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ABSTRACT

Building a human-machine conversational agent is a core problem in
Artificial Intelligence, where knowledge has to be integrated into the
model effectively. In this paper, we propose a Multi Domain Knowl-
edge Enhanced Matching Network (MDKEMN) to build retrieval-
based dialogue systems that could leverage both explicit knowledge
graph and implicit domain knowledge for response selection. Specif-
ically, our MDKEMN leverages the self-attention mechanism of a
single-stream Transformer to make deep interactions among the di-
alogue context, response candidate and external knowledge graph,
and finally returns the matching degree of each context-response pair
under the external knowledge. Furthermore, to leverage the implicit
domain knowledge from all domains to improve the performance of
each domain, we combine the multi-domain datasets for training and
then finetune the pretrained model on each domain. Experimental re-
sults show (1) the effectiveness of both explicit and implicit knowl-
edge incorporating and (2) the superiority of our approach over pre-
vious baselines on a Chinese multi-domain knowledge-driven dia-
logue dataset.

Index Terms— External Knowledge, Deep Matching, Response
Selection, Retrieval-based Dialogue Systems

1. INTRODUCTION

Building a human-machine conversational agent is one of the most
important and challenging tasks in artificial intelligent(AI). Thanks
to the availability of large amounts of human dialogue data and the
recent progress on deep learning-based approaches, past few years
have witnessed the rapid development of conversational systems [1,
2, 3, 4, 5]. Those methods can be roughly divided into two cate-
gories: the generative methods and retrieval-based methods [6]. In
this paper, we are interested in the retrieval-based approaches, which
reply to human input by selecting a matched response from the pre-
built response candidates [7, 8, 9].

It is crucial for retrieval-based systems to measure the match-
ing degree between the dialogue context and response candidates.
Attention is drawn from single-turn context-response matching [10,
11] to multi-turn response selection. And various works improve
retrieval-based systems with multi-granularity matching [12, 13],
deep contexts-response interaction [14, 15] and new training strat-
egy [16]. However, those methods, which highly rely on the in-
formation stored in training corpora, still suffer from the semantic
gaps between dialogue contexts and responses [17] to obtain a better
matching function. An important reason is that these systems do not
explicitly use external knowledge and have limited implicit knowl-
edge learned from the specific domain training corpora while human

with general implicit background knowledge often uses external ex-
plicit materials to conduct conversations.

Considering the gap of knowledge between human and ma-
chine, previous approaches have been developed to incorporate
external knowledge into matching networks for response selection
in retrieval-based dialogue systems. Early works attempt to leverage
the topic clues [18, 19], text-related entities [20], domain keyword
descriptions [21] or relevant question-answer pairs [22] as the ex-
ternal knowledge to strengthen the text representation for response
selection. However, those works tend to incorporate the external
knowledge in a shallow fusion manner. Recent works [23, 22, 9]
tend to incorporate the external knowledge in an early fusion way
via the attention mechanism. However, most of them still first en-
code the text and knowledge information separately, and then blend
these information via the attention mechanism. Currently, pretrained
language models with its implicit parameter knowledge learned on
large corpus have shown significant benefits for various downstream
NLP tasks [24, 25], and some researchers have tried to apply them
on the vanilla response selection task without external knowledge
[26, 27, 28].

Different from them, we propose a Multi Domain Knowledge
Enhanced Matching Network (MDKEMN) to build retrieval-based
systems that could leverage both explicit knowledge graph and im-
plicit domain knowledge for response selection. Specifically, for ex-
plicit knowledge, we leverage a single-stream Transformer [29] to
make deep interactions among the dialogue context, response can-
didate and external knowledge graph after embedding; for implicit
knowledge, we leverage the implicit domain knowledge from all
domains to improve the performance of each domain, while most
of previous works train their models on each domain dataset sepa-
rately. Finally, we evaluate our approach on a Chinese multi-domain
knowledge-driven dialogue dataset, i.e., KdConv [30], and experi-
mental results show (1) the effectiveness of both explicit and implicit
knowledge incorporating and (2) the superiority of our approach
over previous baselines.

2. METHOD

2.1. Task Definition

Suppose that we have a dataset D =
{(

Ki, ci, ri, yi
)}N

i=1
with N

samples, where the knowledge graph Ki = {Ki
1, · · · ,Ki

lK
} con-

sists of lK triples1, the dialogue context ci = {ci1, · · · , cilc} and the

1Each triple Ki
j = (hi

j , p
i
j , t

i
j) consists of the head en-

tity hi
j , the relation or predicate pij and the tail entity tij .

(Flying Higher,Release date,March 19, 2005) is an example.
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Fig. 1. The proposed MDKEMN architecture for retrieval-based di-
alogue systems. Our MDKEMN leverages a single-stream Trans-
former encoder to encode the dialogue context, response candidate
and knowledge graph information together and allows deep interac-
tions among those information via the multi-head self-attention, and
finally returns the matching degree between context and response
under the external knowledge.

response candidate ri = {ri1, · · · , rilr} contains lc and lr tokens,
respectively, and the label yi ∈ {0, 1} indicates whether this is a
positive example. yi = 1 means ri is an appropriate response given
ci and Ki while yi = 0 indicates the negative example. The task
is to learn a matching model g(·, ·, ·) from the dataset D, and thus
for any context-response pair (c, r), g(c, r,K) returns the matching
degree between dialogue context c and response candidate r under
the external knowledge K.2

2.2. Model Overview

In this paper, we propose our MDKEMN as the matching model
g(c, r,K) in retrieval-based dialogue systems and Fig. 1 shows the
architecture of our model. In brief, MDKEMN is composed of four
parts: the textual embedder, the knowledge graph embedder, the
transformer-based interaction layer and the output layer. First, the
two embedders are responsible for transforming the symbolic data,
i.e., the dialogue context, the response candidates and the external
knowledge graph, into the distributed representations, e.g., the word
embedding [31]. And then, the transformer-based interaction layer
leverages the multi-head self-attention mechanism to fully fuse those
three distributed embedding representations and get the final vector
representation. Finally, in the output layer, we compute the similar-
ity between dialogue context and the response candidate under the
external knowledge graph. The details of each components are de-
scribed in the following sections.

2.3. Model Details

2.3.1. Textual Embedding

We first format the dialogue context c and response candidate r as a
token sequence x = {[CLS], c1, . . . , clm , [SEP], r1, . . . , rln , [SEP]},
where [CLS] and [SEP] are special tokens to mark the beginning

2We omit the superscript of each sample
(
Ki, ci, ri, yi

)
for brevity.

and end of a sentence. And then, the textual embedder converts each
token xi into a vector representation xi as follows:

xi = TE (xi) + PE (xi) + SE (xi) ∈ Rd, (1)

where d is the hidden size, TE (·), PE (·) and SE (·) are token, posi-
tion and segment embeddings, and the input representation for each
token is the sum of those embeddings.

2.3.2. Knowledge Graph Embedding

For each knowledge triple Kj = (hj , pj , tj), we use the knowledge
graph embedder to obtain the representation kj as follows:

kj = Wk · k̂j + bk ∈ Rd

k̂j =
1

|hj |+ |pj |+ |tj |
∑

Kj,i∈Kj

∑
e∈Kj,i

KE (e) ∈ Rd̂, (2)

where | · | denotes the token number, KE (·) is the Knowledge Em-
bedder to convert each knowledge triple into a vector k̂j in the d̂-
th dimension embedding space via averaging all embeddings of the
tokens e in this triple, and trainable parameters Wk ∈ Rd×d̂ and
bk ∈ Rd are used to project k̂j into kj in the text embedding space.

2.3.3. Deep Interaction

In this paper, we leverage a single-stream Transformer encoder to
encode dialogue context, response candidate and knowledge graph
information together and thus allow deep interactions among those
information in an early fusion manner via the multi-head self at-
tention mechanism. Specifically, we first pack the textual embed-
dings and knowledge embeddings into an augmented embedding
representation H0 = [x1, · · · ,xlm+ln+3,k1, · · · ,klK ] and then
encode them into multiple levels of contextual representations Hl =[
hl
1, . . . ,h

l
lH

]
using L-stacked Transformer blocks, where lH =

lm + ln + 3 + lK and the l-th Transformer block is denoted as
Hl = Transformer

(
Hl−1

)
, l ∈ [1, L]. Inside each Transformer

block, the previous layer’s output Hl−1 ∈ RlH×d is aggregated us-
ing the multi-head self-attention [29]:

Q = Hl−1Wl
Q,K = Hl−1Wl

K,V = Hl−1Wl
V

Mij =

{
0, allow to attend,
−∞, prevent from attending ,

Al = softmax

(
QKT

√
dk

+ M

)
V

, (3)

where Wl
Q,Wl

K,Wl
V ∈ Rd×dk are learnable weights for comput-

ing the queries, keys, and values respectively, and M ∈ RlH×lH

is the self-attention mask that determines whether tokens from two
layers can attend each other. Then Al is passed into a feedforward
layer to compute Hl for the next layer.

2.3.4. Output Layer

The output layer calculates the similarity between dialogue context
and the response candidate under the external knowledge graph. And
we define the score function g (c, r,K) as following:

g (c, r,K) = sigmoid
(
WoH

L
[CLS] + bo

)
∈ R1, (4)

where HL
[CLS] ∈ Rd is the representation for [CLS] token from the

Transformer encoder and Wo ∈ Rd×1 and bo ∈ R1 are trainable
parameters.
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Table 1. Statistics of the KdConv dataset.
Domain Film Music Travel Total

Train Dialogues 1200 1200 1200 3600
Dev Dialogues 150 150 150 450
Test Dialogues 150 150 150 450

Total Utterances 36618 24885 24093 85596
Avg. # utters per dialogue 24.4 16.6 16.1 19.0
Avg. # tokens per utter 13.3 12.9 14.5 13.5

Total triples of KG 11875 5747 5287 22909
Avg. # triples per dialogue 16.8 10.4 10.0 10.1
Avg. # tokens per triple 25.8 29.7 31.0 28.3

2.4. Multi Domain Training

The success of pretrained language models suggests that the pre-
trained parameters could implicitly store knowledge from a large
corpus [32, 25, 33, 34, 35]. Inspired by this discovery, we attempt
to mine the implicit information from multi domain to improve the
performance of each domain.

Specifically, we combine the multi-domain datasets for training
and then finetune the pretrained model on each domain. And in both
multi-domain training and single-domain finetuning stages, we opti-
mize our models via the negative log likelihood loss function. Let Θ
denote the parameters, the objective function can be formulated as:

L(D,Θ) = −
N∑
i=1

(
yi log gi +

(
1− yi

)
log
(

1− gi
))

(5)

3. EXPERIMENTS

3.1. Dataset

We evaluate our approach on KdConv [30] and its statistics are
shown in the Table 1. KdConv contains 4.5K dialogues from three
domains (i.e., film, music and travel) and each dialogue is associated
with a related explicit knowledge graph. In this paper, we use the
retrieval setting where there are 10 response candidates, including
the ground truth response.

3.2. Models for Comparison

DAM [14] is a transformer encoder-based model, which leverages
self-attention and cross-attention to calculate the matching score.
IOI [15] performs deep matching between the utterances and re-
sponses through multiple interaction block chains.
IMN [36] is the interactive matching network to perform the global
and bidirectional interactions between the context and response.
BERT [24] is a vanilla model finetuned to the response selection
task without external explicit knowledge.
BERT+KVMN [30] enhances the finetuned BERT with a Key-Value
Memory Network [37] to store and read out the external knowledge.
MDKEMN is our single-stream transformer-based model that lever-
ages the Implicit Domain Knowledge (IDK) and Explicit Knowledge
Graph (EKG). Removing the implicit and explicit knowledge, our
model degenerates into the vanilla finetuned BERT.

3.3. Implementation Details

We implement our models with PyTorch3 and use the parameters
of BERT4 to initialize our textual embedder and deep interaction

3https://github.com/pytorch/pytorch
4https://github.com/ymcui/Chinese-BERT-wwm

Table 2. Automatic evaluation on the KdConv dataset. Note that we
report models with “†” using results from the published paper [30].

Models R10@1 ↑ R10@3 ↑ R10@5 ↑ MRR ↑ MAP ↓

Film

DAM 38.68 72.88 88.91 0.587 2.710
IOI 29.82 61.04 80.03 0.502 3.385
IMN 51.54 82.77 93.57 0.688 2.163
BERT† 65.36 91.79 N/A N/A N/A
BERT+KVMN† 65.67 91.79 N/A N/A N/A
MDKEMN(Ours) 71.32 93.14 98.39 0.827 1.545

Music

DAM 31.37 65.77 84.41 0.525 3.084
IOI 35.09 70.73 87.37 0.560 2.855
IMN 44.59 79.05 92.18 0.639 2.383
BERT† 55.64 86.90 N/A N/A N/A
BERT+KVMN† 56.08 86.87 N/A N/A N/A
MDKEMN(Ours) 63.53 91.06 97.65 0.778 1.718

Travel

DAM 31.69 61.28 80.17 0.513 3.346
IOI 40.22 69.06 85.09 0.584 2.891
IMN 41.02 69.53 84.11 0.590 2.886
BERT† 45.25 71.87 N/A N/A N/A
BERT+KVMN† 46.64 73.98 N/A N/A N/A
MDKEMN(Ours) 55.05 80.40 91.40 0.699 2.261

layer. For knowledge graph embedder, we first use the Jieba Chi-
nese word segmenter5 for tokenization to obtain a knowledge token
dictionary, and then initialize the KE (·) operator using a pretrained
200-dimensional word embeddings6. For tokens not appearing in the
pretrained embeddings, we assign them random embeddings sam-
pled from a standard normal distributionN (0, 1).

We set the max length of the textual sequence x to 192 and the
max length of each knowledge triple to 100. And the hidden size
d is 768 and the knowledge embedding size d̂ is 200. Then we use
the Adam optimizer [38] with 0.1 warmup proportion to train all
the models up to 8 epochs on two GPUs (TITAN Xp). The base
learning rate is 2e-5 for travel domain and 5e-5 for other settings,
and the batch size is set to 32.

3.4. Evaluation

We measure the performance of the matching models with the
widely-used retrieval metrics [14, 36, 30]. We calculated the recall
of the true positive replies among the n best-matched responses
from 10 available candidates, denoted as R10@n. Here, we use
n ∈ {1, 3, 5}. Moreover, we also adopt rank-aware evaluation met-
rics: Mean Average Precision (MAP) and Mean Reciprocal Rank
(MRR) of the human response.

3.5. Main Results

As Table 2 shows, our MDKEMN outperforms all baselines sig-
nificantly on three domains of the KdConv dataset (t-test, p-value
< 0.01) by achieving the highest scores in all automatic metrics. We
see models without external knowledge perform poorly on this task,
and BERT is a very strong baseline with general implicit knowledge
learned from a large scale corpus. By leveraging both the explicit
knowledge graph and implicit domain knowledge for response se-
lection, our MDKEMN learns a much better matching function for
retrieval-based dialogue systems.

5https://github.com/fxsjy/jieba
6https://ai.tencent.com/ailab/nlp/en/embedding.html
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Fig. 2. Attention weight visualization in our MDKEMN. K0-K19 in the y axis indicates there are 20 triples in the external knowledge graph,
and the numbers in the x axis belongs to the token sequence x, which can be translated into Chinese dialogue context and response according
to the BERT-wwm-ext vocabulary4. In this example, the dialogue context focuses on the information of a film, while the response is mainly
about the production cost. The K2 and K9 triples are related to the dialogue response and context, respectively.

Fig. 3. Ablation Study on KdConv according to R10@1.

3.6. Ablation Study

We further conduct an ablation study to understand the effectiveness
of both explicit and implicit knowledge incorporating in Figure 3.
As our MDKEMN mainly contains two key features: the Implicit
Domain Knowledge (IDK) and Explicit Knowledge Graph (EKG),
and our model degenerates into the vanilla finetuned BERT after re-
moving these two components. First, we see that there is shared
knowledge among different domains and implicit domain knowledge
mined from all domains could help to improve the performance of
each domain. Moreover, the domain with insufficient training exam-
ples benefits from this kind of implicit knowledge more. For exam-
ple, the R10@1 improvement on the music domain is more than 4
absolute points, whereas there is less than 2 point improvement on
R10@1 on the film domain. Second, without the external knowledge
graph, it is difficult to overcome the semantic gaps between dialogue
contexts and response candidates and there is performance drop for
response selection. Although adding KVMN helps, the improvement
is not significant due to its relative shallow structure compared with
BERT. On the other hand, our MDKEMN could leverage the exter-
nal knowledge graph better and get the big improvement because our
MDKEMN allows the deep interactions among the dialogue context,
response candidate and external knowledge graph via the multi-head
self-attention mechanism of the single-stream Transformer.

3.7. Attention Visualization

To interpret our MDKEMN, we visualize the attention weights be-
tween the text representation HL

[0:lm+ln+2] and knowledge graph
representation HL

[lm+ln+3:] in Fig. 2. In this example, there is a topic
change from the information of a film (e.g., the director and the ac-
tor) to the production cost, which causes the semantic gaps between
dialogue context and response. In the knowledge graph, there ex-
ists a relation between K9 and K2, which are related to the dialogue
context and response, respectively. We observe that our MDKEMN
successfully changes its attention from the K9 information “...在美
国上映。影片主要讲述...”(...released in the United States. The
film is mainly about...) to the right part K2 “制片成本”(the product
cost) in the first column, though the dialogue context is more related
to the K9. Therefore, we believe that our MDKEMN leverages both
explicit knowledge graph and implicit domain knowledge to over-
come the semantic gaps and finally gets the right response “没错。
当时斥资$15, 000, 000呢”(That’s right. It costs $15 million).

4. CONCLUSION

In this paper, we propose a Multi Domain Knowledge Enhanced
Matching Network (MDKEMN) to build retrieval-based dialogue
systems that could leverage both explicit knowledge graph and im-
plicit domain knowledge for response selection. Specifically, our
MDKEMN leverages a single-stream Transformer to encode the di-
alogue context, response candidate and external knowledge graph to-
gether and blend these information via the multi-head self-attention
mechanism and finally returns the matching degree of each context-
response pair under the external knowledge. Furthermore, to lever-
age the implicit domain knowledge from all domains to improve the
performance of each domain, we combine the multi-domain datasets
for training and then finetune the pretrained model on each domain.
We evaluate our approach on the KdConv dataset and show (1) the
effectiveness of both explicit and implicit knowledge incorporating
and (2) the superiority of our approach over previous baselines.
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