extremes [25], [26], so the signals over the high cut-
off frequency 500 Hz should be eliminated. After the above
discussion, a notch filter with 50 Hz and a band-pass filter
with low cut-off frequency 20 Hz and high cut-off frequency
500 Hz should be applied to the raw sEMG signals to remove
the noise signal. After the preprocessing, some mathematical
transformation such as fast fourier transformation (FFT),
wavelet transformation can be done to the sEMG time series,
and then a series of features of sEMG can be obtained. In
the following two parts, we will introduce seven traditional

feature extraction methods and the new feature extraction
method by using discrete wavelet transformation (DWT)
respectively.

1) Traditional Feature extraction methods: There are
seven traditional feature extraction methods we will talk
about here. They are list as bellows.

(a) Integral of Absolute Value (IAV)
This feature represents the absolute mean amplitude of

sEMG time series and it is a direct reflection of muscle
contraction level. IAV of sEMG is calculated as

IAV =
1
N

N∑
i=1

|xi|, (1)

with xi the ith sample value of sEMG, N the length of
sEMG time series.

(b) Difference Absolute Mean Value (DAMV)
The DAMV feature of sEMG calculates all the difference

absolute value between every two adjacent sample points
along the whole sEMG segment firstly and then calculates the
mean value between them. DAMV summarize the vibration
amplitude of sEMG signals. The computation formula is as

DAMV =
1
N

N−1∑
i=1

|xi+1 − xi|. (2)

(c) Variance (VAR)
VAR of sEMG uses the power of the sEMG signals as a

feature. Generally, the VAR is the mean value of the square
of the deviation of that variable in statistics, however, as the
DC part has been removed in the preprocessing part, then
the expression of VAR changes into the following form

VAR =
1

N − 1

N−1∑
i=1

x2
i . (3)

(d) Zero Crossing (ZC),
The ZC is the number that the amplitude of sEMG

crosses over the zero-amplitude axis. This feature provides
an approximate estimation of frequency domain properties.
The ZC is calculated as

ZC =
N−1∑
i=1

sgn(−xixi+1), (4)

where

sgn(x) =

{
1, ifx > 0
0, otherwise

The above four features are all computed based on sEMG
signals amplitude and they are all analyzed in the time
domain. The following three features will be analyzed in the
frequency domain. The FFT is done to the sEMG signals
firstly and then the power spectrum (PS) is calculated.

(e) Median Frequency (MDF) and Mean Frequency (MF)
In article [28], Stulen had a study of the relationship be-

tween conduction velocity of the muscle fibers and the MDF,
MF, and the ratio of low-frequency components to high-
frequency components of the spectrum, and found that the
MDF is the preferred parameter. The MDF is the frequency
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at which the power spectrum of the sEMG signals is divided
into two regions with equal power. It is described as follows∫ MDF

0

P (f)df =
∫ ∞

MDF
P (f)df, (5)

with P (f) the power spectrum density of sEMG signals and
f the frequency of the signal.

The MF is the average frequency and may be expressed
by

MF =
∫ ∞

0

fP (f)df
/∫ ∞

0

P (f)df (6)

(f) Mean Power Spectral Density (MPSD)
The MPSD has no practical meaning and there is few

articles studying about it, but it is also a statistical nature of
the sEMG signals. In this paper, we describe the MPSD as
follows

MPSD =
∫ ∞

0

P (f)df
/ ∫ ∞

0

df. (7)

2) Discrete Wavelet Transformation (DWT): A new
method for feature extraction of sEMG signals.

FFT is a most frequently method for frequency domain
analysis. However, FFT is limited to a global frequency anal-
ysis, and the changes in time can not be detected. Also, the
FFT can only be used to reasonably stationary signals, while
the sEMG is non-stationary. Wavelet transformations can
resolve this problem. By using wavelet transformation, the
raw sEMG signals can be decomposed into time-frequency
space, and then a time series is decomposed into different
frequency bands without crossing throughout the time axis.
Further study can be done on the interested frequency band
after wavelet transformation.

The mathematical expression of a discrete wavelet family
which consists of members or daughter wavelets, ψjk(t) is
obtained by scaling and time shifting of the mother wavelet
φ(t), and it is defined as follows.

ψjk(t) =
1√
2j
φ

(
t− k2j

2j

)
(8)

where j ∈ N represent the scale number, k ∈ Z rep-
resent the translation parameter. When j becomes large,
the basis function ψjk becomes a stretched version of the
prototype, which focuses on the low-frequency components.
When j becomes small, the basis function ψjk becomes a
contracted version of the prototype, which focuses on the
high-frequency components. However, the shape of the basis
wavelet will always remain unchanged.

Once the input signal x(t) is given, the discrete wavelet
transformation (DWT) is defined as follows.

< x,ψjk >=
1√
2j

∫
x(t)φ

(
t− k2j

2j

)
dt (9)

The DWT applies two filters to the raw signals, a low pass
filter G0(k) and a high pass filter G1(k) [29]. Each filter is
followed by a down-sampler, to make the transform efficient.
The output of the low pass filter is also called approximation
coefficients which is described as cjk, and the output of the

         & 2↓         & 2↓

         & 2↓         & 2↓

         & 2↓         & 2↓

scale index 1

scale index 2

scale index k

low pass filter

high pass filter

2↓ down-sampler

Fig. 1. The DWT decomposition process with the scale number k. The x[n]
is the time series of sEMG, and d1, d2, dk are detail coefficients, c1, c2, ck

are approximation coefficients.

high pass filter is called detail coefficients which is described
as djk. The cut-off frequency Fa of the low pass filter and the
high pass filter has a relationship with the scale number, the
center frequency of the mother wavelet, and also the sample
rate. It can be described as follows.

Fa =
Fc△
2j

(10)

where a is the scale number, △ is the sample rate of the raw
signals, Fc is the center frequency of the mother wavelet in
HZ [30].

For a discrete wavelet transformation (DWT) with the
scale index k to a time series of sEMG x[n], the decom-
position process is clearly showed in Fig. 1.

B. BP neural network for classification

Once the features of sEMG has been selected for recogni-
tion of different types of motions,the next step is choosing a
classifier. In this paper, the BP neural network which is very
popular for its back propagation algorithm for adjusting the
net weights and thresholds is used for pattern classification.

Before using any neural networks, one of the most im-
portant things is training the weights and thresholds of the
network firstly. Training a neural network needs enough
proper sample data, so a large quantity of different sEMG
sample data of different muscles for different types of mo-
tions should be sampled in a scientific way firstly. There are
many back propagation algorithms for training the BP neural
network. The steepest descent back propagation is a most
basic back propagation algorithm, and the greatest weakness
for it is that the learning rate is held constant throughout
network training, so the actual performance of the algorithm
is very sensitive to the proper selection of the learning rate.
Once the learning rate is not properly selected, two problems
may be caused. One problem is that the training process may
oscillate and become unstable when the learning rate is too
big, the other is that the training process is very slow and
long time needed for the network convergence [31]. In fact,
there is no fixed optimal learning rate for a certain network
for the reason that the optimal learning rate changes with
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Fig. 2. The flowchart of classifying different types of motions by using sEMG signals.

the iteration number. For the shortage of the steepest descent
back propagation, some improved algorithms had been put
forward. The variable learning rate BP with momentum
(GDX) is one of the improved BP algorithm which is also
the algorithm we use in our research.

The variable learning rate BP with momentum algorithm
(GDX) can be described as follows.△x(k + 1) = η△x(k) + α(k + 1)(1 − η)

∂E(k)
∂x(k)

x(k + 1) = x(k) + △x(k + 1)
(11)

with

α(k + 1) =

{
kincα(k), E(k + 1) < E(k)
kdecα(k), E(k + 1) > E(k)

(12)

In eq. (11) and eq. (12), x(k) represents the connection
weight vector and the threshold vector between layers for
the kth training, E(k) represents the error function which is
also the mean square deviation between the desired output
and the actual output of the network after the kth training, η
is a momentum factor which satisfies 0 < η < 1, α(k) is the
learning rate for the kth training, kinc (kinc > 1) and kdec

(kdec < 1) are the incremental factor and decremental factor
of learning rate respectively.

From eq. (11) and eq. (12), we can see that the variable
learning rate BP with momentum algorithm (GDX) raise
the convergence speed from two points of view. Firstly, for
the adding of momentum factor η, if the last amendment
of the weight and the threshold is too big, the sign of the
second item of the first formula in eq. (11) will be contrary
to the last amendment, thus the current amendment will be
decreased. On the other hand, if the last amendment of the
weight and the threshold is too small, the sign of the second
item of the first formula in eq. (11) will be same to the last
amendment, thus the current amendment will be increased.
Clearly it can be seen that the momentum factor always try
to increase the amendment along the direction of the same
gradient. Secondly, the variable learning rate α(k) always try
to make the step length as big as possible on condition that
the algorithm is stable. If the error function decreases with

the iteration number, it just means that the direction of the
adjustment is right and the step length can be increased. On
the contrary, if the error function increases with the iteration
number, it just means that the direction of the adjustment is
wrong and the step length should be decreased.

After above talking, the whole process of classifying
different types of motions by using sEMG can be clearly
showed in Fig. 2.

III. EXPERIMENT AND RESULTS

To validate the effectiveness of the features for motion
classification of the upper limbs, we implement an experi-
ment on an able-bodied man (26 years old). Four muscles
of upper extremity including flexor carpi radialis muscle,
extensor carpi ulnaris muscle, extensor pollicis brevis mus-
cle, and flexor digitorum superficialis muscle are selected
respectively. Four pairs of Ag/Agcl electrodes with glue
solution which can easily stick to the muscle are used for
the sEMG signals detection, and each of the electrodes in a
pair are separated from each other by 2 cm. The subject is
asked to do fist (F), fist unfold (FU), wrist flexion (WF), wrist
extension (WE), palm abduction (PA), and palm adduction
(PR) respectively, these motions are clearly showed in Fig.
3.

The sEMG signals acquisition equipment we use is Flex-
Comp which is a production of Thought Technology Ltd.,
Canada. The device can simultaneously capture 10 channels
of sEMG data with the sampling rate of 2048HZ for each
channel. Before signals acquisition, some small detail works
should be done to the selected four muscles, such as shaving
and cleaning of the skin surface, these work are mainly to
reduce the input resistance and the external disturbance.

Each arm motions can be divided into three steps: rest,
action and motion holding. The sEMG signals we extract
are during the third step and the signals during this time
slice are relatively stable. The data length sustained for 1
second, so there are 2048 sample points of each channel
for each motion. After the preprocessing of sEMG that
has been talked before, the traditional features including
integral of absolute value (IAV), difference absolute mean
value (DAMV), zero crossing (ZC), variance (VAR), mean
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(a) fist (b) fist unfold

(c) wrist flexion (d) wrist extension

(e) palm abduction (f) palm adduction

Fig. 3. Six motions of the upper limb of the right arm

power spectral density (MPSD), mean frequency (MF) and
median frequency (MDF) are extracted for each channel
respectively. During the computing of the power spectrum for
each channel, every 1024 sample points or 0.5s interval with
an overlap of 50% is computed respectively, and the average
of the power spectrum is calculated. This method is just to
reduce the variance in the spectrum estimates and create the
characteristic values of the power distribution [30]. For the
new method of feature extraction by using discrete wavelet
transform (DWT), the mother wavelet we use is Daubechies
05 (db05) and the center frequency of which is 0.6667 HZ.
According to the FFT of each channel, we know that the the
main power of the sEMG concentrate between 5 HZ and 170
HZ, so we have an idea to extract the information between
this frequency band. Also according to equation (10), we
know that DWT (db05) with scale number 3 is enough to
extract all the information between this frequency band and
the integral of absolute value of approximation coefficients
were used as the new feature.

For training and validating the BP neural network, each
of the six motions were asked to do for 50 times with a
five minutes rest between every 10 groups, so there are
300 samples totally, and 210 are used for network training,
and 90 are used for network validating. Also for testing the
robustness of the BP neural network, there is no limit to the
strength when the people do these motions. The BP neural
network we use has three layers: input layer, mid layer and
the output layer. The number of neurons of the input layer
depends on the features used, for example, when only one
feature is used for motion recognition, such as IAV, DAMV,
ZC, VAR, MPSD, MF, or MDF, then there are four neurons
in the input layer, when two features together are used for
recognition, then there are eight neurons in the input layer,

TABLE I
RECOGNITION CODE FOR SIX MOTIONS OF UPPER LIMBS

Motion Code Motion Code
fist 100000 fist unfold 010000

wrist flexion 001000 wrist extension 000100
palm abduction 000010 palm adduction 000001

TABLE II
RECOGNITION RATE FOR DIFFERENT FEATURES OR DIFFERENT FEATURE

COMBINATIONS

Feature Recognition rate % Training error
IAV 92.2 0.0288
DAMV 88.9 0.0315
VAR 91.1 0.0411
MPSD 86.7 0.0562
ZC 47.8 0.157
MDF 77.7 0.0849
MF 72.2 0.0782
IAV+VPR 98.9 0.0167
IAV+MPSD 98.9 0.0245
IAV+DAMV 98.9 0.0306
VAR+DAMV 95.6 0.0390
VAR+MPSD 94.4 0.0407
MPS+DAMV 94.4 0.0218
IAV+DAMV+VAR 99 0.00623
IAV+DAMV+MPSD 99 0.00413
IAV+VAR+MPSD 99 0.00523
DAMV+VAR+MPSD 99 0.00794
DWT 98.9 0.0151

and 12 neurons in the input layer for three features together.
The number of neurons in the mid layer is 12 when the
number of neurons in the input layer is less than 12, and
20 when the number of neurons in the input layer is 12.
The number of neurons in the output layer is always 6,
and the output value of each neuron is between 0 and 1.
The six motions of the upper limb is represented by six
binary codes. The specific representation is showed in Table
I. The recognition rate and the training error of the BP neural
network are clearly showed in table II.

From table II, we can see that the features ZC, MDF, and
MF present a big training error for the BP neural network,
and the right recognition rate is relatively small, while the
other four features such as IAV, DAMV, VAR, and MPSD
present a small training error, and the right recognition rate is
more than 86%. Different features combination between IAV,
DAMV, VAR, and MPSD can greatly improve the recogni-
tion rate, for example, the combination of VAR and MPSD
can give a recognition rate of 94.4% and the combination of
IAV and VPR can give a recognition rate of 98.8%. Three
of the features IAV, DAMV, VAR, and MPSD together can
give a recognition rate of 99%. The new feature of sEMG
which is computed by DWT also give a high recognition
rate of 98.8% which is bigger than that of all the traditional
features described above.

IV. CONCLUSIONS

In this paper, a new feature of sEMG signals is extracted
by using DWT, and this feature present a good result for
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pattern recognition of upper limbs. Although the traditional
features such as IAV, DAMV, ZC, VAR, MPSD, MF, and
MDF present a bad result, their combination also greatly
improved the recognition rate. The BP neural network with
GDX algorithm used in this paper also prove that the BP
neural network is a good classifier. Many other factors may
also affect the recognition rate such as muscles selection and
electrodes position. In our future work, we will apply this
method to real-time rehabilitation robot control.
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