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Abstract—The massive spread of false information has brought
about severe security-related problems to individuals and society.
To debunk misinformation automatically, fact checking has
become an important task that aims at retrieving evidence from
external sources to verify the truthfulness of a given claim. As
knowledge graph (KG) is a classic external source for retrieving
relevant evidence. Previous methods typically check a claim by
making inferences over it. Entity category information can be
utilized to strengthen both the learning and verification process.
However, this information was largely ignored in previous re-
search. To make better use of the category information, in this
paper, we propose a category-based framework for improving the
performance of fact checking with KGs. We first learn prototypes
for each category as their representatives, and then propose a
prototype-based learning technique for effectively modeling the
entity dependency in KG. We further develop a prototype match-
ing technique to explore the category-level relations between head
and tail entities for more robust verification. Experimental results
on two benchmark datasets and a real-world dataset show that
our framework can significantly improve the reasoning abilities
of KG reasoning methods on Fact Checking task.

Index Terms—fact checking, category-based learning enhance-
ment and verification, knowledge graph

I. INTRODUCTION

With the rapid development of online contents, massive mis-
information disseminates on the web instantly and globally. As
a large portion of the misinformation contains false knowledge,
knowledge-based rumorous information causes severe negative
impacts on individuals and society. False knowledge affects
science and societial information, undermines trust in science
and the capacity of individuals to make evidence-informed
choices, and consequently brings about serious security-related
problems.

To debunk misinformation automatically, a variety of fact
checking methods have been developed [1–3], aiming at
retrieving evidence from external sources to verify the truthful-
ness of a given claim. Since knowledge graph is a structured
knowledge base which contains rich high-quality facts, it is
commonly used as an external resource to detect the claim
typically represented in the triple form (head entity, relation,
tail entity).

Existing methods on automatic fact checking using
KGs falls into two main groups, rule-based methods and

* Corresponding Author

embedding-based methods. Rule-based methods mine the pat-
terns (i.e. paths) between a head entity h and a tail entity t
to predict whether there is a relation h

r−→ t in KGs [4–
7], which regard fact checking as a link prediction task. Due
to the intrinsic incompleteness of KGs, rule-based methods
cannot always find effective paths to support fact checking [8].
Embedding-based methods embed entities and relations into
continuous vector spaces, and then measure the plausibility of
facts by matching the latent semantics of entities and relations
in the vector spaces [9, 10]. It seems that embedding-based
method can overcome the issue of missing paths, however,
robust embeddings cannot always be learned for every entity
and relation in KGs due to the long tail, which may cause
the overfitting problem and the fragileness of the model for
uncommon entities or relations.

To learn robust representations of entities and relations for
efficient fact checking, a feasible way is to make full use
of entity categories. Intuitively, entities of the same category
have relatively closer semantic representations and properties
compared to those belonging to different categories. Thus,
category information can be utilized as regularizer to enhance
the robustness of embeddings. In addition, this information
can also facilitate the verification of claims. For example,
given the fact (apple, improve, digestive system) in KG, in
which apple belongs to fruit category and digestive system
belongs to digestion category, many other entities in fruit
category have similar tails belonging to digestion. To verify
the veracity of a claim triple (beef, improve, digestive system),
in which beef belongs to meat category, because few entities
in meat category have similar tails belonging to digestion, the
mismatching in improving digestive system with beef should
be much greater than that with an entity in fruit category.

To use category information of entity for enhancing the per-
formance of fact checking, we consider to develop prototype-
based framework for robust fact checking. Although prototype
learning was previously proposed to find the nearest class
prototypes for pattern classification [11–14], our focus is on
developing prototype-based framework to augment learning
and verification for fact checking, realized by an enhanced
graph attention aggregator and a prototype-based matching
technique.

In this paper, we propose a Category-Based Learning



Enhancement and Verification framework (CBLEV) for fact
checking with knowledge graphs. To leverage entity category
information, we first acquire prototypes for each category,
which are the representatives of their corresponding cate-
gories. To enrich the semantic representations of entities, we
propose a prototype-based learning technique to aggregate
category-relevant neighboring information. We further develop
a prototype-based matching technique to capture relations of
head and tail entity categories for more robust fact verification.
In our CBLEV, the prototype-based learning enhancement and
verification modules work jointly for effective fact checking.

Our work has made the following contributions:
1) We propose a category-based fact checking framework,

which can effectively utilize category information to
improve the performance.

2) We develop a prototype-based learning technique and a
prototype matching mechanism to enrich entity repre-
sentation and better support fact verification in a claim
triple.

3) Base on two benchmark datasets and a real-world
dataset, we conduct experiments to verify the effective-
ness of our framework.

II. RELATED WORK

Fact checking using KGs aims to verify the truthfulness of
claim triples by extracting evidence from the KGs. Existing
fact checking methods mainly include rule-based methods
and embedding-based methods. Rule-based methods leverage
paths between head and tail entities as evidence in some
cases [4–7]. Ciampaglia et al. [4] proposed the first work
to computationally gauge the support for claims by mining
the path linking between head and tail entities in a KG.
To consider multiple paths, Shiralkar et al. [5] extended the
work in [4] by employing a flow network, and they showed
that fact checking amounted to finding a “knowledge stream”
connecting the head and tail entities. To effectively discover
discriminative paths, Shi et al. [6] made use of generalized
notion of entities by replacing the specific entities by their
type-labels, and then defined some mined rules to extract
features among paths. The work performed the best on several
real-world datasets. Fionda et al. [7] built a schema graph to
generate candidate evidence patterns, together with developed
various optimizations and RDFS inference rules.

As rule-based methods cannot always find effective paths to
support fact checking due to the intrinsic incompleteness of
KGs, embedding-based methods are proposed to alleviate the
incompleteness issue. Embedding-based methods map entities
and relations into continuous vector space and compute the
correctness of an unseen triple in the vector space. Dong et
al. [10] proposed a region-based embedding approach to solve
the triple verification from a geometric view. Their approach
used fine-grained type chains and verified triples according
to whether the tail entity was located in the head entity’s
subspace. However, their approach could not be extend to
larger KGs with more relations. Pan et al. [9] proposed Dual
TransE that extended TransE by perform it on two KGs (a ture

KG and a false one) to get two bias score, and then evaluate
the claim triples by comparing these two bias. Dual TransE
achieves the best due to the strength of the embedding based
methods.

In addition, for KG reasoning task, there have been a num-
ber of KG embedding methods developed to rank candidate
entities, for the purpose of knowledge graph completion. The
most representative methods include TransE [8], TKRL [15],
DistMult [16], A2N [17] and ConvKB [18]. Among them,
A2N achieves the state-of-the-art results on KG completion
task. To make use of the achievement of KG embedding meth-
ods for enhancing fact checking task, in this paper, we focus on
designing a learning enhancement and checking framework on
top of KG embeddings. Our proposed framework also utilizes
category information to enhance the semantic representation
of embedding learning and support verification. Below we
present our framework in detail.

III. PROBLEM FORMULATION

Given a claim in the triple form (h, r, t) and a relevant
knowledge graph G, a fact checking model f(·) aims at
verifying the truthfulness of the given claim triple by reasoning
over the KG, which contains the relevant evidences for fact
verification.

IV. PROPOSED MODEL

We propose an end-to-end category-based learning enhance-
ment and verification framework CBLEV for fact checking.
Figure 1 gives an overview of our CBLEV framework, which
consist two main modules: (1) a Category-based Learning
Enhancement module to augment entity embeddings by com-
posing the information from adjacent entities in KG; (2) a
Category-based Checking module for scoring the truth values
of triples via prototype enhanced semantic matching. In order
to apply our framework for fact checking task, we first
introduce KG embedding and prototype learning, and then
present the two above modules in the following sections.

A. Embedding KG components and Learning Prototypes

Our CBLEV is the category based framework to enhance
learning and verification. Originally, we use KG embedding
methods to embedded the KG component (entities and rela-
tions) in vector space. Thus one advantage of our framework is
that it can be easily incorporated with different KG embedding
methods to facilitate fact checking, by adding their loss
functions to our final loss. We get the KG embeddings by using
other KG embedding methods, such as, TransE, DistMult and
so on. The embeddings of entities and relations in KG are
optimized jointly with all the parameters in our framework.

To leverage the rich information contained in entity cate-
gory, we use prototypes to represent each category. To achieve
this, we build learnable prototype vectors as the representatives
to encode the category information. The prototype vectors
are learnable parameters and they are optimized together with
other parameters in the training process.
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Fig. 1: Overview of our proposed end-to-end category-based learning enhancement and verification framework.

Specifically, let C denote the set of category in a KG G, en-
tity eij belongs to the a category ci ∈ C with a corresponding
prototype vector pi. We pull the entity embeddings eij and
its prototypes vector pi closer to each other by minimize the
2-norm distance between them:

Lpl =
∑
eij∈E

‖pi − eij‖2 (1)

B. Category-based Learning Enhancement

The semantic information contained in the entity’s relational
neighbors can be used to enrich entity representation and sup-
port the fact checking. Thus we employ the associated entities
and their prototype information to extend entity embeddings.

Specifically, given a head entity embedding hi and one tail
entity embedding tj with the its relation rj (i.e., (hi, rj , tj)
is a triple fact in G), we design a prototype-based aggregation
technique(called PLE), which uses attention mechanism to
aggregate embeddings and prototypes from category-relevant
adjacent entities. We extend vanilla graph attention [19] to in-
corporate prototype information and develop two independent
attention mechanisms to effectively compose the embeddings
and prototypes simultaneously:

h̃i = Wa

∑
j∈N(hi)

(αijtj ‖ ζijpj) + b (2)

where αij and ζij are the attention scores for computing tails’
embeddings and prototypes respectively, ‖ is the concatenating
operation, N (hi) denotes the adjacent triple set of hi and Wa

is the projection matrix. We develop the attention mechanism
to aggregate the representations of adjacent nodes:

αij = Softmax (WtReLU (Whi ‖W(tj � rj))) (3)

where � is the element-wise multiplication to model the
interaction between relation and the corresponding tail entity,
and W is a shared linear transformation matrix to improve
the expressiveness. The projection matrix Wt along with a
ReLU nonlinearity is used for better modeling the relationship
between head entity and its relations.

For aggregating prototypes, we then use a two-layer feedfor-
ward network FeedForward(·) to better model the relationship
between head entity prototype and tail entity prototype:

ζij = Softmax (FeedForward (pi ‖ pj)) (4)

Meanwhile, to avoid weakening the semantic embedding
hi of an original entity, we concatenate it with the synthetic
representations h̃i and use a projecting matrix to obtain the
final representation:

ĥi = ReLU
(
Wh(h̃i ‖ hi)

)
(5)

Similarly, to learn the generalized embeddings for all the
entities in KG, we also augment the embeddings of tail entities
using head entities’ information in the same way.

C. Category-based Fact Verification

Our model combines the detailed semantic matching with
more general prototype matching for checking the truthful-
ness of the claim triple. As the CBLEV framework can be
effectively incorporated with other KG embedding methods,
these methods typically design various scoring functions to
meansure the plausibility of a claim triple fSM (h, r, t).

In addition, the dependency relationships of head and tail
entities in category level can be severed as the more general
relations, which are the discriminative information to support
verification. Thus we develop a prototype matching technique
to model this relationship to facilitate the fact checking. As
each dimension of embeddings represents the relation-specific
attributes of entities [20], inspired by this, we construct the
prototype matching by modeling entries at the same dimension
of the prototypes:

fPM = p>
h diag(pr)pt (6)

where ph and pt are the corresponding prototypes of h and
t, pr is the constructed relation between two prototypes, and
diag(pr) is a diagonal matrix formed by the elements in pr. We
add the scores produced by the above two matching techniques
as the final score, which can be represented as:

f(h, r, t) = fSM + λpfPM (7)

where λp is the trade-off parameter.



TABLE I: Categories of tail entities in FOOD

lung, hair, spleen, stomach, kidney, heart, liver, bone, brain,
eye, skin, cancer, urine, cardiovascular, weight loss,

immunity, muscle, fiber, sleep, digestion

肺, 发, 脾, 胃, 肾, 心, 肝, 骨, 脑, 眼, 肤, 癌, 尿, 血管, 减
肥, 免疫, 肌, 纤维, 睡眠, 消化

TABLE II: Statistics of the three KG datasets.

Dataset #entity #relation #train #valid #test

FOOD 4,192 86 26,767 1,986 1,080

FB15K-237 14,505 237 272,115 20,000 20,000

FB15K 14,951 1,345 483,142 50,000 59,071

The objective of the verification module is to minimize the
regularized logistic loss, which encourages f(·) to produce a
higher score for a true triple than that for a false one:

Lfc =
∑

(h,r,t)∈∆

log(1 + exp(−f(h, r, t)))

+
∑

(h′,r′,t′)∈∆′

log(1 + exp(f(h′, r′, t′))) (8)

where ∆ and ∆′ are the set of correct triples and that of
incorrect triples, respectively.

The final loss to optimize the category-based enhancement
framework can be formulated as follows:

L = Lfc + λLpl (9)

where λ is the trade-off parameter.

V. EXPERIMENTS

In this section, we incorporate CBLEV with the represen-
tative KG embedding methods to validate our framework by
comparing with the previous fact checking methods.

A. Experimental Setup

1) Datasets: We conduct experiments on three datasets,
a dataset in food (FOOD) and two benchmark KG datasets
FB15K [8] and FB15K-237. The FB15K and FB15K-237 are
two commonly used KG datasets. FB15K is a dense graph
extracted from Freebase, and FB15K-237 is constructed by
deleting all the inverse triples in FB15K to form a sparser
graph. For FB15K and FB15K-237, we use the entity cate-
gories collected by [15]. For the FOOD dataset we developed,
we assign a category in Table I to each tail entity that contains
the effect of food, according to whether the tail entity contains
the category word (in Chinese). For example, digestive system
(消化系统) belongs to digestion (消化) category.

Following [15], we construct the negative triples for all the
datasets. The statistics of the three KGs are shown in Table II.

2) Hyperparameters: We use 100-dimensional KG embed-
dings on FB15K and FB15K-237 and 30-dimensional embed-
dings on FOOD. The trade-off parameter λ and λp are set to
0.1 and 1 respectively. We train our model with 0.01 learning
rate and 100 batch size using AdaGrad. We set dropout rate
to 0.5 and adopt L2-norm for regularization.

3) Comparative Methods: Although KG embedding meth-
ods are designed to rank candidate entities for knowledge
graph completion, we incorporate our framework CBLEV
with the representative KG embedding methods as the starting
point, and compare them with the existing KG based fact
checking methods. The five representative KG embedding
methods we incorporated with include:

1) TransE [8] is the most representative translational dis-
tance model, which defines its scoring function as the
distance between h+ r and t.

2) DistMult [16] is a representative semantic matching
method that predict a truth score for a triple by using a
bi-linear function.

3) TKRL [15] takes advantage of entity categories by
considering categories as projection matrices for entities
to improve their representations.

4) ConvKB [18] employs a convolutional neural network
to effectively capture the global relationships between
entities and relation.

5) A2N [17] selectively composes relevant graph neighbors
with attention weights computed by semantic matching
model to enahnce the entity representations.

The existing fact checking methods we compared with
include:

1) KnowStream [5] regards the fact checking as a network-
flow problem, which utilizes all the paths between head
and tail entities and computes the truth score using
Dijkstra’s algorithm.

2) PredPath [6] defines some mined rules to extract features
from paths, and predicts whether there is a link between
head and tail entities.

3) Dual TransE [9] is a TransE based model, which predicts
the plausibility score of the claim triple by using the bias
calculated by TransE.

For KnowStream and PredPath, we use publicly available
codes in [5] and tune the hyperparameters based on what are
reported in [5] and [6] respectively. We reimplement the Dual
TransE [9] method and tune the hyperparameters in same
way. We select accuracy and F1 as metrics to evaluate our
framework.

B. Experimental Results
1) Main Results: Table III gives the experimental results

on fact checking. It can be seen from the table that our
CBLEV framework with the five representative KG em-
bedding methods outperform all the fact checking methods.
TKRL+CBLEV and A2N+CBLEV gets the highest accuray
and F1 values respectively on FB15K. ConvKB+CBLEV and
A2N+CBLEV are the best performing models on FB15K-
237 and FOOD respectively, and they perform generally well



TABLE III: Experimental results on fact checking by different
methods.

Method
FB15K FB15K-237 FOOD

Acc. F1 Acc. F1 Acc. F1

KnowStream [5] 0.835 0.829 0.801 0.729 0.725 0.734

PredPath [6] 0.813 0.806 0.802 0.806 0.728 0.746

Dual TransE [9] 0.912 0.903 0.874 0.875 0.764 0.726

TransE+CBLEV 0.923 0.911 0.892 0.881 0.788 0.780

DistMult+CBLEV 0.944 0.934 0.914 0.907 0.820 0.811

TKRL+CBLEV 0.949 0.935 0.897 0.885 0.814 0.801

ConvKB+CBLEV 0.944 0.933 0.930 0.924 0.831 0.826

A2N+CBLEV 0.946 0.937 0.922 0.918 0.833 0.829

on all the datasets. This demonstrates that the deep learn-
ing model ConvKB can effectively model the interrelations
between entities and relation, and A2N is benefical to learn
robust represetations via dynamically composing information
from adjacent nodes. TransE+CBLEV and TKRL+CBLEV are
TransE based models. They cannot perform well on FOOD,
as there are many 1-to-N relations in FOOD and TransE based
models have some limitations in this case [21].

We can also see that all the methods get relatively good
results on FB15K. The reason of this is that FB15K is a dense
knowledge graph and thus the methods can learn generalized
embeddings or find effective paths on it. The performances of
all the methods decline on FB15K-237, as reasoning over this
sparser graph is harder. Since the real-world dataset FOOD
is the sparsest, most methods cannot perform well on this
dataset. Nonetheless, A2N+CBLEV and ConvKB+CBLEV
can obtain reasonable results and they outperform the three
fact checking methods by a large margin. This indicates that
our framework is more applicable to the sparse KG compared
to other methods. The experimental results demonstrate the
effectiveness of our framework for improving the performance.

C. Ablation Study

We conduct ablation studies to verify the effectiveness of
each component in our framework. We incorporate three repre-
sentative KG embedding methods with CBLEV, including the
classical translational distance method TransE, representative
semantic matching model DistMult and the deep learning
model ConvKB. We construct three variants of CBLEV:
• −PM: excluding prototype matching module in fact

verification process.
• −PLE: excluding prototype-based learning enhancement

module from CBLEV.
• −PLE −PM: excluding both learning enhancement and

prototype matching modules from CBLEV.
The experimental results of the ablation study are given

in Table IV. We can see from the table that excluding PM
or PLE from CBLEV will cause performance drop. It can be
also seen that the two modules improve the performance more
on the sparser KG textitFB15K-237 and FOOD. Specifically,

TABLE IV: Experimental results of the ablation study (Here
“∗” denotes that the performance significantly drops without
the corresponding module(s)).

Method
FB15K FB15K-237 FOOD

Acc. F1 Acc. F1 Acc. F1

TransE+CBLEV 0.923 0.911 0.892 0.881 0.788 0.780

−PM 0.918 0.907 0.883 0.873 0.774 0.767

−PLE 0.914 0.902 0.885 0.877 0.764 0.756

−PLE −PM 0.911 0.901 0.872 0.874 0.757∗ 0.746∗

DistMult+CBLEV 0.945 0.934 0.916 0.909 0.821 0.813

−PM 0.927 0.916 0.902 0.893 0.801 0.794

−PLE 0.914 0.902 0.889 0.884 0.771∗ 0.765∗

−PLE −PM 0.895 0.884 0.878∗ 0.879∗ 0.750∗ 0.753∗

ConvKB+CBLEV 0.944 0.933 0.930 0.924 0.831 0.826

−PM 0.940 0.930 0.926 0.919 0.821 0.816

−PLE 0.936 0.931 0.924 0.0.916 0.811 0.809

−PLE −PM 0.934 0.931 0.917 0.911 0.804 0.803

TABLE V: Illustrative categories of head entities and their
most associative categories of tail entities (Top 5 tail categories
based on the prototype matching scores).

head categories tail categories
meat (strengthen) immunity, muscle, brain, skin, eye

肉类 免疫, 肌, 脑, 肤, 眼

berry (prevent) cancer, heart, digestion, urine, fiber

浆果 癌, 心, 消化, 尿, 纤维

dairy bone, digestion, heart, cardiovascular , immunity

奶制品 骨, 消化, 心, 血管, 免疫

seafood heart, eye, sleep, liver, brain

海产品 心, 眼, 睡眠, 肝, 脑

leaves vegetables weight loss, fiber, cardiovascular, stomach, skin

叶菜类 减肥, 纤维, 血管, 胃, 肤

the module PLE can significantly enhance the verification on
FOOD. The reason of this is that the adjacent entities can
be seen as attribute nodes, which are beneficial for enriching
entity representations. The performance of ConvKB+CBLEV
drops slightly without the modules, demonstrating the effective
expressive power of deep learning model. The experimental
results on the ablation study further verify the usefulness of
each component in our framework.

D. Case Study: Effect of Prototype Matching

To show the effect of prototype matching technique, Table V
illustrates several head entity categories and the correspond-
ing tail entity categories acquired by prototype matching in
Function 6. We select the 5 entity categories with the highest
scores. We can see from the table that the head categories are
quite compatible with tail categories, which is in line with our
common knowledge to effectively support fact checking.



VI. CONCLUSION

In this paper, we propose a category-based learning en-
hancement and verification framework for fact checking with
knowledge graphs, which can effectively utilize entity category
information to improve the performance of fact checking. Our
framework learns prototypes for each entity category as their
representatives, and then further develops a prototype-based
aggregation technique for enriching entity representations and
a prototype-based matching technique to facilitate fact ver-
ification. Experimental results on two benchmark datasets
and a real-world dataset demonstrate the effectiveness of our
framework.

ACKNOWLEDGMENTS

This work is supported in part by the Ministry of Science
and Technology of China under Grants #2016QY02D0305,
and NSFC under Grants #71621002, #71702181 and
#71603253.

REFERENCES

[1] A. Vlachos and S. Riedel, “Fact checking: Task definition
and dataset construction,” in Proceedings of Association
for Computational Linguistics, 2014, pp. 18–22.

[2] H. Rashkin, E. Choi, J. Y. Jang, S. Volkova, and Y. Choi,
“Truth of varying shades: Analyzing language in fake
news and political fact-checking,” in Proceedings of Em-
pirical Methods in Natural Language Processing, 2017,
pp. 2931–2937.

[3] N. Hassan, F. Arslan, C. Li, and M. Tremayne, “Toward
automated fact-checking: Detecting check-worthy factual
claims by claimbuster,” in Proceedings of Knowledge
Discovery and Data Mining, 2017, pp. 1803–1812.

[4] G. L. Ciampaglia, P. Shiralkar, L. M. Rocha, J. Bollen,
F. Menczer, and A. Flammini, “Computational fact
checking from knowledge networks,” PLoS One, vol. 10,
pp. 1–13, 06 2015.

[5] P. Shiralkar, A. Flammini, F. Menczer, and G. L.
Ciampaglia, “Finding streams in knowledge graphs to
support fact checking,” in Proceedings of International
Conference on Data Mining, 2017, pp. 859–864.

[6] B. Shi and T. Weninger, “Discriminative predicate
path mining for fact checking in knowledge graphs,”
Knowledge-Based Systems, vol. 104, pp. 123–133, 2016.
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