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Abstract

Recently, many zero-shot learning (ZSL) methods focused on
learning discriminative object features in an embedding fea-
ture space, however, the distributions of the unseen-class fea-
tures learned by these methods are prone to be partly over-
lapped, resulting in inaccurate object recognition. Address-
ing this problem, we propose a novel adversarial network to
synthesize compact semantic visual features for ZSL, con-
sisting of a residual generator, a prototype predictor, and a
discriminator. The residual generator is to generate the visual
feature residual, which is integrated with a visual prototype
predicted via the prototype predictor for synthesizing the vi-
sual feature. The discriminator is to distinguish the synthetic
visual features from the real ones extracted from an existing
categorization CNN. Since the generated residuals are gener-
ally numerically much smaller than the distances among all
the prototypes, the distributions of the unseen-class features
synthesized by the proposed network are less overlapped. In
addition, considering that the visual features from catego-
rization CNNs are generally inconsistent with their semantic
features, a simple feature selection strategy is introduced for
extracting more compact semantic visual features. Extensive
experimental results on six benchmark datasets demonstrate
that our method could achieve a significantly better perfor-
mance than existing state-of-the-art methods by ∼1.2-13.2%
in most cases.

Introduction
In recent years, zero-shot learning (ZSL) has attracted more
and more attention in pattern recognition and machine learn-
ing. Given a set of labeled seen-class data as well as the se-
mantic relationship between seen and unseen classes, ZSL
aims to recognize unseen-class instances. Most existing ZSL
methods focused on learning discriminative object features
in an embedding feature space where the semantic rela-
tionship between seen and unseen classes is preserved, and
they could be roughly divided into two categories: visual-to-
semantic methods and semantic-to-visual methods.

The visual-to-semantic methods (Frome et al. 2013;
Akata et al. 2015a; Xian et al. 2016) aim to build a projec-
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Figure 1: Comparison of our method with existing GAN-
based ZSL methods. A: Existing GAN-based methods gen-
erate visual features conditioned on their semantic feature.
B: Our method generates visual feature residuals condi-
tioned on their semantic feature, and then synthesizes visual
features by combining the residuals and a visual prototype
predicted from its semantic feature.

tion function from visual features to semantic features. The
visual features are generally extracted from the input images
by CNNs (Convolutional Neural Networks), while the se-
mantic features describe semantic attributes of object class,
e.g. class-level attribute and text description. The projection
function is trained on seen-class data by making the pro-
jected visual features closer to the semantic feature of their
correct class. However, the distributions of the projected vi-
sual features of unseen classes by these methods are prone
to be partly overlapped, leading to inaccurate object recog-
nition.

In comparison to these visual-to-semantic methods, the
semantic-to-visual methods (Zhu et al. 2018; Xian et al.
2018b; Li et al. 2019) have significantly improved the ZSL
performance recently. Most of semantic-to-visual methods
aim to generate visual features of unseen classes conditioned
on their semantic features via generative adversarial network
(GAN) as illustrated in Figure 1 A, and then train a classifier
with the synthetic visual features and their corresponding la-
bels for classifying real visual features of unseen classes.
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Despite their success, these GAN-based methods are still
limited by the problem that the distributions of the synthetic
unseen-class visual features are partly overlapped. Figure
2 A provides an example for illustrating this problem. As
shown in Figure 2 A, different color points represent the vi-
sual features belonging to different unseen classes, which
are generated by an existing GAN-based ZSL method (e.g.
(Xian et al. 2018b)). Obviously, there is some overlap be-
tween different color points, indicating that the distributions
of the synthetic visual features are partly overlapped. This
overlap is probably because the GAN used to generate the
unseen-class visual features is trained only on the seen-class
data.

In addition, the fidelity of synthetic visual features of un-
seen classes by these GAN-based methods is also limited
by the inconsistency between semantic features and visual
features. The semantic-visual inconsistency refers to the fact
that even if two classes have very similar semantic attributes,
e.g. both elephants and tigers have the ‘tail’ attribute, their
visual features could be very different, e.g. the visual fea-
tures of an elephant’s tail and a tiger’s tail are quite differ-
ent. As illustrated in Figure 2 C, due to this inconsistency,
even though GAN can learn an accurate semantic-to-visual
generative relationship (illustrated by straight line for con-
venience) on seen-class data, the distribution of synthetic
unseen-class visual features (illustrated by bigger ellipse)
according to the learned generative relationship is different
from the distribution of real unseen-class visual features.

Addressing these two problems, we propose a novel ad-
versarial network to learn compact semantic visual features
for ZSL by integrating the visual prototype and the visual
feature residual, which consists of a residual generator, a
prototype predictor, and a discriminator. Here, the visual
prototype represents general visual features of each class
and the visual feature residual represents the feature devi-
ation of each sample from its prototype. The residual gener-
ator is employed to generate the visual feature residual con-
ditioned on semantic feature, and then the visual feature is
synthesized by combining the residual with the class-level
visual prototype predicted from its semantic feature by the
prototype predictor, as illustrated in Figure 1 B. After the
synthetic visual features are synthesized, the discriminator
tries to distinguish the synthetic visual features from the real
ones extracted from an existing categorization CNN. Since
the visual prototypes are explicitly predicted for both seen
and unseen classes and most of the residuals are generally
numerically much smaller than the distances among pro-
totypes of all classes, the synthetic visual features by the
proposed method are less overlapped as shown in Figure 2
B. To alleviate the semantic-visual inconsistency problem,
we propose a simple feature selection strategy which is able
to adaptively select some semantically consistent feature di-
mensions from the original visual feature.

In summary, our contributions are three-fold:
• We propose a novel adversarial network to learn com-

pact semantic visual features for ZSL, which are synthe-
sized by integrating the generated feature residuals and
predicted visual prototypes. The distributions of the syn-
thetic visual features by the proposed method are less

Figure 2: A: t-SNE visualization of synthetic unseen-class
visual features by an existing GAN-based ZSL method, dif-
ferent color points represent the visual features belonging to
different unseen classes. B: t-SNE visualization of synthetic
unseen-class visual features by our method. C: A ellipse
represents a distribution of the visual features belonging to
a class, the distribution of the synthetic visual features of
the unseen class (bigger ellipse) according to the semantic-
visual generative relationship (straight line) learned on two
seen classes is different from the real counterpart.

overlapped. To our best knowledge, this is the first work
to utilize adversarial feature residual for ZSL.

• We propose a simple feature selection strategy that is able
to adaptively select semantically consistent visual feature
elements from the original visual feature, alleviating the
semantic-visual inconsistency problem to some extent.

• Extensive experimental results demonstrate that the pro-
posed method can outperform existing state-of-the-art
methods with a significant improvement on six bench-
mark datasets.

Related Work
Zero-Shot Learning. Lampert et al. (Lampert, Nickisch,
and Harmeling 2013) proposed a two-step attribute-based
classification method, where a probabilistic classifier was
firstly learned for predicting probability of each attribute for
each image, then the image was classified by a Bayesian
classifier based on probabilities of attributes. Frome et
al. (Frome et al. 2013) proposed an end-to-end visual-to-
semantic projection method. In this method, visual features
extracted by an categorization CNN were projected into
a semantic feature space by a linear function which was
trained to make the projected visual features closer to the
semantic feature of their correct category. Following this
work, a lot of methods have devoted themselves to im-
prove it by replacing its loss function (Akata et al. 2015b;
2015a; Romera-Paredes and Torr 2015; Norouzi et al. 2013)
or using nonlinear projection function (Socher et al. 2013;
Xian et al. 2016). Recently, some works proposed to learn a
semantic-to-visual mapping, they (Changpinyo, Chao, and
Sha 2017; Zhang, Xiang, and Gong 2017) used semantic
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features to predict visual features by a transformation func-
tion, or they (Zhu et al. 2018; Xian et al. 2018b) trained a
GAN (Goodfellow et al. 2014) to generate visual features of
unseen classes conditioned on their semantic features. Ex-
cept for these, some works which leveraged mutually visual-
semantic reconstruction (Kodirov, Xiang, and Gong 2017) or
projected semantic features to parameter space (Changpinyo
et al. 2016) were also proposed.
Visual Prototype Prediction. Visual features have a clus-
tered structure in feature space, so it is feasible and benefi-
cial to adopt a visual prototype to represent a class. Only
a few works have applied visual prototype prediction to
ZSL. Changpinyo et al. (Changpinyo, Chao, and Sha 2017)
proposed a visual exemplar prediction method, where they
trained a prediction function from semantic embeddings to
visual exemplars and then the predicted exemplars were ap-
plied to other methods as visual training data or ideal seman-
tic embeddings.
Visual Feature Generation. With the development of
GAN, some works (Zhu et al. 2018; Xian et al. 2018b;
Li et al. 2019; Paul, Krishnan, and Munjal 2019) have ap-
plied GAN to ZSL problem. In these methods, they all em-
ployed GAN to generate visual features of unseen classes
conditioned on semantic features and then used the synthetic
visual features to train a classifier for unseen classes. What
they differ in is the way to restrict synthetic visual features
and the choice of visual features and semantic features. Zhu
et al. (Zhu et al. 2018) proposed to restrict synthetic visual
features by adding a visual pivot regularization and they em-
ployed local visual features extracted from semantic regions
of objects. By adding a classification penalty on synthetic
visual features and using visual features from deeper CNN,
Xian et al. (Xian et al. 2018b) proposed a feature generation
network. Li et al. (Li et al. 2019) restricted synthetic visual
features by adding multiple visual souls regularization. Dif-
ferent from them, we employ GAN to generate visual feature
residual instead of visual feature.

Methodology
The definition of ZSL is as follows. Let S =
{(xn, yn, e) | xn ∈ Xs, yn ∈ Y s, e ∈ E, n = 1, 2, · · · , N}
be a training dataset, where xn ∈ Rv is the visual feature
of the n-th labeled image in the training dataset, yn is the
class label of xn, which belongs to seen-class set Y s, N is
the number of samples, and e ∈ Rs is the semantic feature
of a class in the total class set Y which not only includes
the seen-class set Y s but also includes the unseen-class
set Y u. Note that the unseen-class set Y u is disjoint with
the seen-class set Y s. Let X represents the test image set,
conventional ZSL is to learn a mapping f : X → Y u, while
generalized ZSL is to learn a mapping f : X → Y .

To tackle the ZSL problem, we propose a novel network
to synthesize compact semantic visual features of unseen
classes with adversarial feature residual, called AFRNet, and
then train a classifier with these synthetic visual features and
their corresponding labels for feature classification, the over-
all pipeline is shown in Figure 3. As shown in the feature
generation phase, the AFRNet consists of three modules:
residual generator, prototype predictor, and discriminator.

The residual generator is used to generate the visual feature
residual, and then the visual feature is synthesized by inte-
grating the residual and the visual prototype predicted by the
prototype predictor, the real visual features are extracted by
an feature extractor (implemented by an existing categoriza-
tion CNN). The discriminator tries to distinguish the syn-
thetic visual features from the real visual features. Further,
by applying a feature selection strategy to visual prototypes
and real visual features, we could learn the compact seman-
tic visual features. After the AFRNet is trained, as shown
in the classification phase of Figure 3, the synthetic unseen-
class visual features are used to train a classifier for feature
classification.

In the following, firstly we introduce a semantically com-
pact prototype predictor for predicting visual prototypes
from semantic features. We then describe how to learn com-
pact semantic visual feature from adversarial feature resid-
ual. Next, the employed classifier is introduced. Finally, the
comparison of the proposed method to some related works
is given.

Semantically Compact Prototype Predictor
Predicting Visual Prototype. Here, our goal is to learn a
prediction function with a set of training data belonging to
seen classes for predicting the visual prototypes of unseen
classes from their semantic features. We use the mean vector
of the visual feature vectors of each seen class as the visual
prototype of each class. Suppose we have Nc visual features
for class c in the training data, then the visual prototype pc
for class c is computed by 1

Nc

∑Nc

i=1 x
i
c, where xi

c ∈ Rv rep-
resents the i-th visual feature belonging to class c, v is the
dimensionality of a visual feature. We next denote semantic
feature of class c by ec ∈ Rs, where s is the dimensionality
of a semantic feature. After obtaining C pairs of visual pro-
totype and semantic feature {(pc, ec) | c = 1, 2, · · · , C}, for
each dimension of visual prototype, we will train an individ-
ual SVR (Smola and Schölkopf 2004) with RBF kernel, the
SVR used to predict the j-th dimension of the visual proto-
type is as follows:

min
wj ,βj ,β̄j ,δ

1

2

∥∥wj
∥∥2 + α

(
1

C

C∑
c=1

(
βj
c +

¯
βj
c

))

s.t.(wj)TΦj (ec)− pjc ≤ δ + βj
c

pjc − (wj)TΦj (ec) ≤ δ +
¯
βj
c

βj
c ≥ 0,

¯
βj
c ≥ 0, c = 1, 2, · · · , C

(1)

where Φj (ec) is the implicit semantic feature of class c
in kernel space, wj is trainable linear weight of the SVR.
pjc is the j-th dimension of the visual prototype of class c,
δ is the margin, indicating any error less than it will not
be counted, α is a penalty parameter. Note that each SVR
takes s-dimension semantic feature as input and output 1-
dimension visual feature. Hence, v SVRs can be trained in-
dependently so that they could be optimized parallelly to
better capture relationship between semantic feature and ev-
ery dimensions of visual prototype. Considering that the
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Figure 3: Pipeline of the proposed method.

number of seen classes is probably smaller than the dimen-
sionality of semantic feature, to avoid overfitting, the dimen-
sionality of semantic feature will be firstly reduced before
being fed into SVR. With the trained SVRs, given semantic
features of seen classes and unseen classes, we predict vi-
sual prototypes of both of them.
Predicting Compact Semantic Visual Prototype with
Feature Selection Strategy. The predicted visual prototypes
can achieve a high performance only if visual features are
consistent with semantic features. However, as mentioned
before, visual features and semantic features are not inher-
ently matching, so that it is inevitable that the predicted vi-
sual prototypes have error compared to the real prototypes.
This error was ignored by previous methods, however, we
argue that visual prototype dimension with smaller error is
one that is better consistent with semantic feature. Hence,
we propose a simple yet effective feature selection strategy
which selects the Top-K visual prototype dimensions with
relatively smaller prediction errors to build a compact se-
mantic visual prototype as:

[j1, · · · , jk, · · · , jv] = argsort

[
C∑

c=1

(Γj(ec)− pjc)
2

]

p′c = pc [j1, · · · , jk] , c = 1, 2, · · · , C
(2)

where ec is the semantic feature of class c, Γj() is the SVR
used to predict the j-th dimension of visual prototype, pjc
is the j-th dimension of visual prototype of class c, and
[j1, . . . , jk, · · · , jv] is the index of visual prototype dimen-
sions which rank in ascending order according to their pre-
diction error, p′c is the Top-K dimensions of pc with small-
est error, K is a parameter which we fixed at v

2 in our exper-
iments.

Compact Visual Feature Learning from
Adversarial Feature Residual
Here, we describe how to learn compact semantic visual fea-
ture from adversarial feature residual in the proposed AFR-
Net. We employ the residual generator to generate visual

feature residual, and then synthesize the compact seman-
tic visual feature by combining the residual and the com-
pact semantic visual prototype predicted by the aforemen-
tioned prototype predictor. The discriminator tries to distin-
guish the synthetic visual features from the real ones. After
the adversarial training, we finally can synthesize compact
semantic visual features. In this section, we begin with the
general visual feature generation method as it is the basis of
the proposed method, and then explain the proposed AFR-
Net in detail.

The general visual feature generation method employs the
conditional WGAN (Arjovsky, Chintala, and Bottou 2017)
to generate visual features conditioned on their correspond-
ing semantic features as:

min
G

max
D

V = E [D (x, e (y))]− E [D (x̂, e (y))]

−λE
[
(‖∇x̄D (x̄, e (y))‖2 − 1)

2
] (3)

where G and D represent generator and discriminator re-
spectively, which are both implemented by multi-layer per-
ceptrons, x is real visual feature, x̂ = G (z, e (y)) is syn-
thetic visual feature conditionally generated from noise z
and semantic feature e (y) by generator G, x̄ = ζx +
(1− ζ) x̂ with ζ ∼ U (0, 1) is used to estimate gradient.
The objective of WGAN is to minimize Wasserstein distance
which is implemented by the first two terms in Equation (3),
and the last term is the gradient penalty of the discriminator,
whose weight is controlled by a hyperparameter λ.

In the proposed AFRNet, the generator in conditional
WGAN generates visual feature residuals instead of visual
features. Specifically, given semantic feature ey and its cor-
responding compact semantic visual prototype p′y , we em-
ploy conditional WGAN to generate visual feature resid-
ual ry conditioned on ey , then the compact semantic visual
feature is synthesized by combining the residual ry with
the compact semantic visual prototype p′y . The proposed
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method can be formalized as:
min
G

max
D

Vr =E [D (x, e(y))]

− E
[
D
(
ry + p′y, e(y)

)]
− λE

[
(‖∇x̄r

D (x̄r, e (y))‖2 − 1)
2
] (4)

where p′y is predicted by semantically compact prototype
predictor, ry = G (z, e (y)) is generated by residual gen-
erator conditioned on its semantic feature. (ry + p′y) is
the synthetic compact semantic visual feature. x̄r = ζx +
(1− ζ)

(
ry + p′y

)
with ζ ∼ U (0, 1) is used to estimate gra-

dient. The rest is similar to Equation (3).
After obtaining the synthetic visual features, the discrim-

inator tries to distinguish the synthetic visual features from
the real visual features. As the adversarial training goes, we
end up with a powerful AFRNet which can synthesize com-
pact semantic visual features that not only have less overlap
but also are more consistent with semantic features.

Classification
Once the adversarial network has been trained, lots of visual
features of unseen classes could be synthesized, associating
with their labels. Then, ZSL is converted into a supervised
classification problem. We could employ a naive softmax
classifier as:

min
θ

L (θ) = − 1

N

N∑
i=1

log p (yi | xi; θ) (5)

where θ is trainable linear transformation weight and p(yi |
xi; θ) =

∏C
l=1(

exp(θT
l xi)∑C

j=1 exp(θT
j xi)

)1(yi=l). In testing phase,

given a visual feature x, it is classified by:

f (x) = argmax
y

p (y | x; θ) (6)

Comparison to Related Works
Here, we compare the proposed method with the related
works. Different from (Zhu et al. 2018; Xian et al. 2018b;
Li et al. 2019; Paul, Krishnan, and Munjal 2019), which
all used GAN to generate visual features, we employ GAN
to generate visual feature residuals, and then synthesize vi-
sual features by integrating the residuals and predicted vi-
sual prototypes. Since visual prototypes are explicitly pre-
dicted for both seen and unseen classes and the generated
residuals are generally numerically much smaller than the
distances among all the prototypes, the synthetic visual fea-
tures are expected to be less overlapped for both seen and
unseen classes.

Changpinyo et al. (Changpinyo, Chao, and Sha 2017) pro-
posed to predict visual exemplars of unseen classes from
semantic embeddings, and used the whole predicted visual
exemplar either as visual training data or as ideal seman-
tic embedding. Different from them, the proposed method
adaptively selects some visual feature dimensions from the
whole predicted visual prototype to build a compact seman-
tic visual prototype, and applies this visual prototype to syn-
thesize visual feature by being combined with visual feature
residual.

Table 1: Statistics of six ZSL datasets. Att = Attributes, TF
= TF-IDF feature, SCS = SCS-split, SCE = SCE-split, PS
= PS-split, S = Seen classes, U = Unseen classes, P = Part
feature, R = Res101 feature.

Dataset Image Att TF Feat SCS SCE PS
S U S U S U

CUB 11,788 - 7,551 P 150 50 160 40 - -
NAB 49,562 - 13,217 P 323 81 323 81 - -
APY 15,339 64 - R - - - - 20 12

AWA1 37,475 85 - R - - - - 40 10
AWA2 37,322 85 - R - - - - 40 10
SUN 14,340 102 - R - - - - 645 72

Experimental Results
Experimental Setup
Datasets. The proposed method is evaluated on the follow-
ing six public datasets: Caltech USCD Birds-2011 (CUB)
(Wah et al. 2011), North America Birds (NAB) (Van Horn
et al. 2015), APascal-aYahoo (APY) (Farhadi et al. 2009),
Animals with Attributes (AWA1) (Lampert, Nickisch, and
Harmeling 2013), renewed Animals with Attributes (AWA2)
(Xian et al. 2018a) and SUN attributes (SUN) (Patterson
and Hays 2012). These datasets are of different scales and
their statistics are summarized in Table 1. Note that CUB
and NAB are two fine-grained datasets.
Visual and Semantic Feature. In order to make fair com-
parison, for APY, AWA1, AWA2 and SUN, as done in (Xian
et al. 2018a), we use the 2048-D global features extracted
by ResNet-101 (He et al. 2016) which is pre-trained on Im-
ageNet1000 as the visual features, and attributes as the se-
mantic features. For the CUB and NAB, as done in (Elho-
seiny et al. 2017; Zhu et al. 2018; Ji et al. 2018), we use
features which are merged with local features of several se-
mantic regions of objects as the visual features, and Term
Frequency-Inverse Document Frequency (TF-IDF) features
as the semantic features. The TF-IDF features are commonly
used for text description, which could represent the semantic
feature of class-level text description. Specifically, the visual
feature is 3584-D and 3072-D for CUB and NAB respec-
tively, and we call these visual features extracted from local
regions ‘part feature’. Following the previous works, we also
transform the original TF-IDF feature to 200-D and 400-D
via linear PCA operation for CUB and NAB respectively.
The statistics of visual features and semantic features are re-
ported in Table 1.
Evaluation Protocol. As most methods did, we evaluate the
proposed method by computing average per-class Top-1 ac-
curacy (ACC). In the conventional ZSL setting, we com-
pute ACC of unseen classes. In the generalized ZSL set-
ting, we compute ACCs of both seen classes and unseen
classes and compute harmonic mean of seen and unseen ac-
curacy. In addition, data split has a huge impact on perfor-
mance. As suggested by (Elhoseiny et al. 2017), on CUB
and NAB, we evaluate the proposed method via SCS-split
and SCE-split. Note that SCE-split is harder than SCS-split
as the parent categories of unseen classes are exclusive to
those of seen classes in SCE-split. Also note that few unseen
classes in SCS-split have been seen by the pre-trained Ima-
geNet1000 model, we use the same ImageNet1000 model
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as the other methods for fair comparison. Following (Xian
et al. 2018a), we evaluate the proposed method on the APY,
AWA1, AWA2 and SUN datasets with PS-split. The PS-
split where unseen classes presented in ImageNet1000 are
replaced with other classes is an improved version of the
original SS-split. The detailed split information is reported
in Table 1.
Comparison Methods. For comparison, we cite the results
(reported in the corresponding papers) of fourteen existing
methods on the APY, AWA1, AWA2 and SUN datasets,
including DAP (Lampert, Nickisch, and Harmeling 2013),
DEVISE (Frome et al. 2013), ALE (Akata et al. 2015a), ES-
ZSL (Romera-Paredes and Torr 2015), LATEM (Xian et al.
2016), SSE (Zhang and Saligrama 2015), SYNC (Chang-
pinyo et al. 2016), SAE (Kodirov, Xiang, and Gong 2017),
DEM (Zhang, Xiang, and Gong 2017), GAZSL (Zhu et
al. 2018), f-CLSWGAN (Xian et al. 2018b), SR-GAN (Ye
et al. 2019), SABR (Paul, Krishnan, and Munjal 2019),
LiGAN (Li et al. 2019). Similarly, we also list the results
of seven existing methods on the fine-grained CUB and
NAB datasets, including WAC-kernel (Elhoseiny, Elgam-
mal, and Saleh 2016), ESZSL (Romera-Paredes and Torr
2015), ZSLNS (Qiao et al. 2016), SYNC (Changpinyo et
al. 2016), ZSLPP (Elhoseiny et al. 2017), GAZSL (Zhu et
al. 2018), SGA-DET (Ji et al. 2018).
Implementation Details. In the proposed method, proto-
type prediction is implemented by SVR with RBF kernel.
The generator and discriminator are both three-layer MLP
with ReLU activation, which both employ 4096 units in hid-
den layer. Hyper-parameters in WGAN are set as they are
suggested by the author.

Performance in Conventional ZSL Setting
Since most state-of-the-art methods have been evaluated on
APY, AWA1, AWA2 and SUN in the conventional ZSL set-
ting, we first evaluate the proposed method on these datasets
with PS-split and then compare it with fourteen state-of-the-
art methods. All these methods are tested with Res101 fea-
tures and attributes. Results are reported in Table 2. From
Table 2, we can easily find out that the proposed method sig-
nificantly outperforms all the existing methods. Specifically,
the proposed method achieves an improvement about 12.2%
on APY, 4.4% on AWA1, 8.0% on AWA2, 1.2% on SUN.
The reason why the improvement on SUN is smaller than
the others is probably that the visual prototypes on SUN are
harder to be predicted due to the fact that it has more classes
and less per-class images.

For a more detailed evaluation, we also test the proposed
method on two fine-grained datasets, CUB and NAB. We
then compare it with seven recent state-of-the-art methods.
All these methods are tested using part features and TF-IDF
features. To make evaluation more challenging, we evaluate
these methods with both easier SCS-split and harder SCE-
split. Table 3 shows us the results. As shown in Table 3,
the proposed method outperforms all the competitors with
a significant performance gain. Specifically, on CUB, we
achieve performance gain 6.6% and 9.6% under SCS-split
and SCE-split. Significantly, the accuracy under SCE-split
(20.5%) is about 90% higher than that of previous state-of-

Table 2: Comparative results (Top-1 accuracy) in the con-
ventional ZSL setting on APY, AWA1, AWA2 and SUN.

Method APY AWA1 AWA2 SUN
DAP 33.8 44.1 46.1 39.9

DEVISE 39.8 54.2 59.7 56.5
ALE 39.7 59.9 62.5 58.1

ESZSL 38.3 58.2 58.6 54.5
LATEM 35.2 55.1 55.8 55.3

SSE 34.0 60.1 61.0 51.5
SYNC 23.9 54.0 46.6 56.3
SAE 8.3 53.0 54.1 40.3
DEM 35.0 68.4 67.1 61.9

GAZSL 41.1 68.2 - 61.3
f-CSLWGAN 40.5 68.2 - 60.8

SR-GAN 44.0 72.0 - 62.3
SABR - - 65.2 62.8
LiGAN 43.1 70.6 - 61.7

AFRNet(Ours) 56.2 76.4 75.1 64.0

Table 3: Comparative results (Top-1 accuracy) in the con-
ventional ZSL setting on the fine-grained CUB and NAB
datasets.

Method CUB NAB
SCS SCE SCS SCE

WAC-kernel 33.5 7.7 11.4 6.0
ESZSL 28.5 7.4 24.3 6.3
ZSLNS 29.1 7.3 24.5 6.8
SynC 28.0 8.6 18.4 3.8

ZSLPP 37.2 9.7 30.3 8.1
GAZSL 43.7 10.3 35.6 8.6

SGA-DET 42.9 10.9 39.4 9.7
AFRNet(Ours) 50.3 20.5 42.8 12.8

the-art (10.9%) on CUB. We visualize features of 10 unseen
classes from CUB as shown in Figure 2 B, both the accuracy
gain and the visualization indicate that the AFRNet can
generate visual features with less overlap. The gain on NAB
is slightly smaller than on CUB, which is 3.4% and 3.1%
under SCS-split and SCE-split, this is probably because
NAB is a larger dataset with 404 categories, which means
inter-class difference on NAB is relatively subtle.

Performance in Generalized ZSL Setting
We evaluate the proposed method on APY, AWA1, AWA2
and SUN with PS-split in the generalized ZSL setting. Then,
we conduct comparison with fourteen state-of-the-art meth-
ods. All these methods are evaluated using Res101 features
and attributes. Results are reported in Table 4. Similar to re-
sults in the conventional ZSL setting, the proposed method
achieves a significantly better performance than previous
methods: 58.9% vs 45.7% on APY, 68.8% vs 62.3% on
AWA1, 70.1% vs 46.9% on AWA2. On SUB, the proposed
method only reaches the state-of-the-art performance prob-
ably because visual prototypes are harder to be predicted on
SUB. In addition, accuracy of seen classes and that of un-
seen classes are better balanced in the proposed method than
other methods, which informs us the proposed method has

11552



Table 4: Comparative results in the generalized ZSL setting on APY, AWA1, AWA2 and SUN. U = Top-1 accuracy of unseen
classes, S = Top-1 accuracy of seen classes, H = Harmonic mean of unseen and seen classes accuracy.

Method APY AWA1 AWA2 SUN
U S H U S H U S H U S H

DAP 4.8 78.3 9.0 0.0 88.7 0.0 0.0 84.7 0.0 4.2 25.1 7.2
DEVISE 4.9 76.9 9.2 13.4 68.7 22.4 17.1 74.7 27.8 16.9 27.4 20.9

ALE 4.6 73.7 8.7 16.8 76.1 27.5 14.0 81.8 23.9 21.8 33.1 26.3
ESZSL 2.4 70.1 4.6 6.6 75.6 12.1 5.9 77.8 11.0 11.0 27.9 15.8
LATEM 0.1 73.0 0.2 7.3 71.7 13.3 11.5 77.3 20.0 14.7 28.8 19.5

SSE 0.2 78.9 0.4 7.0 80.5 12.9 8.1 82.5 14.8 2.1 36.4 4.0
SYNC 7.4 66.3 13.3 8.9 87.3 16.2 10.1 90.5 18.0 7.9 43.3 13.4
SAE 0.4 80.9 0.9 1.8 77.1 3.5 1.1 82.2 2.2 8.8 18.0 11.8
DEM 11.1 75.1 19.4 30.5 86.4 45.1 30.5 86.4 45.1 20.5 34.3 25.6

GAZSL 14.2 78.6 24.0 19.2 86.5 31.4 - - - 21.7 34.5 26.7
f-CLSWGAN 32.9 61.7 42.9 57.9 61.4 59.6 - - - 42.6 36.6 39.4

SR-GAN 22.3 78.4 34.8 41.5 83.1 55.3 - - - 22.1 38.3 27.4
SABR - - - - - - 30.3 93.9 46.9 50.7 35.1 41.5
LiGAN 34.3 68.2 45.7 52.6 76.3 62.3 - - - 42.9 37.8 40.2

AFRNet(Ours) 48.4 75.1 58.9 68.2 69.4 68.8 66.7 73.8 70.1 46.6 37.6 41.5

Table 5: Results with/without AFRNet-style feature genera-
tion method.

Method CUB NAB
SCS SCE SCS SCE

AFRNet-non 41.6 9.1 37.1 5.7
AFRNet 48.7 18.6 41.5 12.7

Table 6: Results with/without feature selection strategy.
1NN and AFR refer to 1NN classifier and AFRNet.

Method CUB NAB
SCS SCE SCS SCE

1NN AFR 1NN AFR 1NN AFR 1NN AFR
w/o 44.3 48.7 16.3 18.6 35.2 41.5 9.4 12.7
w 48.7 50.3 18.2 20.5 38.2 42.8 9.8 12.8

a better generalization to unseen classes. From Table 2 to
Table 4, we also note that all the GAN-based methods con-
sistently outperform other methods. Among all the GAN-
based methods, the proposed method achieves the best per-
formance, this indicates that the AFRNet method and fea-
ture selection strategy are effective to improve ZSL, which
we will detailedly analysis in the Ablation Study section.

Ablation Study
Effect of Feature Generation Method. To prove benefit
of the feature generation method proposed in the AFRNet,
comparison experiments are conducted on CUB and NAB
under both SCS-split and SCE-split using AFRNet-style
feature generation method (AFRNet method) and non-
AFRNet-style method (AFRNet-non method). The results
are reported in Table 5. It is obvious that AFRNet method
achieves a significant performance gain against AFRNet-
non method: 7.1% and 9.5% under SCS-split and SCE-split
on CUB; 4.4% and 7.0% under SCS-split and SCE-split
on NAB. Notably, the accuracy of AFRNet method is more
than 100% higher than that of AFRNet-non method under
SCE-split on both CUB and NAB. This gain indicates that
the AFRNet method can generate visual features with less

overlap as shown in Figure 2 B, and these features could be
used to train a more generalizable classifier. Note that both
AFRNet method and AFRNet-non method in Table 5 have
not employed feature selection strategy.
Effect of Feature Selection Strategy. To demonstrate
benefit of the feature selection strategy (FSS), we conduct
evaluation on both CUB and NAB under both SCS-split
and SCE-split using both naive 1NN classifier and AFRNet.
Results with or without FSS are reported in Table 6. We
note that methods with FSS achieve better performance
than methods without it whatever the evaluation settings
are. This tells us that FSS is able to select visual feature
dimensions that are better consistent with semantic features.

Conclusion
We propose a novel adversarial network called AFRNet to
learn compact semantic visual features for ZSL. Unlike ex-
isting feature generation methods, the proposed AFRNet
generates visual feature residual, and then synthesizes the
visual feature by integrating the residual with the predicted
visual prototype. Consequently, the synthetic visual features
are less overlapped and classifier trained on these features is
more generalizable. In addition, on the basis of existing pro-
totype prediction method, we propose a novel feature selec-
tion strategy which can adaptively select semantically con-
sistent visual feature elements from the original visual fea-
ture. The proposed method is proved to outperform existing
state-of-the-art methods with a significant improvement by
extensive experimental results on six benchmarks datasets.
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