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Abstract— Underwater visual localization is an essential tech-
nique for the autonomous operation of underwater robots. How-
ever, the unique underwater image characteristics, including
refraction, sparse features, and severe noise, pose an enormous
challenge to it. For addressing these issues, this paper proposes
an open-source fiducial-based underwater stereo visual-inertial
localization method under the extended Kalman filter (EKF)
framework, which is called FBUS-EKF. First, the refraction
is corrected by the refractive camera model and akin tri-
angulation. Second, the fiducial marker and a novel marker
pose estimation method are applied to alleviate the adverse
effect of sparse features. Third, the EKF is utilized to fuse the
inertial and visual information so as to reject the serious noise.
Finally, extensive experiments on a test bench demonstrate
the effectiveness of the FBUS-EKF method, where the typical
localization error is less than 3%, namely, the average error is
lower than 3 cm within one meter. The obtained results reveal
that the FBUS-EKF method has the prospect to be applied
in the precise short-range operation and the localization for
underwater robots, which offers a valuable insight for further
autonomous underwater task.

I. INTRODUCTION

Nowadays, underwater robots, including bionic robotic
fish and autonomous underwater vehicles (AUV), have be-
come an active research area owing to their promising appli-
cation prospect in marine development. In order to empower
them with higher autonomous ability, underwater localization
should be tackled due to its essentiality. Compared with
the acoustic sensors, like the sonar or Doppler velocity log
(DVL), the low-cost visual sensor that can acquire abundant
information is more appropriate for the precise short-range
operation.

Unlike the high-quality image in the air, the underwater
image is usually distorted, feature-sparsed, and quite noisy,
resulting in a considerable challenge to the underwater visual
localization. More specifically, for underwater scenes, the
light is distorted by the refraction effect when it crosses the
glass housing and air into the camera. Besides, the limited

This work was supported by the National Natural Science Foundation
of China (Grant Nos. 61725305, 61633004, 61633017, and 62022090) and
S&T Program of Hebei (Grant No. F2020203037).

P. Zhang, Z. Wu, J. Wang, S. Kong, and M. Tan are with the State
Key Laboratory of Management and Control for Complex Systems,
Institute of Automation, Chinese Academy of Sciences, Beijing 100190,
China and University of Chinese Academy of Sciences, Beijing 100049,
China (e-mail: zhangpengfei2017@ia.ac.cn; zhengxing.wu@ia.ac.cn;
wangjian2016@ia.ac.cn; kongshihan2016@ia.ac.cn; min.tam@ia.ac.cn).

J. Yu is with the State Key Laboratory of Management and Control for
Complex Systems, Institute of Automation, Chinese Academy of Sciences,
Beijing 100190, China, and also with the State Key Laboratory for Turbu-
lence and Complex Systems, Department of Advanced Manufacturing and
Robotics, BIC-ESAT, College of Engineering, Peking University, Beijing
100871, China (e-mail: junzhi.yu@ia.ac.cn).

visual range leads to less visible features, and the suspended
particulates as well as light attenuation further introduce the
severe noise.

At present, some typical underwater visual localization
algorithms have been developed [1]–[8]. For instance, Shkur-
ti et al. applied the multi-state constraint Kalman filter
(MSCKF) framework, and combined the information of
camera, inertial measurement unit (IMU), and depth sensor
to estimate the pose of the amphibious robot “Aqua” [1].
Hover et al. proposed a pose-graph simultaneous localization
and mapping (SLAM) architecture for ship hull inspection,
which fuses the data from DVL, image sonar, and monocular
camera [2]. Although there are a series of works that have
been done, the majority of them neglect the refractive effect
and only possess decimeter-level precision. More important-
ly, all of them are closed-source. Hence, the underwater
visual localization still calls for greater effort.

In this paper, we propose an open-source fiducial-based
underwater stereo visual-inertial localization method with the
consideration of the refractive camera model, which can be
applied for the feedback of precise short-range operation as
well as the localization in an artificial pool. The main con-
tributions of this study are twofold: 1) A novel underwater
fiducial marker pose estimation algorithm with refraction
correction is proposed, which significantly improves the
accuracy of the traditional marker pose estimation method in
the underwater environment. Besides, the proposed FBUS-
EKF method further strengthens the robustness of local-
ization, and achieves the centimeter-level precision on the
test bench. 2) To the best of our knowledge, the presented
work is the first open-source underwater localization method
considering the refractive effect, which is publicly available
at https://github.com/CASIA-RoboticFish/FBUS-EKF.

II. RELATED WORK

Underwater refraction correction has been exploited for
many years. According to the summary of Shortis, the un-
derwater refraction correction techniques can be legitimately
classified into three categories, including absorption method,
geometric correction, and perspective center shift (PCS) or
virtual projection center (VPC) approach [9]. The absorption
method is the most common approach, which assumes that
the refractive effect can be absorbed by the distortion compo-
nent of the calibration parameters [10], [11]. This approach
is relatively simple, but it neglects the systematic errors
induced by the invalid assumption about single projection
center [12]. Geometric correction usually applies Snell’s law
to trace the light paths through the refractive interfaces, and
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Fig. 1. The schematic of the FBUS-EKF algorithm framework.

finally recovers the real image [13]–[15]. This method is
exact, but it is specific to the housing type. PCS or VPC
approach is the variation on geometric correction, where
the projection model remains unchanged but the projection
center is calculated in terms of the refraction principle [16],
[17]. This method is effective for both monocular and stereo
camera, but it usually needs to introduce extra assumptions.
In this paper, the stereo geometric correction approach is
applied owing to its high-accuracy and reliability.

A large majority of underwater localization works employ
the artificial marker as an aid [18]–[22]. Since the primary
use of localization is guiding the operation around the man-
made facility, these solutions are also quite viable. Chavez et
al. employed the monocular camera calibrated by the PinAx
refractive model [17] to measure the pose of the fiducial
markers, and applied EKF to fuse the data of IMU, DVL,
and camera [22]. However, the PinAx model introduces too
many assumptions so that it can work effectively only when
the camera is very close to the glass housing. In this paper,
the ArUco marker is applied for assisting localization due to
its robust detecting and tracking performance [23].

To improve the localization performance, visual-inertial
fusion is a common technique that compensates for the
drift of IMU integration and noisy visual measurement. The
mainstream visual-inertial localization method can usually
be divided into two categories. A class of methods is based
on the Kalman filter, e.g., MSCKF [24], stereo-MSCKF [25],
ROVIO [26]. The other spectrum of approaches optimizes the
sensor states, formulating the robot localization as a graph
optimization problem, e.g., OKVIS [27], VINS-Mono [28].
For better real-time performance, the EKF is utilized as the
basic fusion framework here.

III. SYSTEM OVERVIEW

The overview of the proposed FBUS-EKF method is
shown in Fig. 1. The overall framework can be divided
into three modules. The first part is the processing of
visual information. The fiducial markers are detected and
tracked from a pair of images based on the open-source

library “ArUco”, where their correspondence is constructed
by means of the marker ID [23]. Then, the marker corners
are undistorted applying the fisheye camera model, and
the obtained normalized coordinates are inputted into the
following operations. The second module recovers the 3D
position of corners by the refractive camera model as well as
akin triangulation, and calculates the marker pose relative to
the camera frame. The third part is the visual-inertial fusion
based on EKF. The IMU data are first propagated to calculate
a prior estimation of robot state according to the IMU process
model, and then the marker pose is applied to update the
filter state and acquire posterior estimation through the vision
measurement model and EKF fusion.

The notations of this paper are listed here. Five coordinate
frames are defined, including world frame FG, marker frame
FM , IMU or body frame FI , left camera frame FL, and right
camera frame FR. The translation vector CpAB represents
a position vector expressed at FC , which points from the
origin of FA to FB . The quaternion qB

A and rotation matrix
RB

A denote the rotation of FA around FB . Hence, the vector
rotation can be expressed as CpAB = qC

A ⊗ApAB ⊗ qC
A

∗ or
CpAB = RC

A · ApAB , where q∗ is the conjugate of q.

IV. UNDERWATER STEREO MARKER POSE ESTIMATION

In this section, an underwater stereo marker pose esti-
mation method applied to the air-glass-water flat refractive
surfaces is proposed.

A. Refractive Camera Model

The schematic of the refractive camera model and akin
triangulation is shown in Fig. 2(a). For the general under-
water camera, the complete light path of imaging processes
comprises three segments according to various mediums. The
purpose of the refractive camera model is to trace the light
path of every image pixel in terms of Snell’s law and the ray
coplanar principle [29].

As shown in Fig. 2(a), the unit vector ra of the air segment
can be easily obtained through the traditional pinhole camera
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Fig. 2. The schematic of the underwater stereo marker pose estimation algorithm. (a) 3D position reconstruction by refractive
camera model and akin triangulation. (b) Calculation procedure of the attitude and position of marker frame.

model [15]. Besides, the intersection point Pag on the air-
glass interface can be calculated as

ra =

−→
Op

||
−→
Op ||

, Pag =
da

ra · nπ
ra, (1)

where p is the normalized coordinates of the object point
P . nπ is the unit normal vector of the glass surface. The
vertical distance between the camera optical center and the
glass surface is denoted as da. Note that the superscript is
omitted.

According to the ray coplanar principle, all ray segments
from the optical center O to the point P are coplanar with
nπ . Therefore, the glass segment vector rg can be represent-
ed by the linear combination of ra and nπ . Similarly, the
water segment vector rw can be obtained as

rg = αgra + βgnπ, (2)
rw = αwrg + βwnπ, (3)

where

αg =
µa

µg
, βg = αgra · nπ −

√
1− α2

g [1− (ra · nπ)2],

αw =
µg

µw
, βw = −αwrg · nπ +

√
1− α2

w [1− (rg · nπ)2],

µa, µg, and µw represent the refractive indexes of air, glass,
and water, respectively. Generally, µa < µw < µg . At last,
the point Pgw can be deduced as

Pgw = Pag +
dg

rg · nπ
rg, (4)

where dg is the thickness of glass.

B. Akin Triangulation

The aim of akin triangulation is to utilize the Pgw and rw
from two cameras to recover the 3D position of P . First, the
vectors from the right camera are represented at FL as

Lrrw = RL
R · Rrrw, (5)

LP r
gw = LpLR +RL

R · RP r
gw, (6)

where the superscript r represents the right camera.
Further, as shown in Fig. 2(a), it can be easily found

that the optimal position estimation of object point P is the
middle point of the perpendicular line between the ray rlw
and rrw. The calculation of middle point position LP can
refer to [15].

C. Marker Pose Estimation
In terms of the above methods, the 3D position of the

four marker corners can be obtained. In this subsection,
the marker position and quaternion with respect to (w. r.
t.) FL are estimated, which will be applied as the visual
measurement of the following filter. Notice that all the
vectors and points in this subsection are represented at FL,
and the superscripts are omitted for brevity.

As shown in Fig. 2(b), the overall marker pose estimation
comprises four steps. The first step is computing the normal
vector of marker plane. Based on the coordinates of four
corners, we can define six vectors that point from one
corner to the other, e.g., v12 =

−→
P1P2,v13,v14,v23,v24,v34.

Further, the normal vector can be regarded as the one that
is vertical with these six vectors. The optimal normal vector
nm is equivalent to the eigenvector corresponding to the
smallest eigenvalue of the matrix M =

∑
vij · vT

ij .
The second step is seeking the optimal marker plane

equation. Assuming nm = [A,B,C]T , the marker plane
equation can be written as

Π : Ax+By + Cz +D = 0, (7)

where the parameter D is unknown. Generally, the distance
between corners and the optimal plane is shortest. Hence,
the optimal Dopt can be deduced as

Dopt = −1

4

4∑
i=1

nT
m · Pi. (8)

The third step is calculating the projection of corners on
the marker plane. The projection point P̃ can be deduced as

P̃i = Pi − t · nm, t =
nT

m · Pi − 1
4

∑4
j=1 n

T
m · Pj

||nm||
. (9)



The final step is determining the marker pose relative to
FL. The nm is defined as the z axis of FM . Then, the
direction of the x axis needs to be determined so that FM

is fully defined. To reduce the errors, the auxiliary vector m
is defined as

m = m/||m||, m =
−→

P̃1P̃2 +
−→

P̃1P̃3 +
−→

P̃1P̃4 . (10)

The m is aligned with the angular bisector of the angle
between the x axis and y axis, so the x axis can be obtained
through rotating m −45 degrees around z axis. According
to Rodrigues’ rotation formula, the rotation matrix R is

R = I + sin(−45◦)[nm]× + [1− cos(−45◦)] [nm]2× (11)

Then, the direction vectors of x axis and y axis are

pm = R ·m, qm = nm × pm. (12)

Lastly, the rotation matrix from FM to FL is obtained as

RL
M = [pm, qm,nm]. (13)

The position of the marker frame origin is defined as the
average of four corners, which is

LpLM = (P̃1 + P̃2 + P̃3 + P̃4)/4. (14)

V. FILTER DESCRIPTION

This section describes the filter setup that consists of the
process model, measurement model, and EKF fusion [24],
[25]. The IMU or robot state is defined as

X =
[
GpT ,GvT , qG

I

T
,aT

b ,ω
T
b ,

GgT
]T

, (15)

where Gp ∈ R3 and Gv ∈ R3 represents the position and
velocity of FI w. r. t. FG. For brevity, the subscript is
omitted. The ab ∈ R3 and ωb ∈ R3 are the biases of the
accelerometer and gyroscope. Gg ∈ R3 is gravity vector w.
r. t. FG.

A. IMU Process Model

The continuous dynamics for IMU are as follows [30]:

Gṗ = Gv,
Gv̇ = RG

I

(
Iam − ab − an

)
+ Gg,

q̇G
I =

1

2
qG
I ⊗

(
Iωm − ωb − ωn

)
, (16)

ȧb = aw, ω̇b = ωw,
Gġ = 0,

where the Iam and Iωm are the measurements of accelerom-
eter and gyroscope represented at FI , respectively. aw, an,
ωn, and ωw are white Gaussian noises.

Besides, the linearized discrete model for the estimated
IMU state and error state, as well as the uncertainty prop-
agation are given in [30]. For better accuracy, a 4th order
Runge-Kutta numerical intergration is applied to propagate
the estimated IMU state.

B. Vision Measurement Model

According to the absolute marker pose and the visual
measurements of RL

M and LpLM , the visual measurement
equation can be obtained as

y = h+ v

=

[
RL

I R
I
G

[
GpGMi − Gp−RG

I
IpIL

]
qL
I ⊗ qG

I
∗ ⊗ qG

Mi

]
+ v, (17)

where y =
[
LpT

LMi
, qL

Mi

T
]T

is measurement. Mi represents
the marker frame whose ID is i. qL

Mi
is the quaternion

corresponding to RL
Mi

. GpGMi and qG
Mi

are the known
information. v ∈ R7 is the white Gaussian noise with
covariance R, where v ∼ N (0,R).

Based on (17), the Jacobian matrix w. r. t. the error state
can be defined as follows:

H =

[
−RL

I R
I
G O RL

I

[
RI

G(
GpGMi − Gp)

]
× O3×9

O O [qG
Mi

]R[q
L
I ]LL2[q

G
I ]LL1 O4×9

]
,

(18)

where

L1 =
1

2


0 0 0
1 0 0
0 1 0
0 0 1

 ,L2 =
∂qG

I
∗

∂qG
I

≈


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 ,

[q]L and [q]R denote the left- and right- quaternion-product
matrices, respectively [30].

C. EKF Fusion

The EKF fusion process consists of time update and
measurement update stages. The ordinary form of EKF can
be found in [30]. In our implementation, the time update
stage is carried out when the new visual results come, and
a batch of IMU data are processed at once. Furthermore,
the nearest marker detected from the images is applied to
measurement update. Besides, the marker poses w. r. t. the
world frame FG are known in advance, which are constant
and not updated in the iterations.

VI. EXPERIMENTS

In order to evaluate the proposed method, two experiments
were performed in this section. In these experiments, the
sensor suite called Indemind stereo vision inertial module
was applied, which collected the monochrome image with
resolution 640 × 480 pixels at 25 Hz and the IMU data at
1000 Hz (see Fig. 3(a)). Note that the time synchronization
of sensor data is implemented in the hardware layer. All
algorithms ran on a laptop with an Intel Core i5-7300HQ
processor and 8 GB RAM, whose real-time performance is
completely satisfied for the online localization. Besides, the
adopted marker size was 16 cm.

In addition, measuring the actual camera trajectory is
a great challenge in the underwater environment. Hence,
for obtaining the precise ground truth, the experiments
were conducted on the test bench that consists of the two-
directional sliding rails, where the sensor suite can move
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Fig. 3. The sensor module and test bench.
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freely in a horizontal plane (see Fig. 3(b)). The geometric
parameters of the sliding rails are completely known, so the
camera position and trajectory along the sliding rails can be
measured accurately.

A. Marker Pose Estimation Experiment

The precise marker pose estimation is the foundation of the
following visual-inertial fusion. In this experiment, the sensor
module was placed in various locations to collect a period
of image data about a fixed marker, then the average marker
pose estimation results were calculated by the proposed
method. Note that the sensor module was mounted at a slider
on the test bench and moved along sliding rails.

Fig. 4 depicts the position estimation results on the air
and water. Note that there are some positions that were not
measured in the underwater case due to the reduced view
caused by the refractive effect. Besides, when the da and
dg are set as zero, the proposed underwater method can
degenerate into the air case. It can be easily found that the
estimated positions of ours method are quite close to actual
positions, and the overall Root Mean Square Error (RMSE)
of position is lower than 2 cm no matter in the air case
or the underwater case. However, when the pinhole camera
model on the air is directly employed in the underwater
environment, the estimated positions seriously deviate from
the actual one. This is because underwater cameras in flat
port housing are in fact axial cameras rather than pinhole
cameras [29]. Hence, this experiment validates the necessity
and accuracy of the proposed method.
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B. Visual-Inertial Localization Experiment

To overcome the precision degradation caused by the se-
vere measurement noise in water and the increasing distance
from marker, the combination of IMU and camera becomes
very imperative. In this experiment, the sensor module was
moved along a rectangular trajectory on the test bench, and
a marker was fixed in front of the sensor for localization.
Then, the localization accuracy of three cases was compared,
including the proposed FBUS-EKF, the vision-only method,
and the vision-filtered method which smooths the results of
the vision-only method by a mean filter.

Figs. 5 and 6 show the trajectories and error curves of the
air case and underwater case, respectively. The coordinate
origin represents the position of the marker. The estimated
trajectories of all methods are close to the ground truth when
the sensor is near the marker. However, with the increasing
of the distance between sensor and marker, especially for the
underwater case, the vision-only and vision-filtered method
seriously deviate from the actual trajectory. This deviation is
caused by the poor attitude estimation accuracy. In general,
when the attitude error is 5◦ and the distance from marker is
120 cm, the localization error will reach about 10 cm, which
can be easily calculated by sin(5◦)× 120 ≈ 10.45 cm.

Based on the above analysis, the vision-only method is
hardly available for practical application when the attitude
error can not be restrained effectively. Similarly, the vision-
filtered method only reduces the fluctuation of the trajectory
but cannot decrease the localization error at the source.
Nevertheless, for the FBUS-EKF, the IMU data provides
more motion information, and thus the estimated trajectory
is pretty consistent with the ground truth, whose average
localization error is lower than 3 cm for both air and under-
water cases. In a word, this experiment fully demonstrates
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the effectiveness and superiority of the FBUS-EKF compared
with the vision-only method.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an open-source underwa-
ter localization method for the precise short-range operation
and the localization in an artificial pool, which achieves
the centimeter-level precision on the test bench. Owing to
its open-source property and well precision, this work will
create convenience for the studies about the autonomous
operation and advanced control of underwater robots.

In the future, we will further focus on the localization in
the scene that the marker pose is unknown, and the robust
marker detection algorithm for the camera with fast shaking.
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