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ABSTRACT 

Morphology of mitochondria plays critical roles in 

mediating their physiological functions. Accurate 

segmentation of mitochondria from 3D electron microscopy 

(EM) images is essential to quantitative characterization of 

their morphology at the nanometer scale. Fully supervised 

deep learning models developed for this task achieve 

excellent performance but require substantial amounts of 

annotated data for training. However, manual annotation of 

EM images is laborious and time-consuming because of their 

large volumes, limited contrast, and low signal-to-noise ratios 

(SNRs). To overcome this challenge, we propose a semi-

supervised deep learning model that segments mitochondria 

by leveraging the spatial continuity of their structural, 

morphological, and contextual information in both labeled 

and unlabeled images. We use random piecewise affine 

transformation to synthesize comprehensive and realistic 

mitochondrial morphology for augmentation of training data. 

Experiments on the EPFL dataset show that our model 

achieves performance similar as that of state-of-the-art fully 

supervised models but requires only ~20% of their annotated 

training data. Our semi-supervised model is versatile and can 

also accurately segment other spatially continuous structures 

from EM images. Data and code of this study are openly 

accessible at https://github.com/24yearsoldstudent/volume-

segmentation-with-sparsely-annotated-slices-template. 

Index Terms—Image segmentation, semi-supervised 

learning, deep learning, mitochondria, electron microscopy  
 

1. INTRODUCTION 

Mitochondria are intracellular organelles that serve 

many essential physiological functions in eukaryotic cells [5]. 

Their morphology is critical in mediating their physiological 

functions. Abnormal mitochondrial morphology has been 

implicated in many human diseases, including cancer and 

neurodegenerative diseases [5]. Electron microscopy (EM) 

provides a powerful tool to visualize mitochondrial 

morphology at nanometer resolutions over large volumes. 

However, quantitative characterization of mitochondrial 

morphology requires accurate image segmentation. So far, 

fully supervised deep learning models provide overall the 

best segmentation performance but require substantial 

amounts of labeled data for training. However, the large 

volumes, limited contrast and low signal-to-noise ratios 

(SNRs) of EM images make manual annotation laborious, 

time-consuming, and prone to human errors. The diverse and 

complex morphology of mitochondria in 3D also poses a 

substantial challenge to manual annotation. To overcome 

these technical challenges, it is desirable to develop models 

that can be trained with limited labeled data and effectively 

utilize information from unlabeled data.  

 Various classical machine learning models have been 

used in previous studies. For example, Lucchi et al. [1] 

employed an approximate subgradient descent algorithm to 

minimize the margin-sensitive hinge loss in structured 

support vector machines (SVMs). Li et al. [8] used ridge 

detection to acquire mitochondrial membrane edges in a 

variational image segmentation model and optimized 

segmentation using group similarity information. Peng et al. 

[3] introduced a class of local patch patterns (LPPs) to encode 

contextual features to improve mitochondrial segmentation 

accuracy. Overall, these methods provide reasonable results 

but are limited in their generalization capacity and their 

ability to handle large EM datasets.  

Deep neural networks (DNNs) [9], such as U-Net [2, 4] 

and V-Net [10], have been widely used for segmentation of 

3D biomedical images. Oztel et al. [11] proposed to use a 

fully convolutional network (FCN) to segment mitochondria 

and applied several post-processing procedures, such as 2D 

spurious detection filtering, boundary refinement and 3D 

filtering, to improve results. Yuan et al. [7] introduced a 3D 

multi-task network that adds auxiliary centerline detection to 

account for shape information of mitochondria under limited 

labeled data. However, large volumes of unlabeled data are 

unused in model training in these studies. Semi-supervised 

learning (SSL) models segment by leveraging both labeled 

and unlabeled data and are well suited for many biomedical 

image segmentation applications. Recent studies [12-14] 

have developed semi-supervised segmentation models by 

incorporating prior knowledge on properties such as shape, 

location, and context. Spatial priors [15] have also been 

utilized as a regularization term in fully supervised training. 

However, to our knowledge, semi-supervised segmentation 

has not been used on challengeing EM images.  

In this paper, we propose a semi-supervised model for 

segmentation of mitochondria from EM images by utilizing 

spatial continuity of their structural, morphological, and 

contextual information. The main contributions of our work 

are as follows: (1) We have developed a new semi-supervised 

segmentation model that encodes spatial continuity 

information for segmentation of 3D mitochondrial 

morphology from EM images. It achieves performance 



similar as that of state-of-the-art fully supervised models but 

utilizes ~20% of their training data. (2) We have developed a 

new morphological post-processing procedure to use spatial 

continuity for segmentation refinement. (3) We propose a 

new strategy that utilizes random piecewise affine 

transformation to synthesize comprehensive and realistic 

mitochondrial morphology for training data augmentation.   

 

2. METHOD 

The overall architecture of our model is shown in Fig. 1. 

Its training and testing procedures are outlined in Algorithm 

1. The objective is to utilize spatial continuity of structural, 

morphological, and contextual information of mitochondria 

from both labeled and unlabeled data for segmentation 

refinement. 

2.1 Supervised Training with Limited Labeled Data 
A 3D stack of EM images can be viewed as a series of 2D 

slices. In a semi-supervised learning setting, we assume that 

only sparse slices in the training image stack are labeled and 

aim to segment an entire 3D stack of test images. There are 

different ways to select sparse slices from a 3D image stack 

for initial annotation. Continuous slices provide local 

contextual information but are less effective in providing 

global morphological information of mitochondria. We 

choose slices at equal intervals from a 3D image stack to 

balance local contextual and global morphological 

information. 

2.2 Data Augmentation Using Piecewise Affine 

Transformation 

Random flipping and rotation are two commonly used 

strategies for augmentation of natural images.  Elastic 

deformation[16] is a commonly used augmentation technique 

to simulate morphological changes in EM images [2]. But as 

pointed out in [17], it may disrupt edge smoothness of 

mitochondria. Affine transformation, on the other hand, can 

augment mitochondrial images while maintaining edge 

smoothness. Considering the diverse shapes of mitochondria, 

we find it suitable to use random piecewise affine 

transformation to synthesize comprehensive and realistic 

mitochondrial morphology from limited labeled data. 

Specifically, we use the piecewise affine function 

implemented in the imgaug package [18]. Detailed 

information on the piecewise affine transformation and 

performance comparison of elastic deformation versus 

piecewise affine transformation are presented in the 

Supplementary Material.  

2.3 Supervised Segmentation Model with Refinement 

When trained with limited labeled data, 2D U-Net 

usually generate inaccurate segmentation masks that contain 

many false positives (FPs) and false negatives (FNs). 

Previous studies improve segmentation results through multi-

task learning [7]. However, it requires additional network 

parameters at high training cost and ignores essential latent 

information in unlabeled data. To alleviate this problem, we 

propose to use morphological post-processing to refine 

coarse segmentation obtained in the first stage.  

 Morphological Post-Processing (MPP). Several 

studies have proposed to use a series of post-processing steps 

such as filtering, boundary refinement to improve 

segmentation results [6, 11]. Here, we propose a new 

morphological post-processing (MPP) procedure to encode 

spatial continuity information from adjacent slices.  It uses 

the following two operations: 

Foreground Union within Adjacent Slices:  An 

examination of ground truth of mitochondrial segmentation 

finds (see Supplementary Fig. S3) that foreground pixels in 

adjacent slices mostly overlap (Fig. S3) and that those pixels 

further away from edges are more likely to appear in adjacent 

slices. Therefore, performing morphological erosion on 

adjacent slices and taking its union with the segmentation 

result of this slice can effectively reduce false positives. The 

operation is described as follows: 

      

𝐴𝑖
′ = 𝐴𝑖 ∪ 𝛩(𝐴𝑗) (1) 

 
Fig. 1 Architecture of the proposed model. It consists of a shape 

information sub-network Nse with morphological post-processing 

(MPP) to refine coarse segmentation results and a spatial 

information sub-network Nsp to encode continuous spatial 

information. Both sub-networks use a 2D U-Net architecture. 
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Algorithm1 

Training:  

Data: Training image stack Strain. ~20% labeled slices are selected at 

equal intervals.  

1. Train 2D segmentation network Nse with the selected slices; 

2. Use Nse to segment all images in Strain to get coarse segmentation stack 

Sc. Ground-truth is excluded from Sc; 

3. Use morphological post-processing (MPP) with ground-truth to refine 

Sc to get refined segmentation stack Sf , which includes both ground-truth 

and soft labels; 

4. Train spatial continuity-based network Nsp. Use the coarse 

segmentation mask of the middle slice and adjacent N slices in Sc as N-

channel input, Output refined segmentation result of the middle slice. 

Use ground-truth or soft labels in Sf as supervision information; 

 

Testing: 

Input: Test image stack Stest 

            Trained segmentation network Nse 

            Trained spatial continuity-based network Nsp  

Output: Fine segmentation stack Sf of Stest  

1. Use Nse to segment Stest to get coarse segmentation stack Sc;  

2. Use Nsp to refine Sc to get fine segmentation stack Sf ; 

 



where 𝐴𝑖 is the coarse label of the 𝑖-th slice and 𝐴𝑖
′  is the soft 

label after processing, 𝐴𝑗 is the closest ground truth slice to 

𝐴𝑖 . 𝛩 denotes a series of morphological erosion operations 

using a 3-by-3 kernel. The erosion is repeated (𝑛 ∗ |𝑖 − 𝑗|) 
times on the image, where 𝑛 is a hyperparameter to be set for 

specific image stacks and |𝑖 − 𝑗| denotes the distance from 

the current label to the closest ground truth slice. Generally, 

the lower the Z-axis resolution, the larger the 𝑛, 

Spatial Continuity-Based Refinement. Under spatial 

continuity, pixels of the same coordinate between slices 

should not change drastically between foregrounds and 

backgrounds. If pixels of the same coordinate of adjacent 

slices are both in the foreground, the same coordinate pixels 

of the current slice are unlikely in the background. For each 

slice, to reduce false positives, the following formula can be 

used:       

𝐴𝑖
′ = 𝐴𝑖 ∩ (𝐴𝑖−1 ∪ 𝐴𝑖+1) (2) 

And to reduce false negatives:  

𝐴𝑖
′ = 𝐴𝑖 ∪ (𝐴𝑖−1 ∩ 𝐴𝑖+1) (3) 

Here, 𝐴𝑖−1  and 𝐴𝑖+1  represent groundtruth or coarse 

segmentation masks of adjacent slices. Further details are 

provided in Supplementary Material Fig. S4.  With limited 

annotation data, when there are false positives or negatives in 

consecutive n slices, we perform the above operations using 

a total of n+2 consecutive slices.  

 

2.4 Semi-Supervised Segmentation Model Based on 

Spatial Continuity 

The above MPP only refines the segmentation results 

from one dimension, and does not fully consider the three-

dimensional spatial information, which may lead to errors. 

However, manually designing 3D MPP is complex. In MPP, 

continued propagation of error can occur if adjacent 

segmentation masks are inaccurate, especially when 

segmentation masks are first generated by an insufficiently 

trained U-Net. To minimize this type of error, we train 

another network to further refine the segmentation results, 

using segmentation masks obtained after MPP as soft labels. 

Although the 2D U-Net provides a suitable architecture, it 

does not consider spatial information between slices. 3D U-

Net incorporates rich spatial information from 3D input slices, 

but further experiments indicate that it has substantial bias 

towards middle slices. When a 3D image stack is input into a 

3D U-Net, middle slices often have better segmentation 

results than edge slices (Supplementary Figure S2). This may 

be due to that edge slices can only use spatial information on 

one side, while middle slices can use spatial information from 

both sides. 

Motivated by this observation, we design a spatial 

continuity-based model. Specifically, we use coarse 

segmentation masks of a middle slice and its adjacent slices 

to form an N-channel input, and we utilize segmentations 

masks after MPP as soft labels, which also contain ground 

truth labels. We train our network to predict the segmentation 

result of the middle slice.  

When N is 1, the spatial continuity-based network 

degenerates to a standard 2D U-Net. As N increases, more 

adjacent slices are used as input so that more comprehensive 

spatial information can be obtained. However, spatial 

information from slices further away may not contribute 

much. Fig. 2 show that when N is 15, our model achieves a 

balance between performance and model size. On the edge of 

the image stacks, we use nearest neighbor padding to ensure 

that edge slices can also get satisfactory segmentation results. 

Unlike 3D U-Net, our spatial continuity-based model 

does not require splitting of images during training and 

testing. Furthermore, our model uses fewer parameters (7.7M 

Vs. 16.3 M) compared to 3D U-Net, making it easier to 

optimize. Other architectures may also be used in our spatial 

continuity-based model, as long as they take a stack of N 

slices as their input, and their output is of the same size as the 

individual slice. 

3. EXPERIMENTS 

We first compare our method against feature-based [1, 3] 

and state-of-the-art fully supervised deep learning-based [2, 

4, 6, 7] methods. We also conduct ablation experiments to 

examine the effectiveness of our proposed affine 

transformation, morphological post-processing (MPP) and 

spatial continuity-based sub-network. All experiments are 

conducted on a NVIDIA RTX 3090 GPU using the PyTorch 

framework.  

3.1 Implementation Details 

EPFL Dataset. We use the EPFL dataset [1], which 

consists of two 3D EM image stacks for training and testing, 

respectively. Each image stack has 165 slices, and the size of 

each slice is 768×1024. These images were acquired from the 

hippocampus of a mouse brain scanned by focus ion beam 

electron microscopy, and mitochondria are manually labeled 

by experts. Previous studies such as [6] used all the slices on 

the training dataset for training, while we used fewer than 20% 

of the slices for training. 
Training and Testing Settings. For the EPFL dataset, 

we selected 32 labeled images from the original stack at the 

interval of one out of every five images. The selected images 

account for ~ 20% of the total number of labeled images. In 

comparison, fully supervised models are trained using all 165 

labeled images.  For the spatial continuity sub-network, we 

choose 15 consecutive slices as our input sequence. In MPP, 

 
Fig. 2 Performance of the spatial continuity-based sub-network with 
different input channel dimension, i.e. slice number N. The x-axis 

coordinates denote the number of different channels, i.e. slices; The y-

axis coordinates denote Intersection over Union (IoU).  



the erosion hyperparameter 𝑛 is set to 3. In the training stage, 

we use random flip, rotation, and piecewise affine 

transformation for data augmentation. All models are 

optimized using RMSprop, with a learning rate of 0.0005, and 

are trained for a total of 100 epochs. Batch size is set at 16. 

Dice loss is used for both sub-networks. In the testing stage, 

the average prediction of eight rotated images is used as 

model output.  

3.2. Comparison with State-of-The-Art Methods 

Table 1 summarizes a quantitative performance 

comparison of different methods on the EPFL dataset. 

Intersection over Union (IoU) and Dice (F1) similarity are 

used to evaluate segmentation performance. Consistent with 

previous findings, deep learning-based models outperform 

traditional feature-based methods. Our method achieves an 

accuracy of 89.0% in IoU and 94.2% in Dice, which are 

comparable to performance of fully supervised methods 

while using less than 20% of the labeled data. Qualitative 

results are shown in Fig. 3.  Compared to 2D U-Net and 3D 

U-Net, our method produces more accurate segmentation 

results, with fewer FPs and FNs. 

3.3. Ablation Experiments 

We conducted additional experiments to examine the 

effectiveness of key components in our proposed model, 

including affine transformation, MPP and spatial-based 

model. As shown in Table 2, affine transformation 

substantially improves segmentation performance when 

labeled data is limited. MPP and spatial continuity-based 

model further enhance performance.  

We also considered the effect of different numbers of 

labeled data on the segmentation results. As shown in Fig. 4, 

from 8 labels to 64 labels, segmentation metrics improve, and 

the best segmentation results have been basically achieved 

when using 32 labels.  

3.4. Additional Experiments on EM Platelet Dataset  
 We further tested our method on the 3D EM platelet 

dataset [19]. The training image stack has 50 slices and the 

eval image stack has 24 slices. The size of each slice is 800×

800. There are seven categories in the label. For simplicity, 

we only segment the category of alpha granules. We set the 

erosion hyperparameter 𝑛  in MPP to 6. All other 

hyperparameters follow previous experiments. The results 

demonstrate the effectiveness of our method. Quantification 

results are shown in Table S1.  
4. CONCLUSION 

In this study we have developed a semi-supervised deep 

learning model that utilizes spatial continuity of structural, 

morphological, and contextual information to segment 

mitochondria from 3D EM images. Specifically, it uses 

morphological post-processing (MPP) to refine coarse 

segmentation results generated by a U-Net trained with sparse 

labeled data. Experimental results indicate our method 

achieves similar performance as state-of-the-art fully 

supervised models but uses ~20% of their training data. Our 

study also has its limitations. First, our model only employs 

basic morphological operations to capture spatial continuity. 

There is still substantial room for improvement to derive 

more comprehensive prior through deeper analysis of 

mitochondrial morphology. Another limitation is that our 2D 

U-Net backbone uses mostly local visual information. Recent 

 
Fig. 3 Comparison of segmentation results using different methods. Green: true positive (TP), Red: false negative (FN), and blue is false positive (FP). 

Table 1. Quantitative performance comparison of different 

methods for mitochondria segmentation on the EPFL dataset. 

Methods Labels Dice (%) IoU (%) 

Lucchi [1] 165 86.7 75.7 

Peng [3] 165 90.8 83.4 

2D U-Net [2] 165 91.4 84.4 

3D U-Net [4] 165 93.5 87.7 

Xiao [6] 165 94.7 90.0 

Yuan [7] 165 94.8 90.1 

Ours 32 94.2 89.0 

 

Table 2.  Ablation experiment results on the EPFL dataset. 

‘Affine: affine transformation, ‘MPP: morphological post-

processing, SCM: spatial continuity model.  

Affine  MPP SCM Dice (%) IoU (%)  

- - - 90.5 82.6 

✓ - - 92.5 86.9 

✓ ✓ - 93.6 88.0 

✓ ✓ ✓ 94.2 89.0 

 

 
Fig. 4 Performance of Using different number of training slices. 



studies such as [20, 21] show that deep learning models that 

utilize global visual information provide better performance. 

These limitations will be addressed in our future work. 
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