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Abstract

Convolutional neural networks are able to learn realistic

image priors from numerous training samples in low-level

image generation and restoration [66]. We show that, for

high-level image recognition tasks, we can further recon-

struct “realistic” images of each category by leveraging

intrinsic Batch Normalization (BN) statistics without any

training data. Inspired by the popular VAE/GAN method-

s, we regard the zero-shot optimization process of synthet-

ic images as generative modeling to match the distribution

of BN statistics. The generated images serve as a calibra-

tion set for the following zero-shot network quantizations.

Our method meets the needs for quantizing models based

on sensitive information, e.g., due to privacy concerns, no

data is available. Extensive experiments on benchmark

datasets show that, with the help of generated data, our ap-

proach consistently outperforms existing data-free quanti-

zation methods.

1. Introduction

Deep convolutional neural networks have achieved great

success in several computer vision tasks [26, 61], however,

we still understand little why it performs well. There are

plenty of pioneering works aim at peeking inside these net-

works. Feature visualization [57, 51, 56] is a group of main-

stream methods that enhance an input image from noise to

elicit a particular interpretation. The generated images il-

lustrate how neural networks build up their understanding

of images [57], as a byproduct, opens a path towards data-

free model compression [70].

Network quantization is an efficient and effective way

to compress deep neural networks with a small memory

footprint and low latency. It is a common practice to in-

troduce a calibration set to quantize activations. To recover

the degraded accuracy, training-aware quantization even re-

quires re-training on the labeled dataset. However, in real-

world applications, the original (labeled) data is commonly

˚Equal contribution.

not available due to privacy and security concerns. In this

case, zero-shot/data-free quantization becomes indispens-

able. The following question is how to sample data x from

the finite dataset X in the absence of original training data.

It is intuitive to introduce noise u „ N p0, 1q as the in-

put data to estimate the distributions of intermediate layer-

s. Unfortunately, since the Single-Gaussian assumption can

be too simple, the results for low-bit activation quantization

are far from satisfactory [69]. Due to the zero-shot setting,

it is also hard to apply the well-developed GANs to image

synthesis without learning the image prior to the original

dataset. Very recently, a large body of works suggests that

the running mean µ and variance σ2 in the Batch Normal-

ization layer have captured the prior distribution of the da-

ta [11, 25, 15, 69]. The square loss on µ and σ2 (details

in Equation (11) and (10)) coupled with cross-entropy loss

achieves the empirical success in zero-shot network quanti-

zation. Though the performance has been further improved

over early works [7, 47, 57, 56] such as DeepDream [51],

it remains unclear why these learning targets should lead to

meaningful data after training. Therefore, instead of direct-

ly presenting several loss functions, we hope to better de-

scribe the training process via generative modeling, which

might provide another insight into the zero-shot network

quantization.

In this work, we consider the generative modeling that

deals with the distributions of mean and variance in Batch

Normalization layers [35]. That is, for some random da-

ta augmentations determined by random variable z, the

mean µ and variance σ2 generated by synthesized images

I should look like their counterparts extracted from real im-

ages, with high probability. Recently developed generative

models like GAN commonly captures distribution ppIq in-

stead of knowing one image, but we regard synthesized im-

ages I as model parameters optimized in zero-shot learning.

The input transformations introduce the randomness to al-

low the sampling on µ and σ2. Besides, our method presents

a potential interpretation for the popular Batch Normaliza-

tion matching loss [11, 25, 15, 69, 70]. Due to the insuffi-

cient sampling in each iteration, we further propose a pri-

or regularization term to narrow the parameter space of I .



Since the accuracy drop of low-bit activation quantization

heavily relies on the image quality of the calibration set,

we conduct extensive experiments on the zero-shot network

quantization task. The 4-bit networks including weights

and activations show consistent improvements over base-

line methods on both CIFAR and ImageNet. Hopefully,

this work may not be restricted to image synthesis, but shed

some light on the interpretability of CNN through gener-

ating interpretable input images that agree with deep net-

works’ internal knowledge.

2. Related Work

Model quantization has been one of the workhorses in

industrial applications which enjoys low memory footprint

and inference latency. Due to its great practical value, low-

bit quantization becomes popular in recent literature.

Training-aware quantization. Previous works [52, 24,

34, 75] mainly focus on recovering the accuracy of quan-

tized model via backward propagations, i.e., label-based

fine-tuning. Since the training process is similar to it-

s floating point counterpart, the following works further

prove that low-bit networks can still achieve comparable

performances with full-precision networks by training from

scratch [18, 74, 45, 36]. Ultra low-bit networks such as

binary [23, 17, 33, 60] and ternary [2, 13, 41, 76], ben-

efiting from bitwise operations to replace the computing-

intensive MACs, is another group of methods. Leading

schemes have reached less than five points accuracy drop on

ImageNet [42, 28, 48, 38]. While training-aware methods

achieve good performance, they suffer from the inevitable

re-training with enormous labeled data.

Label-free quantization. Since a sufficiently large open

training dataset is inaccessible for many real-world ap-

plications, such as medical diagnosis [19], drug discov-

ery, and toxicology [10], it is imperative to avoid retrain-

ing or require no training data. Label-free methods take

a step forward by only relying on limited unlabeled da-

ta [27, 53, 4, 73, 3, 16]. Most works share the idea of

minimizing the quantization error or matching the distri-

bution of full precision weights via quantized parameter-

s. [4, 22, 67, 53] observe that the changes of layer out-

put play a core role in accuracy drop. By introducing the

“bias correction” technique (minimize the differences be-

tween EpWxq and Ep xWxq), the performance of quantized

model can be further improved.

Zero-shot quantization. Recent works show that deep neu-

ral networks pre-trained on classification tasks can learn the

prior knowledge of the underlying data distribution [66].

The statistics of intermediate features, i.e., “metadata”, are

assumed to be provided and help to discriminate samples

from the same image domain as the original dataset [7, 44].

To circumvent the need for extra “metadata”, [55] treat-

s the weights of the last fully-connected layer as the class
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Figure 1: The standard VAE represented as a graphical

model (left subfigure), i.e., sampling from z N times to

generate something similar to X with fixed parameters θ

[20]. In this work, we regard the synthetic sampes/images

I as model parameters θ to be optimized during the training

process. We have a family of deterministic functions fIpzq
parameterized by I . Since z is random, fIpzq is a random

variable 1. We hope to optimize I such that @zi from ppzq,

fIpziq can cause the pre-trained network to generate µ, σ2

and, with high probability, these random variables will be

like the Batch-Normalization statistics [35] generated by re-

al images.

templates then exploits the class similarities learned by the

teacher network via Dirichlet sampling. Another group of

methods focus on the stored running statistics of the Batch

Normalization layer [35]. [70, 25] produce synthetic images

without generators by directly optimizing the input images

through backward propagations. Given any input noises,

[12, 49, 71, 15, 37, 11] introduces a generator network gθ
that yields synthetic images to perform Knowledge Distil-

lation [29] between teacher and student networks.

Since we have no access to the original training dataset

in zero-shot learning, it is hard to find the optimal generator

gθ. Generator-based methods have to optimize gθ indirectly

via KL divergence between categorical probability distribu-

tions instead of max Ex„p̂rln ppxqs in VAE/GANs. In light

of this, we formulate the optimization of synthetic images I

as generative modeling that maximizes Erln ppµ, σ2; Iqs.

3. Approach

3.1. Preliminary

A generative modeling whose purpose is to map random

variables to samples and generates samples distributed ac-

cording to p̂pxq, defined over datapoints X . We are interest-

ed in estimating p̂ using maximum likelihood estimation to

find best ppxq that approximates p̂ measured by Kullback-

Leibler divergence,

Lpx; θq “ KLpp̂pxq||ppx; θqq “ Ep̂pxqrln ppx; θqs. (1)

Here we use a parametric model for distribution p. We hope

to optimize θ such that we can maximize the log likelihood.

1Given zi, we have a deterministic function fIpziq which applies flip-

ping/jitter/shift to the synthetic images I according to zi. We can sample

zi from probability density function ppzq N times to allow the backprop.



Ideally, ppx; θq should be sufficiently expressive and

flexible to describe the true distribution p̂. To this end, we

introduce a latent variable z,

ppx; θq “

ż
ppx|z; θqppzqdz “ Eppzqrppx|z; θqs, (2)

so that the marginal distribution p computed by the product

of diverse distributions (i.e., joint distribution) can better

approximate p̂.

3.2. Generative Zero­shot Quantization

We now describe the optimization procedure of Genera-

tive Zero-shot Quantization (GZNQ) with batch normaliza-

tion and draw the resemblance to the generative modeling.

The feed forward function of a deep neural network at

l-th layer can be described as:

F l “ W
lφpWl´1...φpW2φpW1pfIpzqqqq (3)

µbatch “

řN

i“1 F
l
i

N
σ2
batch “

řN

i“1pF l
i ´ µbatchq2

N
(4)

where φp¨q is an element-wise nonlinearity function and W
l

is the weights of l-th layer (freezed during the optimization

process). The mean µbatch and variance σ2
batch are calcu-

lated per-channel over the mini-batches. Furthermore, we

denote the input to networks as fIpzq. That is, we have a

vector of latent variables z in some high-dimensional space

Z 2 but we can easily sample zi according to ppzq. Then,

we have a family of deterministic functions fIpziq, parame-

terized by the synthetic samples/images I in pixel space I.

zi determines the parameters such as the number of places

by which the pixels of the image are shifted and whether

to apply flipping/jitter/shift function f to I . Though I,W

are fixed and the mapping Z ˆ I Ñ µ, σ2 is determinis-

tic, if z is random, then µbatch and σ2
batch are random vari-

ables in the space of µ and σ2. We wish to find the opti-

mal I˚ such that, even with random flipping/jitter/shift, the

computed µbatch, σ
2
batch are still very similar to the Batch-

Normalization (BN) statistics [35] generated by real im-

ages.

Recall Equation (1), minimizing the KL divergence is

equivalent to maximizing the following log likelihood

I˚ “ argmax
I

ln Eppzqrppµ, σ2|z; Iqs. (5)

To perform stochastic gradient descent, we need to com-

pute the expectation. However, taking the expectation with

respect to ppzq in closed form is not possible in practice.

Instead, we take Monte Carlo (MC) estimation by sampling

2Formally, say zi is a multivariate random variable. The distribu-

tion of each of the component random variables can be Bernoullippq or

Unifpa, bq.

from ppzq

Eppzqrppµ, σ2|z; Iqs «
1

n

nÿ

i“1

ppµ, σ2|zi; Iq. (6)

Then, we may approximate the distribution of mean and

variance of a mini-batch, i.e., ppµq and ppσ2q.

Distribution matching For the mean variable, we have

µbatch “
ř

N
i“1

Fi

N
where Fi are features in the sampled

mini-batch. We assume that samples of the random variable

are i.i.d. then by central limit theorem (CLT) we obtain

µbatch „ N pµ,
σ2

N
q (7)

for sufficiently large N , given µ “ ErF s and σ2 “ ErpF ´
µbatchq2s. Similarly, we get

σ2
batch „ N pσ2,

VarrpF l ´ µq2s

N
q, (8)

where N accounts for the batchsize and Varr¨s is the finite

variance, details in Appendix. Then, we further rewrite E-

quation (5) through (6-8) as follows:

LDM “
1

2

N

σ2
pµbatch ´ µq2 `

1

2

N

VarrpF l ´ µq2s
pσ2

batch ´ σ2q2

loooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooon
term I

`
1

2
ln VarrpF l ´ µq2s.

(9)

Rethinking BN matching Note that the popular Batch-

Normalization matching loss in recent works [11, 70, 69]

min ||~µbatch ´ ~µ||22 ` ||~σ2
batch ´ ~σ2||22,

which can be regarded as a simplified term I in Eq.(9), leav-

ing out the correlation between µ and σ2 (i.e., the coeffi-

cients). Another group of recent methods [15, 25] present

min log
µbatch

µ
´

1

2
p1 ´

σ2 ` pσ2 ´ σ2
batchq2

σ2
batch

q, (10)

which actually minimizes the following object

min KLpN pµ, σ2q || ppF lqq, F l „ N pµbatch, σ
2
batchq.

That is to approximate the distribution ppF lq defined over

features F l instead of Batch-Normalization statistics µ, σ2

in Eq.(5). Since the parameter space of featuremaps are

much larger than µ, σ2, we adopt LDM to facilitate the

learning process.

Pseudo-label generator Unfortunately, Monte Carlo esti-

mation in (6) can be inaccurate given a limited sampling 3,

which may lead to a large gradient variance and poor syn-

thesized results. Hence, it is common practice to introduce

regularizations via prior knowledge of I , e.g.,

3Consider IT “ 1

T

řT
t fpxtq, IT Ñ Ex„prfpxqs holds for T Ñ 8.



Synthesized 

Data

Training-aware 

Quantization

Gaussian Noise

+  

Pre-trained Model

Quantized Models

Original

Model

BN Distribution 

Matching Loss

Cross-Entropy

Loss

Quantized 

Model

Pruned 

Model

Low-rank 

Model

Transformed  Synthesized  Images

: Forward propagation

: Forward & Backward propagation

Pseudo-label

Generator

KL Divergence

Loss

Synthesized Images𝑧 determines random 

image transform

Figure 2: Generative Zero-shot Network Quantization (GZNQ) setup: GZNQ uses a generative model to produce the mean

and variance in Batch-Normalization (BN) layer [35], meanwhile, optimizes the synthesized images to perform the follow-

ing training-aware quantization. The pseudo-label generator consists of several data-free post-training compressed models

(same architecture using different post-training compression schemes, e.g., weights quantization + weights magnitude-based

unstructured pruning + SVD decomposition), which serve as a multi-model ensemble or voting classifier.

min LCEpϕωpIq, yq (11)

where ϕωpIq produces the categorical probability and y ac-

counts for the ground-truth, which can be regarded as a prior

regularization on I .

Recently, [31, 32] shows that compressed models are

more vulnerable to challenging or complicated examples.

Inspired by these findings, we wished to introduce a post-

training quantized low-bit network as the pseudo-label gen-

erator to help produce “hard” samples. However, the se-

lection of bitwidth can be tricky. High-bit networks yield

nearly the same distribution as the full-precision counter-

part, which results in noisy synthetic results (as pointed

out in adversarial attack, high-frequency noise can easily

fool the network). Low-bit alternatives fail on easy sam-

ples that damage the image diversity. To solve this, we

turn to the model ensemble technique, shown in Figure 2,

then reveal the similarity between (12) and multiple gener-

ators/discriminators training in GANs [30, 21].

An ensemble of different post-training compressed mod-

els generates a similar categorical distribution with the orig-

inal network (illustrated in Figure 3) and it is more flexible

to adjust the regularization strength than discrete bitwidth

selection. Note that ensemble modeling still obtains a small

KL distance when the accuracy is relatively low. Here, we

get the prior regularization on I as

LKL “ KL
´
ϕω pfI pzqq ||

1

M

Mÿ

i“1

ϕ
ω̂

i pfI pzqq
¯

“
Nÿ

j“1

ϕωj
pfI pzqq log

ϕωj
pfI pzqq

1
M

řM

i“1 ϕω̂
i
j

pfI pzqqq

(12)

where ω̂i refers to the i-th compressed model. For no-

tational simplicity, we shall in the remaining text denote
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Figure 3: An ensemble of compressed models generates a

relatively reliable pseudo-label, which is more similar to the

distribution of original network outputs than every single

compressed model when the accuracy is comparable.

ϕωj
pfI pzqq as ϕωj

. By simply applying the AM-GM in-

equality to (12), we can easily prove that (12) serves as a

“lower bound” for the objective with multiple compressed

models

Nÿ

j“1

ϕωj
log

ϕωj

1
M

ř
i ϕω̂

i
j

ď
Nÿ

j“1

ϕωj
log

ϕωj

p
ś

i ϕω̂
i
j
q

1

M

“
1

M

Mÿ

i“1

KL
´
ϕω pfIpzqq ||ϕ

ω̂
i pfIpzqq

¯
.

(13)

[21] shows multiple discriminators can alleviate the mode

collapse problem in GANs. Here, (13) encourages the syn-

thesized images to be generally “hard” for all compressed

models (i.e., the large KL divergence corresponds to the dis-

agreement between full-precision networks and compressed

models).
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Figure 5: We visualize the learned channel gating mask of

ten samples in a), generated by ImageNet ResNet-50. There

are plenty of zero elements which illustrate the neural re-

dundancy. We further show the correlation matrix of gat-

ing masks of ten samples in b). Images belonging to the

same main category produce higher responses than irrele-

vant classes, e.g., the gating mask of cardoon is more simi-

lar to daisy than cheeseburger.

Channel gating From the view of connectionism, “memo-

ry” is created by modifying the strength of the connections

between neural units [64, 9], i.e., weights matrix. In light

of this, we wish to do the optimal surgery [40, 68] to en-

hance the “memory” when generating samples belonging to

a specific category. More specifically, we use per-sample

channel pruning to encourage learning more entangled rep-

resentations, shown in Figure 4. Since channel pruning may

severely damage the BN statistics, we only apply this setting

to the last convolution layer. Fortunately, high-level neuron-

s in deep CNNs are more semantically meaningful, which

meets our needs.

We use the common Gumble-Softmax trick [46] to per-

form channel gatings

Gi,j “

"
1, δp

αi,j`logU´logp1´Uq
τ

q ě 0

0, otherwise
(14)

where δ is the sigmoid function, U „ Uniformp0, 1q and

τ is the temperature that controls the difference between

the softmax and argmax function. Compared with channel

pruning [6] and DARTS [43], we introduce a 2D trainable

matrix α P R
CˆN instead of a vector to better describe each

sample/category. Figure 5b further illustrates the effect of

channel gating that samples of the same main category yield

similar masks after training.

4. Experiments

We perform experiments on the small-scale CIFAR-

10/100 dataset (32 ˆ 32 pixels) and the complex ImageNet

dataset (224ˆ224 pixels, 1k classes). The quantization and

fine-tuning process are strictly data-free. We then report the

Top-1 accuracy on the validation set.

4.1. Ablation study

In this section, we evaluate the effect of each component.

All the ablation experiments are conducted on the ImageNet

dataset with pre-trained standard ResNet-50 [26]. We use

the popular Inception Score (IS) [62] to measure the sample

quality despite its notable flaws [5]. As shown in Table 3,

introducing prior regularization significantly contributes to

higher inception scores and other components further im-

prove IS. Since the activations become more semantically

meaningful as layers go deeper, we apply (9) to the convo-

lution layers in the last block of ResNets. Table 4 shows

ensemble modeling leads to better performance than a sin-

gle compressed model.

4.2. Generation details

z setting In this work, we assume zi to be a three-

dimensional random variable such as zi,0 „ Bp0.5q and

zi,1.zi,2 „ Up´30, 30q, which determines whether to flip

images and move images along any dimension by any num-

ber of pixels.

Pseudo-label generator setting We set the post-training

quantized networks to 4-bit then adjust the percentage of

rank to be preserved and pruning rate of each layer based

on the KL divergence. That is, for every compressed model,

the KL divergence between ycompressed and yoriginal should

be the same (or quite similar), as shown in Figure 3.

Training details As shown in Figure 2, GZNQ is a two-

stage scheme. In this section, we detail the generative set-

tings in the first stage. For CIFAR models, we first train

full-precision networks from scratch (initial learning rate

0.1 with cosine scheduler; weight decay is 1e´4; all net-

works are trained for 300 epochs by SGD optimizer). Then,

we utilize the proposed distribution matching loss, KL di-

vergence loss, channel gating, and CE loss to optimize the

synthesized images. More specifically, we use Adam opti-

mizer (beta1 is set to 0.3 and beta2 is 0.9) with a learning

rate of 0.4 and generate 32 ˆ 32 images in a mini-batch

of 128. The weight of BN matching loss is 0.03 and 0.05

for the KL divergence loss. We first half the image size to

speed up training via 2ˆ2 average downsampling. After 2k



Dataset Pre-trained Model Method W bit A bit Quant Acc (%) Acc Drop (%) Fine-tuning

CIFAR-10

ResNet-20

(0.27M)

ZeroQ [11] 4 4 79.30 14.73 –

Ours 4 4 89.06 4.07 –

GDFQ [69] 4 4 90.25 3.78 X

Ours 4 4 91.30 1.83 X

ResNet-44

(0.66M)

Knowledge Within [25] 4 4 89.10 4.13 –

Ours 4 4 91.46 2.92 –

Knowledge Within [25] 4: 8 92.25 0.99 –

Ours 4 8 93.57 0.83 –

WRN40-2

(2.24M)

DFNQ [15] 4 8 94.22 0.55 X

Ours 4 4 94.81 0.37 X

DFNQ [15] 4 8 93.14 1.63 –

Ours 4 4 94.06 1.09 –

CIFAR-100

ResNet-20

(0.28M)

ZeroQ [11] 4 4 45.20 25.13 –

Ours 4 4 58.99 10.18 –

GDFQ [69] 4 4 63.58 6.75 X

Ours 4 4 64.37 4.80 X

ResNet-18

(11.2M)

DFNQ [15] 4 8 75.15 2.17 X

Ours 4 5 75.95 3.16 X

DFNQ [15] 4 8 71.02 6.30 –

Ours 4 5 71.15 7.96 –

Table 1: Results of zero-shot quantization methods on CIFAR-10/100. “W bit” means weights quantization bitwidth and

“A bit” is quantization bits for activations. “Fine-tuning” refers to re-training on the generated images using knowledge

distillation. : indicates first and last layers are in 8-bit. We directly cite the best results reported in the original zero-shot

quantization papers (ZeroQ 4-bit activations from [69]).

BN CE-Loss Pseudo-label BN+ Gating Inception Score Ò

X 7.4

X X 43.7

X X X 74.0

X X X X 80.6

X X X X X 84.7

Table 3: Impact of the proposed modules on GZNQ. “BN+”

refers to Equation (9). Following GAN works [8, 72], we

use Inception Score (IS) to evaluate the visual fidelity of

generated images.

iterations, we use the full resolution images to optimize for

another 2k iteration. We follow most settings of CIFAR-

10/100 in ImageNet experiments. Since BN statistics and

pseudo-labels are dataset-dependent, we adjust the weight

of BN matching loss and KL divergence loss to 0.01 and 0.1

respectively. ImageNet pre-trained models are downloaded

from torchvision model-zoo directly [58].

In our experiments, we do observe that networks trained

only with random 256 ˆ N /N ˆ 256 cropping and flipping

contribute to high-quality images but the accuracy is rela-

tively lower than the official model. This finding is consis-

tent with the policy in differential privacy [1]. Since we fo-

cus on generative modeling and network quantization, more

ablation studies on this part will be our future works.

Quant Pruning Low-rank
Ensemble

Eq.(12)

Ensemble

Eq.(13)

IS Ò 71.9˘3.85 73.0˘2.47 81.3˘2.16 84.7˘1.76 82.7˘2.90

Table 4: Ablation study on the effect of model ensemble in

the Pseudo-label generator. IS stands for Inception Score.

Calibration

Dataset

Quantized Model Acc. (%)

WRN40-2

(CIFAR-10)

ResNet-20

(CIFAR-100)

ResNet-18

(ImageNet)

MobileNetv2

(ImageNet)

SVHN 50.11 5.43 3.00 1.50

CIFAR-100 92.94 60.29 14.50 7.56

CIFAR-10 94.01 57.29 14.10 6.46

ImageNet 80.72 38.75 63.21 57.93

Ours 94.06 58.99 57.24 54.03

FP32 93.13 95.18 69.76 71.78

Table 5: Impact of using different calibration datasets for 4-

bit weights and 4-bit activation post-training quantization.

Our synthesized dataset achieves comparable performance

to the real images in most cases.

4.3. Quantization details

Low-bit activation quantization typically requires a cal-

ibration set to constrain the dynamic range of intermediate

layers to a finite set of fixed points. As shown in Table 5, it

is crucial to collect images sampled from the same domain

as the original dataset. To fully evaluate the effectiveness

of GZNQ, we use synthetic images as the calibration set

for sampling activations [39, 34], and BN statistics [59, 27].



Pre-trained Model Method W bit A bit Quant Top-1 (%) Top-1 Drop (%) Real-data Fine-tuning

ResNet-50

(25.56M)

DoReFa [75] 4 4 71.4 5.5 X X

Ours 4 4 72.7 3.4 – X

OMSE [16] 4 32 67.4 8.6 – –

Ours 4 6 68.1 8.1 – –

OCS [73] 6 6 74.8 1.3 X –

ACIQ [3] 6 6 74.3 1.3 X –

Ours 6 6 75.5 0.6 – –

ResNet-18

(11.69M)

ZeroQ [11] 4 4 26.0 45.4 – –

Ours 4 4 57.2 12.5 – –

Knowledge Within [25] 4: 4 55.5 14.3 – –

Ours 4: 4 58.9 10.9 – –

GDFQ [69] 4 4 60.6 10.9 – X

Ours 4 4 64.5 5.30 – X

Integer-Only [36] 6 6 67.3 2.46 X X

DFQ [54] 6 6 66.3 3.46 – –

Ours 6 6 69.0 0.78 – –

MobileNetv2

(3.51M)

Knowledge Within [25] 4; 4 16.10 55.78 – –

Ours 4 4 54.03 17.72 – –

Integer-Only [36] 6 6 70.90 0.85 X X

Ours 6 6 71.12 0.63 – X

DFQ [54] 8 8 71.19 0.38 – –

Knowledge Within [25] 8 8 71.32 0.56 – –

Ours 8 8 71.38 0.36 – –

Table 2: Quantization results on ImageNet. “Real-data” means using original dataset as the calibration set to quantize

activations or fine-tune weights. “Fine-tuning” refers to re-training with KD on the generated images (if no real data is

required) or label-based fine-tuning. : indicates first and last layers are in 8-bit. ; means 8-bit 1 ˆ 1 convolution layer. We

directly cite the best results reported in the original papers (ZeroQ from [69]).

Method Resolution GAN Inception Score Ò

BigGAN-deep [8] 256 X 202.6

BigGAN [8] 256 X 178.0

SAGAN [72] 128 X 52.5

SNGAN [50] 128 X 35.3

GZNQ 224 - 84.7˘2.8

DeepInversion [70] 224 - 60.6

DeepDream [51] 224 - 6.2

ZeroQ [11] 224 - 2.8

Table 6: Inception Score (IS, higher is better) of various

methods on ImageNet. SNGAN score reported in [63] and

DeepDream score from [70]. The bottom four schemes are

data-free and utlizing ImageNet pre-trained ResNet-50 to

obtain synthesized images.

Besides, we use MSE quantizer [65, 27] for both weights

and activations quantization, though, it is sensitive towards

outliers. In all our experiments, floating-point per-kernel s-

caling factors for the weights and a per-tensor scale for the

layer’s activation values are considered. We keep a copy of

full-precision weights to accumulate gradients then conduct

quantization in the forward pass [34, 25]. Additionally, bias

terms in convolution and fully-connected layers, gradients,

and Batch-Normalization layers are kept in floating points.

We argue that advanced calibration methods [53, 67, 69] or

quantization schemes [16, 14, 36] coupled with GZNQ may

further improve the performance.

For our data-free training-aware quantization, i.e., fine-

tuning, we follow the setting in [69, 15] to utilize the vanil-

la Knowledge Distillation (KD) [29] between the original

network and the compressed model. Since extra data aug-

mentations can be the game-changer in fine-tuning, we use

the common 4 pixels padding with 32 ˆ 32 random crop-

ping for CIFAR and the official PyTorch pre-processing for

ImageNet, without bells and whistles. The initial learning

rate for KD is 0.01 and trained for 300/100 epochs on CI-

FAR/ImageNet, decayed every N
3

iterations with a multi-

plier of 0.1. The batch size is 128 in all experiments. We

also follow [70, 69] to fix batch normalization statistics dur-

ing fine-tuning on ImageNet. All convolution and fully-

connected layers are quantized to 4/6-bit, unless specified,

including the first and last layer. The synthesized CIFAR

dataset consists of 50k images and ImageNet has roughly

100 images per category.

4.4. Comparisons on benchmarks

We compare different zero-shot quantization methods

[11, 25, 15, 69] on CIFAR-10/100 and show the results in

Table 1. Our methods consistently outperform other state-

of-the-art approaches in 4-bit settings. Furthermore, bene-

fiting from the high quality generated images, the experi-

mental results in Table 2 illustrate that, as the dataset gets

larger, GZNQ still obtains notably improvements over base-



(a) Noise (b) Deep

Dream[51]

(c)

DAFL[12]
(d) Deep
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(e) GZNQ

Figure 6: Synthetic samples generated by a CIFAR-10 pre-

trained ResNet-34 at a 32 ˆ 32 resolution. We directly cite

the best visualization results reported in [70].

line methods. Due to the different full-precision baseline

accuracy reported in previous works, we also include the ac-

curacy gap between floating-point networks and quantized

networks in our comparisons. We directly cite the results in

original papers to make a fair comparison, using the same

architecture. In all experiments, we fine-tune the quantized

models on the synthetic dataset generated by their corre-

sponding full-precision networks.

We further compare our method with [11, 25, 12, 70] on

the visual fidelity of images generated on CIFAR-10 and

ImageNet. Figure 6-8 show that GZNQ is able to gener-

ate images with high fidelity and resolution. We observe

that GZNQ images are more realistic than other competitors

(appear like cartoon images). Following [70], we conduct

quantitative analysis on the image quality via Inception S-

core (IS) [62]. Our approach surpasses previous works, that

is consistent with visualization results.

5. Conclusions

We present generative modeling to describe the image

synthesis process in zero-shot quantization. Different from

data-driven VAE/GANs that estimates ppxq defined over re-

al images X , we focus on matching the distribution of mean

and variance of Batch Normalization layers in the absence

of original data. The proposed scheme further interprets the

recent Batch Normalization matching loss and leads to high

fidelity images. Through extensive experiments, we have

shown that GZNQ performs well on the challenging zero-

shot quantization task. The generated images also serve as

an attempt to visualize what a deep convolutional neural

network expects to see in real images.
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