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ABSTRACT
Person Re-Identification (Re-ID) has witnessed great im-

provements due to the advances of the deep convolutional

neural networks (CNN). Despite this, existing methods

mainly suffer from the poor generalization ability to unseen

scenes because of the different characteristics between differ-

ent domains. To address this issue, a Clustering and Dynamic

Sampling (CDS) method is proposed in this paper, which tries

to transfer the useful knowledge of existing labeled source do-

main to the unlabeled target one. Specifically, to improve the

discriminability of CNN model on source domain, we use the

commonly shared pedestrian attributes (e.g., gender, hat and

clothing color etc.) to enrich the information and resort to

the margin-based softmax (e.g., A-Softmax) loss to train the

model. For the unlabeled target domain, we iteratively clus-

ter the samples into several centers and dynamically select

informative ones from each center to fine-tune the source-

domain model. Extensive experiments on DukeMTMC-reID

and Market-1501 datasets show that the proposed method

greatly improves the state of the arts in unsupervised domain

adaptation.

Index Terms— Clustering, Dynamic Sampling, Pedes-

trian Attributes, A-Softmax

1. INTRODUCTION

Person Re-identification (Re-ID) is fundamental and of great

practical value in surveillance video analysis, of which the

core is to match the same pedestrian across multiple camera

views. Recently, benefiting from the development of deep

learning [1], the performance of Re-ID has obtained signifi-

cant improvements by adopting supervised learning [2, 3, 4].

However, in real applications, it is expensive and time-

consuming to obtain sufficient manually labeled data. More-
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Fig. 1: Domain differences between the DukeMTMC-

reID [5] and Market-1501 [6] datasets, including cloth-

ing styles, backgrounds and illuminations. Pedestrians in

DukeMTMC-reID (upper row) usually wear long and thick

clothes while the ones in Market-1501 (bottom row) gener-

ally wear short and thin clothes.

over, due to the diversity of data acquisition, the domain gap

between different datasets is a critical issue. For example,

the pedestrians from DukeMTMC-reID [5] usually wear long

and thick clothes while those from Market-1501 [6] almost

wear short and thin clothes. Besides the foreground gap,

the backgrounds between these two datasets are also signif-

icantly different (see Fig.1). These factors lead to a sharp per-

formance decrease when directly applying the trained model

from the labeled source domain to the unlabeled target one

(e.g., Rank-1 rate declines from 76.2% when trained and eval-

uated on the Market-1501 to 36.1% when directly evaluated

on the DukeMTMC-reID).

To address the domain gap, a large number of methods

have been proposed. One group considers this issue as a

style transferring task. The methods in [7, 8] adopt the gen-

erative adversarial nets [9] transferring the unlabeled target

image style to labeled source image style, trying to elimi-

nate the domain gap between the different datasets. How-

ever, the discriminant information might be lost in the trans-

ferring process, which leads to limited Rank-1 accuracy. An-

other group resort to the unsupervised domain transfer meth-
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Fig. 2: The framework of the proposed Clustering and Dynamic Sampling (CDS) method: we firstly train our source-domain

model with both identity classification and attribute classification. Seven attributes including gender, hat, backpack, bag,

handbag, upper-body clothing color and lower body clothing color are employed to enhance the source training of the source-

domain model. Then we iteratively cluster the target-domain samples and dynamically select informative samples in target

domain to fine-tune the source-domain model.

ods. Approaches in [10, 11, 12, 13, 14] adopt unsupervised

approaches to enhance the model’s ability on the target un-

labeled dataset. Wang et al. [10] propose an unsupervised

transfer method called TJ-AIDL, transferring source domain

knowledge to target domain by learning the attribute-semantic

and identity-discriminative feature space. Fan et al. [14] pro-

pose a progressive unsupervised learning (PUL) approach ob-

taining pseudo labels to fine-tune the source-domain model.

However, its performance is limited to the source-domain

model’s poor generalization and the fixed-threshold sampling.

In this paper, we propose a novel clustering and dy-

namic sampling (CDS) scheme to address the cross-domain

unsupervised adaption issue. The framework of our CDS

is shown in Fig. 2. Specifically, we firstly train the

source-domain model with both identities and pedestrian at-

tributes, under the supervision of the angular softmax loss (A-

Softmax [15]). Generally speaking, that identities labels from

different pedestrian datasets are non-overlapping, while the

attributes [3] (e.g., hat, clothing color, gender, bags and back-

pack) are commonly shared. In this work, we use attribute

classification to improve the discriminability of the baseline

source-domain model. We adopt the angular softmax loss (A-

Softmax [15]) to supervise the training process. Then, to

overcome the drawbacks of the fixed-threshold sampling in

clustering centers, we employ a dynamic sampling strategy to

select informative training samples on the target domain. To

sum up, the contributions of this paper can be summarized as

follows:

• We propose a novel Clustering and Dynamic Sampling

(CDS) scheme to address unsupervised cross-domain

adaptation task in person re-identification.

• We employ the commonly shared attributes and the

margin-based A-Softmax loss to improve the discrim-

inability of the source-domain model and adopt a dy-

namic threshold to select informative target-domain

samples for unsupervised adaptation.

• Extensive experiments on the DukeMTMC-reID and

Market-1501 datasets show that the proposed method

largely improves the state of the arts in unsupervised

domain adaptation.

2. RELATED WORK

2.1. Supervised Person Re-Identification

Most of existing Re-ID models are built by learning similarity

or representation via cross-camera data [4, 16, 17, 3, 2, 18]

in a supervised manner. In early works, Yi et al. [4] intro-

duce part priors into deep convolutional network for simi-

larity learning. In recent works, Hermans et al. [3] propose

a multi-task training approach, combining ID classification

and attributes classification tasks to improve the Re-ID per-

formance. Fan et al. [2] introduce an angular margin to the

softmax function, reducing intra-class variations and increas-

ing inter-class variations simultaneously. These approaches

achieve superior performance in a single domain task, but

may not be effective for cross-domain person Re-ID.

2.2. Cross-Domain Person Re-Identification

To address the cross-domain issue, researchers shift their at-

tention to the unsupervised methods, including unsupervised

clustering [14], image-style transfer [7, 19, 8, 20] and un-

supervised domain transfer [11, 10, 21]. To unsupervised

clustering, Fan et al. [14] propose a clustering and self-pace

training frame named PUL, which adopts the k-means al-

gorithm to obtain pseudo labels and fine-tunes the source-

domain model with these pseudo labels. However, in this

work, the threshold for controlling training data sampling is
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Fig. 3: Commonly shared attributes (e.g., gender, backpack,

upper-body color) on Market-1501 and DukeMTMC-reID.

fixed, in which a conservative value may result in losing cor-

rect cross-camera person pairs while an aggressive one may

involve outliers. Besides, a poor source-domain may also

hinder the performance of the latter self-pace training. For

image-style transfer approaches, existing work try to bridge

the domain gap through transferring the unlabeled image style

to the labeled image style. For unsupervised domain transfer

methods, Lin et al. [21] adopt the domain separation network

to learn domain-shared representations.

3. PROPOSED METHODS

Notation. Given a labeled source dataset Xs and an unla-

beled target dataset Xt, where Xt = {xt
1, x

t
2, ..., x

t
N} con-

tains N images, the source-domain model φθ is pre-trained

on the source dataset, where θ denotes the corresponding pa-

rameters. Since the target dataset is unlabeled, we consider

the latent ground truth labels of Xt as Y t = {yt1, yt2, ..., ytN}.
While the pseudo labels predicted by the k-means algorithm

are donated as Ŷ t = {ŷt1, ŷt2, ..., ŷtN}.

3.1. Supervised Learning on Source Domain

Attribute Knowledge. Person identies are usually non-

overlapping across different Re-ID datasets, while pedestrian

attributes are commonly shared. For instance, as shown

in Fig. 3, the attributes female, backpack, red Upper-body

are shared on the Market-1501 and DukeMTMC-reID. So it

seems that the attribute knowledge is easier to transfer than

identity knowledge. To this end, besides the identity classi-

fication, we additionally use seven common attributes (gen-

der, hat, backpack, bag, handbag, upper-body clothing color,

lower body clothing color) to improve the generalization abil-

ity of the source-domain model, so as to make a better starting

point for the latter fine-tuning.
A-Softmax. For the loss function of the supervised learning,
as we expect that the representations learned by the source-
domain model are discriminative and are easy to transfer.
Therefor we adopt the angular softmax loss (A-Softmax [15])

to train the source-domain model. Specifically, A-Softmax
loss aims to increase the inter-class variations and meanwhile
decrease the intra-class variations by an adding angular mar-
gin to the original softmax loss. The A-Softmax loss is for-
mulated as follows:

LA-Softmax = − 1

N

N∑
i=1

log
ezyi∑C

j �=yi
ezj + ezyi

zyi =‖ xi ‖ (−1)kcos(mϕyi,i)− 2k

zyj =‖ xj ‖ cos(ϕyj ,j),

(1)

where k ∈ [0,m − 1] and m is the margin factor as a hyper

parameter. For more details, please refer to the work [15].

3.2. Clustering and Dynamic Sampling

Clustering. On the target domain, since the samples are un-
labeled, we firstly cluster them into several centers by using
the well-known k-means algorithm. The formulation can be
summarized as:

min
Ŷ t,c1,c2,...,cK

K∑
k=1

∑
ŷt
i=k

‖ φθ(x
t
i)− ck ‖2, (2)

where K is the number of clusters pre-defined empirically,

and ci, i ∈ {1, 2, . . . ,K} are the corresponding cluster cen-

ters.
Dynamic Sampling. Generally, samples in each cluster may
contain noisy pseudo labels or outliers due to the limited abil-
ity of the initial source-domain model. Regarding this, we de-
fine a binary mask vi and use a threshold λ to indicate whether
a sample belongs to a certain cluster or not:

vi =

{
1, cos(φθ(x

t
i), cxt

i
) > λ,

0, otherwise,
(3)

where cxt
i

denotes the corresponding cluster center of the im-

age xt
i. From the definition, we can see that if the cosine

similarity cos(φθ(x
t
i), cxt

i
) is larger than a threshold λ, the

sample xt
i and its pseudo label ŷti would be temporarily se-

lected. Otherwise, it will be discarded. After that, we use
the selected samples to fine-tune the source-domain model by
optimizing the following objective:

min
θ,w

N∑
i=1

viL(ŷt
i , fw(φθ(x

t
i))), (4)

where L is the A-Softmax loss function, and fw is the classi-

fier of the target domain.
For the threshold λ, a large value prefer to choose sam-

ples belonging to the same identity under the same camera.
Such selected samples are relatively reliable, but they may
be useless for cross-camera person retrieval. In contrast, a
small value usually involves noisy samples or outliers. As
a result, the model may be misled by them during the fine-
tuning process. To solve this dilemma, we design a dynamic
sampling strategy. Specifically, at the beginning of the train-
ing, since the model’s discriminability is weak on the target
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Algorithm 1 Clustering and Dynamic Sampling (CDS)

Input: Unlabeled dataset X; Upper bound U and lower bound L; Source

domain pre-trained model φθs ; Target domain classifier fw; Relaxing

rate η.

Output: Fine-tuned model φθt ;

1: Initial λ0 ← U , θt ← θs ;

2: repeat
3: extracting deep feature: fi = φθt (x

t
i) for all xt

i ;

4: L2-normalization for deep feature fi;
5: k-means clustering;

6: updating pseudo labels ŷt and cluster center C;

7: for i = 1 to N do
8: find the nearest cluster center cxt

i
of xt

i

9: S = fi · cxt
i

10: if S > λ then
11: selecting xt

i : vi = 1
12: else
13: discarding xt

i : vi = 0
14: end if
15: end for
16: training < φθt , fw > with the selected samples

17: updating λ: λ← λ− η · (U − L)
18: until (λ < L)

domain, it is easily misled by noisy samples or outliers. Thus
in this case we set a larger threshold to cautiously select reli-
able samples, although these samples may belong to the same
camera and the same ID. When the model’s discriminability
becomes stronger, we can set a lower threshold to select more
informative samples including the cross-camera pairs to im-
prove the model’s cross-camera retrieval ability. To this end,
we develop a dynamic sampling strategy by using a decreas-
ing rate η to iteratively decrease the sampling threshold λ:

λ← λ− η(U − L), (5)

where a large threshold U is served as the upper bound and

a small threshold L is used as the lower bound. The thresh-

old λ is decreasing from the upper bound to the lower bound,

as the model’s discriminative ability is being enhanced grad-

ually. For clarity, the proposed clustering and dynamic sam-

pling (CDS) scheme is summarized in algorithm 1.

4. EXPERIMENTS

4.1. Datasets

We conduct extensive experiments on DukeMTMC-reID [5],

Market-1501 [6] and CUHK03 [16] to evaluate our approach.

Data statistics and evaluation settings are shown in table 1.

On both Market-1501 and DukeMTMC-reID, we adopt the

standard single-query protocol [6] as the testing protocol. On

CUHK03, we follow the testing protocol of [22] to evaluate

our method.

4.2. Implementation details

Our approach is implemented with Pytorch framework. The

model structure and the training pipeline are shown in 2. The

#All #Train #Test

Market-1501 1501/32688 751/12936 750/19732

DukeMTMC-reID 1812/36411 702/16522 702/19889

CUHK03 1467/14097 767/7365 700/6732

Table 1: Data splits (/#persons/#images) for experiments on

the Market-1501 and DukeMTMC-reID datasets.

Strategy
Market->Duke Duke->Market

mAP Rank-1 mAP Rank-1

Atributes
no 15.8 31.0 19.4 47.3

yes 19.9 37.2 22.4 50.1

Fixed or

Dynamic

0.85 33.0 57.3 32.9 64.6

0.8 39.6 64.3 37.3 67.3

0.7 35.6 58.8 34.4 64.8

0.6 29.71 49.8 36.12 63.18

DS 42.7 67.2 39.9 71.8

A-Softmax
no 39.3 65.5 37.6 68.9

yes 42.7 67.2 39.9 71.8

Table 2: Ablation Experiments. The ”Attributes” denotes

whether using attributes on the source domain training. For

the “Fixed or Dynamic”, ”Fixed” denotes using a fixed thresh-

old during the sampling procedure and ”Dynamic” means us-

ing dynamic sampling (DS) strategy. The ”A-Softmax” de-

notes whether using the A-Softmax as loss function in the

target training procedure.

classifier fw of target domain consists of one linear layer. The

backbone is pre-trained with ID classification and attributes

classification tasks on the source dataset. Seven pedestrian

attributes (i.e., gender, hat, backpack, bag, handbag, upper-

body clothing color, lower body clothing color) are used in

the source training process. A-Softmax is used as the loss

function for ID classification task on both source training and

target training. The m of A-Softmax is set to 3 in the exper-

iments. The input images are resized to 288 × 188. We use

Adam optimizer with the hyper-parameters(ε = 10−8, β1 =
0.9, β2 = 0.99, lr = 0.0001). For the dynamic sampling, we

set the dynamic decreasing rate to 1.5 × 10−3. The upper

bound U and lower bound L are set to 0.8 and 0.7 respec-

tively. The batch size is set to 16.

4.3. Ablation Experiments

In this section, we analyze the impact of the three main strate-

gies (Attributes Knowledge, A-Softmax, Dynamic Sampling)

and cluster number K of CDS.

Attribute Knowledge. Attribute Knowledge makes a better

starting point for the target fine-tuning. As shown in Table 2,

training with attributes improves 6% Rank-1 accuracy for us-

ing the Market-1501 as the source domain, while improving

2.84% Rank-1 accuracy for using the DukeMTMC-reID as

the source domain.

A-Softmax. A-Softmax loss is used on both the source do-

main training and target domain training. In Table 2, we

show the impact of loss function on the target domain train-
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Methods
DukeMTMC-reID ->Market-1501 Market-1501 ->DukeMTMC-reID

mAP Rank-1 Rank 5 Rank-10 mAP Rank-1 Rank 5 Rank-10

LOMO [23] 8.0 27.2 41.6 49.1 4.8 12.3 21.3 26.6

UMDL [12] 12.4 34.5 52.6 60.3 7.3 18.5 31.4 37.4

PTGAN [24] - 38.6 - 66.1 - 27.4 - 50.7

PUL [14] 20.5 45.5 60.7 66.7 16.4 30.0 43.4 48.5

CAMEL [25] 26.3 54.5 - - - - - -

SPGAN+LMP [7] 26.7 57.7 75.8 82.4 26.2 46.4 62.3 68.0

TJ-AIDL [10] 26.5 58.2 74.8 81.1 23.0 44.3 59.6 65.0

HHL [8] 31.4 62.2 78.8 84.0 27.2 46.9 61.0 66.7

CamStyle [26] 27.4 58.8 78.2 84.3 25.1 48.4 62.5 68.9

CamStyle + LMP [27] 30.4 64.7 80.2 85.3 27.7 51.7 67.0 72.8

ARN [11] 39.4 70.3 80.4 86.3 33.4 60.2 73.9 79.5
CDS 39.9 71.6 81.2 84.7 42.7 67.2 75.9 79.4

Table 3: Comparing CDS with other state-of-the-art methods on DukeMTMC-reID and Market-1501 datasets.

(a) (b)

Fig. 4: The impacts of the number of cluster centers. The blue

curve denotes Rank-1 accuracy and the yellow curve denotes

mAP.

ing. A-Softmax is 3.4% higher and 1.7% higher than softmax

in mAP and Rank-1, respectively, when the target dataset is

DukeMTMC-reID. While with the Market-1501 as the target

dataset, A-Softmax is 2.3 % higher and 2.9% higher than soft-

max in mAP and Rank-1 accuracies, respectively.

Cluster Number. As shown in Fig 4, we evaluate the impact

of the number of clusters K. K = 900 achieves the best per-

formance both on Market-1501 and DukeMTMC-reID. From

the results, we can see that the fluctuations are relatively sta-

ble, which means that the proposed CDS method is not sensi-

tive to the number of clusters in a certain range. In the latter

experiments, we set K = 900.

Dynamic Sampling. The impact of the sampling strategy is

shown in Table 3. According to the PUL [14] framework, we

set four initial thresholds 0.85, 0.8, 0.7, 0.6. From the results,

we can see that λ = 0.8 achieves the best performance. How-

ever, CDS outperforms λ = 0.8 sampling in mAP and Rank-1

on Market-1501 to DukeMTMC-reID.

4.4. Comparing with the State-of-the-art Methods

The experimental results are displayed in Table 3 and Ta-

ble 4. Comparing with the hand-crafted features LOMO [23],

three image-style transform method [24, 7, 8] (i.e., PTGAN,

Market->CUHK03 Duke->CUHK03

metric mAP Rank-1 Rank-5 mAP Rank-1 Rank-5

PUL [14] 7.3 7.6 13.8 5.2 5.6 11.2

CDS 8.7 9.1 18.0 7.1 8.1 15.8

Table 4: Comparing CDS with other state-of-the-art methods

on CUHK03

SPGAN+LMP and HHL), two unsupervised domain trans-

fer methods TJ-AIDL and ARN, and two clustering meth-

ods PUL and CAMEL, the proposed CDS method outper-

forms these approaches in Rank-1, Rank-5 and mAP on both

the Market-1501, DukeMTMC-reID and CUHK03 datasets.

Comparing with the second best method ARN, the proposed

CDS method outperforms ARN by 7% in Rank-1, 9.3%

in mAP on the DukeMTMC-reID dataset, while achieving

1.3% and 0.5% gains in Rank-1 and mAP, respectively, on

DukeMTMC-reID dataset. Comparing with the fixed sam-

pling method PUL, the proposed CDS method outperforms

it by 29.5% in Rank-1 and 19.4% mAP on the Market-1501,

26.3% in Rank-1 and 37.2% in mAP on the DukeMTMC-

reID dataset. Together with the ablation experiments, we

conclude that the improvement of the proposed CDS for

cross-domain person Re-ID mainly benefits from the attribute

guided training, dynamic sampling in clusters, and the A-

Softmax loss function.

5. CONCLUSION

In this paper, we have proposed a novel Clustering and Dy-

namic Sampling (CDS) approach to address cross-domain

person re-identification task. It uses the pedestrian attributes

to improve the discriminability of the baseline model, the A-

Softmax loss to train our model, and the dynamic sampling

strategy to select informative samples from the clustering re-

sults. We have achieved the state-of-the-art results on both

the DukeMTMC-reID and Market-1501 datasets under unsu-

pervised domain adaptation. Particularly on the Market-1501,
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we exceed the current state-of-the-art method ARN by 7% in

Rank-1 accuracy and 9% in mAP.
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