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a b s t r a c t 

Objectives: The aim of the study was to reconstruct the complete transmission chain of the COVID-19 

outbreak in Beijing’s Xinfadi Market using data from epidemiological investigations, which contributes to 

reflecting transmission dynamics and transmission risk factors. 

Methods: We set up a transmission model, and the model parameters are estimated from the survey data 

via Markov chain Monte Carlo sampling. Bayesian data augmentation approaches are used to account for 

uncertainty in the source of infection, unobserved onset, and infection dates. 

Results: The rate of transmission of COVID-19 within households is 9.2%. Older people are more suscepti- 

ble to infection. The accuracy of our reconstructed transmission chain was 67.26%. In the gathering place 

of this outbreak, the Beef and Mutton Trading Hall of Xinfadi market, most of the transmission occurs 

within 20 m, only 19.61% of the transmission occurs over a wider area ( > 20 m), with an overall average 

transmission distance of 13.00 m. The deepest transmission generation is 9. In this outbreak, there were 

2 abnormally high transmission events. 

Conclusions: The statistical method of reconstruction of transmission trees from incomplete epidemic 

data provides a valuable tool to help understand the complex transmission factors and provides a prac- 

tical guideline for investigating the characteristics of the development of epidemics and the formulation 

of control measures. 

© 2022 The Authors. Published by Elsevier Ltd on behalf of International Society for Infectious Diseases. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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On June 11, the first locally confirmed case of COVID-19 in Bei- 

ing, China, was found in Xinfadi Market after 56 consecutive days 

ith no new local confirmed cases. To assess the extent of in- 

ection, Beijing Center for Disease Prevention and Control imple- 

ented a screening campaign of SARS-CoV-2 infection over the 

ity. Between June 15 and July 10, a total of more than 10 million

itizens and 5342 environmental samples were screened. Eventu- 

lly, 368 Quantitative Real-time Polymerase Chain Reaction (qRT- 

CR) positive cases were confirmed ( Pang et al., 2020 ). 
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The Beijing Center for Disease Control and Prevention con- 

ucted an epidemiological investigation on 368 cases and obtained 

aluable data such as incidence data, contact tracking data, and 

patial data of patients. Many studies have been carried out on 

he basis of this dataset. Some studies have focused on investigat- 

ng the effect of interventions deployed in Beijing after the out- 

reak in Xinfadi agricultural products (XFD) market ( Cui et al., 

021 ; Wang et al., 2021 ; Wei, Guan, Zhao, Shen, & Chen, 2020 ).

uch studies usually use modified susceptible–exposed–infectious–

ecovered (SEIR) transmission models, depending on the specific 

cenario. Han ( Han et al., 2021 ) used spatial autocorrelation analy- 

is and Spearman correlation analysis to research the spatial clus- 

ering characteristics of the COVID-19 pandemic and the impact 

f environmental factors in Beijing. In addition, many biologi- 

al and medical scholars ( Chen, Shi, Zhang, Wang, & Sun, 2021 ; 

ang et al., 2020 ) analyzed the epidemiological characteristics and 
ty for Infectious Diseases. This is an open access article under the CC BY-NC-ND 
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linical manifestations of this outbreak. However, the available 

ransmission link data in the investigation are limited, which can- 

ot restore the complete transmission process. The complete trans- 

ission tree offers many potential benefits. In particular, the com- 

lete transmission tree can 1) lead to an improved understanding 

f transmission dynamics and 2) generate valuable intelligence on 

ey epidemiological parameters and risk factors for transmission, 

hich paves the way for more targeted and cost-effective inter- 

entions. 

Obtaining and reconstructing transmission link data are chal- 

enging. First, and most important, transmission dynamics are usu- 

lly not observed. There is great uncertainty in the course of infec- 

ion, which is impossible to directly measure an individual’s expo- 

ure to a potential source of infection ( Salje et al., 2016 ). The great

ncertainty in the source of infection has made available link data 

carce. Second, many vital points in the course of a patient’s ill- 

ess depend on the patient’s recollection ( Cauchemez et al., 2011 ). 

he recall uncertainty led to the deviation of the data. Third, fac- 

ors that affect the risk of infection are multiple and complex. 

hey often intertwine features of individuals, for example, age, be- 

avior, mobility, the places they visited, and their social network. 

his complex intertwinement complicates the reconstruction of the 

ropagation chain modeling. 

Depending on the data types, there are 2 most common ap- 

roaches to infer the propagation chain. The “pairwise approach”

s based on onset time and genetic data, which builds a disease 

ransmission model and incorporates a genetic model that de- 

cribes Pairwise genetic distance between putative transmission 

airs ( Jombart et al., 2014 ; Lau, Marion, Streftaris, & Gibson, 2015 ;

orby et al., 2016 ). The “phylogenetic approach” uses genetic data 

o infer the unobserved history of coalescent events between sam- 

led pathogen genomes in the form of a phylogenetic tree. It infers 

ransmission trees consistent with this phylogeny using epidemio- 

ogical data ( Klinkenberg, Backer, Didelot, Colijn, & Wallinga, 2017 ). 

ut gene sequence data do not always provide spread information 

f the epidemics. Genetic diversity across most outbreaks is low, 

nd a significant portion of genetic sequences is expected to be 

dentical. The informativeness of genetic sequence data is also lim- 

ted by complex evolutionary behavior. Gradually, the patient’s at- 

ributes and behavioral data were used, including symptom onset 

ime, contact tracking data, spatial data, and location data of vis- 

ts ( Campbell, Cori, Ferguson, & Jombart, 2019 ; Cauchemez et al., 

011 ). 

We take the outbreak of novel coronavirus in Beijing in June 

020 as the case study. We analyzed detailed data describing the 

econd outbreak caused by Beijing Xinfadi. We built a propagation 

odel and used the reliable Bayesian data-augmentation statistical 

echniques ( Cauchemez et al., 2006 ; Salje et al., 2016 ) to account

or the uncertainty of infection sources, the date of unobserved on- 

et, and infection. Then, we reconstructed the chain of propagation 

f the outbreak and assessed the influence of spatial distance, fam- 

ly relationship, visiting relationship, and so on, on transmission 

isk. The accuracy of the propagation chain is also verified. 

ethods 

ata Collection 

The outbreak investigation was performed by the Beijing Cen- 

er for Diseases Prevention and Control. The research team investi- 

ated the cluster of infections caused by the XFD market on June 

1, 2020, and July 12, 2020. A total of 368 cases of COVID-19 in-

ection have been reported in this outbreak. There were 335 con- 

rmed cases and 33 asymptomatic cases. There are 14 trading halls 

n XFD market. The beef and mutton trading hall (referred to as 

1 Hall) has been identified as the virus spread from XFD market 
412 
 Pang et al., 2020 ). In addition, the basic personal information and 

he onset information of each case were also collected. Personal 

nformation included sex, age, native place, and address. The infor- 

ation on the occurrence included the type of infection, the dates 

f onset, the date of diagnosis, the type of exposure to the XFD, 

nd the information of the staff’s booth in the XFD. Asymptomatic 

nfections were defined as individuals who have not developed any 

ymptoms but test positive for SARS-CoV-2 by nucleic acid tests. 

tatistical Inference 

Assuming that individuals with a positive nucleic acid test are 

nfected with SARS-CoV-2, we built a statistical model ( Salje et al., 

016 ) to ascertain risk factors for transmission. In particular, the 

odel was used to estimate the role that the social relation, loca- 

ion, sex, age, and exposed type had on transmission dynamics. 

We built a transmission model for the force of infection exerted 

n individual i at time t ( Salje et al., 2016 ), 

i ( t ) = 

N ∑ 

j: t j <t 

λ j→ i (t| x j , x i ) (1) 

here λ j→ i (t| x j , x i ) is the instantaneous hazard of transmission 

rom individual j to individual i at time t: 

j→ i (t| x j , x i ) = β
(
x j , x i 

)
f (t − t j | x j , x i ) (2) 

( x j , x i ) represents the transmission rate between individuals j

nd i , where i and j are in the same aggregation relationship. The 

ransmission rate was estimated for 5 types of pairs of individuals. 

The set of pairs of individuals was partitioned in 5 types of in- 

eraction: “household” (i.e., individuals from the same household 

r same stall in the XFD market), “colleagues” (i.e., individuals who 

ork for the same company), “the B1 Hall” (i.e., individuals of dif- 

erent stalls in the B1 Hall of the XFD market), “exposed” (i.e., indi- 

iduals have been exposed together in the same place), and “oth- 

rs” (i.e., pairs of individuals without any of the aforementioned 

elationships). A hierarchy was set up so that each pair had one 

nd only one type of interaction: household > colleagues > the B1 

all > exposed > others. For example, a pair of 2 colleagues from 

he same household was defined as a household pair. 

(
x j , x i 

)
= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

βh · βsex ( x i ) · βage ( x i ) , f or household interaction 

βc · βsex ( x i ) · βage ( x i ) , f or col l eagues interaction 

βb · g 
(
x i , x j 

)
· βsex ( x i ) · βage ( x i ) , f or the B 1 

Hall interaction 

βe · βsex ( x i ) · βage ( x i ) , f or the exposed interaction 

βd · βsex ( x i ) · βage ( x i ) , f or others interaction 

(3) 

here βsex characterizes the role of sex on risk of infection (male 

s the reference group), βage characterizes the role of age on risk 

f infection (individuals’ age smaller than 60 years are the refer- 

nce group), and βexpose characterizes the role of expose type on 

he risk of infection. g( x i , x j ) characterizes the transmission kernel 

or individuals in the different aggregation relationships and is a 

unction of the distance. We used an exponential distribution with 

arameter of a to characterize the transmission kernel. 

f (t − t j | x j , x i ) represents the infectivity of individual j over 

ime and can be approximated by the generation time distribution 

the time between 2 successive infections). The generation time 

ollows Weibull distribution (Shape parameter = 2.826, scale pa- 

ameter = 5.665) ( Ferretti et al., 2020 ). Details about the transmis- 

ion model are given in Supplementary Material . 

stimation 

If the date of infection and date of symptom onset were fully 

bserved for each case, it would be relatively straightforward to 
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Table 1 

Parameter estimates 

Parameter Value 95% CI 

βh 9.184% (8.479%, 9.889%) 

βc 3.166% (2.956%, 3.376%) 

βb 0.228 (0.190, 0.265) 

βe 0.129% (0.125%, 0.132%) 

βd 0.082% (0.078%, 0.085%) 

a 0.095 (0.053, 0.138) 

ρage 0.695 (0.676, 0.714) 

ρsex 0.913 (0.892, 0.935) 
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erform likelihood-based inference. However, missing data made 

he estimation of transmission parameters challenging: (1) dates 

f infection were unobserved, and (2) 15 symptomatic cases and 

3 asymptomatic cases had no observed onset date. 

In this study, we used a Bayesian data augmentation frame- 

ork to tackle the missing data problem ( Cauchemez et al., 

011 ; Cauchemez, Carrat, Viboud, Valleron, & Boelle, 2004 ; 

auchemez et al., 2006 ). In the past, this approach has been suc- 

essfully used to deal with similar problems ( Cauchemez et al., 

004 ; Cori, Boëlle, Thomas, Leung, & Valleron, 2009 ; Walker et al., 

010 ). The dataset was “augmented” with missing dates of infec- 

ion and a few missing dates of symptom onset. If we schemat- 

cally denote y the observed data, z the augmented data, and θ
he parameter vector, the joint posterior distribution of augmented 

ata and model parameters is proportional to 

 (z, θ | y ) ∝ P (y | z) P (z| θ ) P ( θ ) (4)

This equation shows the hierarchical structure of our Bayesian 

odel. On the righthand side of the equation, P (y | z) is referred

o as the “observation model,” which ensures that the augmented 

ata are consistent with observed data. In agreement with a range 

f studies on COVID-19 pneumonia, the observation model relies 

n the assumption that the incubation period has a mean of 5 days 

nd a variance of 2 days 2 ( Li et al., 2020 ; Wang, Horby, Hayden,

 Gao, 2020 ). P (z| θ ) represents the “transmission model,” which 

escribes the latent transmission process and is characterized by 

q. 2 . P (θ ) means the prior distribution of the parameters. Please 

ee Supplementary Material for more details. 

rior Distributions 

For all parameters except for the transmission kernel parame- 

er, we used a lognormal prior distribution with a log(mean) equal 

o 0 and a log(variance) equal to 1. For the transmission kernel pa- 

ameter, we used an exponential prior distribution with parameter 

f 0.0 0 01. 

CMC Sampling Scheme 

At every iteration of the Markov Chain Monte Carlo (MCMC) 

ampling scheme, we undertook the following: 

1) Metropolis-Hastings update for the parameters in the model. At 

every iteration, all parameters were updated once. Metropolis- 

Hastings updates were performed on a log scale with the step 

size adjusted to achieve an acceptance probability between 20% 

and 30%. 

2) Independent sampler for the days of infection. At each iteration, 

the day of infection was updated with an independent sampler 

for 50 randomly selected cases. Candidate values for the length 

of the incubation period were drawn from the incubation pe- 

riod distribution. 

3) Independent sampler for the unobserved days of onset. For 

cases with unobserved dates of onset, the augmented date of 

onset was updated with an independent sampler. 

esults 

utbreak Investigation 

In June 2021, one of the largest cluster outbreaks of COVID- 

9 broke out in Beijing, the capital of China. In total, 368 cases 

f COVID-19 infection were reported in Beijing at 24:00 on June 

1, 2020. On the basis of exposure surveys, 79 contacts have been 

dentified for the 368 cases. Among all the cases, 73.9% had di- 

ect exposure history (including employees, staff, and visitors), and 
413 
5.6% were indirectly related cases (having contact history with 

irect exposure cases or polluted environment) in XFD. Fig. 1 A 

hows the number of cases by date of confirmation for the people 

ith and without XFD exposed history. Most 169 XFD employees 

orked in the B1 Hall (119 cases, 70.4%). Fig. 1 B shows the spatial

lane of B1 Hall and the diagnosis. The B1 Hall is the main expo- 

ure site. Meanwhile, the resting place of XFD is also at high risk of 

xposure. Fig. 1 C shows the number of cases by date of symptom 

nset and sex among B1 Hall. 

ransmission tree 

Transmission model was established, and the transmission risk 

actors were determined. All individuals with positive nucleic acid 

ests were included in the analysis as case studies. Data enhance- 

ent techniques were used to combine the uncertainty of the on- 

et and unobserved infection’s date. Table 1 shows all the esti- 

ated parameters. We estimated the transmission probability be- 

ween families (the same family and the same stall are considered 

amily relationships), colleagues, different stalls in the B1 Hall, in- 

ividuals with shared exposure history, and individuals with no 

pparent relationship. An exponential distribution kernel was used 

o characterize the distance between different booths in the B1 

all (i.e., pairs of individuals operating at different booths). We 

ound that there was a 9.2% probability of transmission between 

amily members and the same booth in the B1 Hall (95% CI: 8.5- 

.9%) ( Fig. 2 A), but in the B1 Hall, the probability of transmission

rom 15 m away was 0.5% (95% CI: 0.2-0.5%), with a probability of 

.02% (95% CI: 0.1-0.2%) at a distance of 50 m ( Fig. 2 B), indicating

hat transmission is highly concentrated. Women and men are sim- 

larly likely to be infected. Women were less likely to be infected 

y 0.91 factor (95% CI: 0.89-0.94) ( Fig. 2 C). The risk of infection in

hildren and adults was of factor 0.70 as in the older individuals 

95% CI: 0.68-0.71) ( Fig. 2 C). 

After updating the infection time and correcting the onset time 

f the model, the incubation period of 100 experimental results 

as statistically analyzed, and the incubation period distribution 

btained is shown in Fig. 2 D. The incubation period of 5 days was

he most common, accounting for 18.2% of the total cases. The in- 

ubation period of 50.2% of cases was less than 5 days, and the 

ncubation period of 20.5% of cases was more than 7 days. 

According to the transmission risk between each pair, we re- 

onstructed 100 transmission trees with the highest risk of infec- 

ion according to the data. The constructed propagation tree links 

ere compared with the identified links obtained through the sur- 

ey. Of the 79 known links, an average of 52 links of the re- 

onstructed propagation trees matched. The average accuracy was 

7.26% ( Fig. 3 A). Analysis of these trees showed that family trans- 

ission accounted for 23.56% of all transmission events ( Fig. 3 C). 

ransmission between colleagues outside XFD accounted for 12.17% 

f all transmission events (95% CI: 18-25%), 91.29% of spread events 

ere related to XFD, and 18.62% of the cases occurred in different 

ooths in the XFD B1 Hall ( Fig. 3 C). In the B1 Hall of the XFD, most

f the transmission occurs within 20 m. Only 19.61% of the trans- 
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Fig. 1. Epidemiological data collected. (A) Number of cases by date of confirmation for different types of individuals. (B–C) Survey of Xinfadi agricultural products (XFD) 

market B1 Hall with (B) plane figure of B1 Hall and number of confirmed cases. (C) Number of cases by date of symptom onset and sex among B1 Hall. 
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ission occurs over a wider area ( > 20 m) ( Fig. 3 B), with an overall

verage transmission distance of 13.00 m. 

Fig. 4 A shows the complementary cumulative distribution func- 

ion (CCDF) of the number of secondary infections per infected in- 

ividual. Of the 368 cases, 48.4% developed the secondary case. Of 

hose with secondary cases, 45.96% had infected only 1 person. 

hose with more than 5 secondary cases accounted for 3.77% of 

he total number of cases. The average number of cases with more 

han 16 secondary cases was only 2. According to the reconstructed 

ransmission tree, the 2 patients were staff at the booth in the B1 

all of XFD Market. In total, 24.5% of people contributed to 80% 

f transmission events. Fig. 4 B shows the age and sex propagation 

atrix of this propagation event constructed by the propagation 

ree. In this outbreak, the male-to-male transmission propagation 

as 32.06%, and the female-to-female propagation was the low- 

st (17.28%). We divided 368 cases into 4 age groups: 0 ∼20 years, 

0 ∼40 years, 40 ∼60 years, and 60 ∼80 years. As can be seen from

he figure, this transmission mainly occurred between ages 20 and 

0 years. Fig. 4 C shows the cumulative number of infections over 

ime. The average depth of the reconstructed propagation tree is 

.2 ( Fig. 4 D), that is, the longest propagation generation in this out- 

reak is 9.2. Fig. 4 E is an example of a reconstructed transmission 

ree. 

iscussion 

The spread of epidemics is driven by individual social con- 

ections and complex interactions between behavior and environ- 

ent. The reconstruction approach of transmission trees from in- 

omplete epidemic data provides a valuable tool to help trace the 
414 
ource of the epidemic and understand the complex transmission 

actors. It provides a theoretical reference for the investigation of 

he characteristics of the development of epidemics and the devel- 

pment of control measures. In this study, we used the secondary 

utbreak of novel coronavirus in Beijing, the capital of China, as 

 case study; built a model to trace the source of transmission; 

nd reconstructed a complete transmission tree. We have shown 

hat the combination of detailed epidemiological data and mathe- 

atical models enables us to gain insight into the detailed dynam- 

cs of the spread of disease in confined spaces and more broadly 

n cities. The individual characteristics (such as age) and the geo- 

raphical space, particularly in densely populated disease outbreak 

reas, have an essential influence on infection risk. This finding un- 

erscores the importance of considering specific sites when assess- 

ng the spread of the epidemic. 

The study illustrates challenges epidemiologists face in studying 

he spread of infectious diseases. During an outbreak investigation, 

he route of transmission or date of infection is often not recorded, 

nd cases are usually incorrectly recorded. The proposed data en- 

ancement strategies can correctly interpret these uncertainties in 

he reasoning framework and thus significantly improve our ability 

o analyze epidemic data robustly. In this study, the joint poste- 

ior distribution of model parameters and augmented data is stud- 

ed by Markov chain Monte Carlo sampling from the perspective of 

ayesian. The data enhancement technology under Bayesian frame- 

ork has a hierarchical structure: (1) the observation level ensured 

hat the augmented data were consistent with the observed data, 

2) the transmission level described the underlying epidemic pro- 

ess, and (3) the prior level specified the distribution of the pa- 

ameters. This approach is a general framework that applies not 
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Fig. 2. Parameter estimates from transmission model. (A) Probability of transmission of the 2 individuals under different relationships (B) Transmission kernel. (C) Relative 

susceptibility for adults versus old people (those more than 60 years) (baseline) and females versus males (baseline). (D) The incubation period distribution estimated by 

the transmission model. 

Fig. 3. In total, 100 transmission trees were reconstructed according to the experimental results. (A) Accuracy of the transmission link. (B) The proportion of transmission 

events at different distances in Xinfadi agricultural products (XFD) B1 Hall. (C) The proportion of cases infected by people from household, colleague, XFD B1 Hall, or exposed 

space or from the unknown relationship. 
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nly to COVID-19 but also can be widely applied to extrapolate 

he transmission characteristics of other infectious diseases from 

issing data. The details of this approach can be designed for dif- 

erent scenarios. In our research, the collection of precise location 

ata greatly assists in investigating the outbreak. This helps us con- 

ider the heterogeneity of individual spatial distances in the model 

ramework rather than placing all individuals in a uniform space. 

hrough the reconstruction of the transmission tree, we fully ana- 

yze the characteristics of this outbreak from the perspective of in- 
415 
ividuals. The inference of the complete transmission tree can im- 

rove our understanding of the transmission characteristics of the 

pidemic and grasp the risk factors of the disease. This provides 

nsights into more targeted and cost-effective interventions. 

The XFD outbreak can be broadly divided into 2 stages. The 

rst stage was from May 28 to June 12. During this period, the 

pidemic started from the B1 Hall of the XFD Market and quickly 

pread among employees, visitors, and family members. Then the 

pidemic gradually spread to other regions of the XFD market and 



T. Luo, J. Wang, Q. Wang et al. International Journal of Infectious Diseases 116 (2022) 411–417 

Fig. 4. Reconstruction of the transmission tree. (A) Complementary cumulative distribution function (CCDF) of the number of secondary infections per infected individual. 

(B) The proportion of transmission by sex and age group. (C) The cumulative number of infections. (D) The distribution of the depth of transmission tree. (E) An example of 

a reconstructed transmission tree. 
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pread to the population outside the market in a short time, giv- 

ng to rise cases. The second stage was after June 12, when the first 

ase was confirmed, and the XFD market was closed. The transmis- 

ion rate in XFD market dropped significantly, whereas the spread 

rom outside the market to the city was continuous. Timely isola- 

ion measures and blockade of the source have reduced the scale 

f the epidemic and brought it under effective control. 

After constructing the entire transmission tree, the conclusion 

an be drawn that this outbreak is made up of multiple clustered 

ropagation events. The spread of the virus is largely driven by 

he movement of people in XFD market. The virus then continues 

o spread in the households, companies, and other public places. 

he B1 Hall of the XFD market hall is where the outbreak orig- 

nated and gathered. The transmission rate within this space is 

losely related to the distance between booths. When the booth 

istance exceeds 40 m, the transmission probability becomes very 

mall. In this transmission event, only 2.83% of the transmission 

xceeded 40 m. Transmissions between booths of more than 40 m 

epend mainly on the movement of people. Therefore, during the 

pidemic, vendors should pay special attention to the prevention 

nd control of nearby stalls and mobile visitors. 

Household transmission is a typical cluster transmission, and 

he transmission probability between family members is the high- 

st among the several relationships we set. Family transmission 

vents accounted for approximately 23.67% of the transmission 

vents, second only to the number of jointly exposed infectious 

vents in XFD market. In family transmission, the most common 

s between ages 20 and 60 years. Older people are significantly 
416 
ore susceptible than young people. Therefore, family prevention 

nd control and priority protection measures for the older people 

hould be paid more attention to. 

Two abnormally high propagation events occurred during this 

ropagation. One of the events source was an employee of the 

ooth where the infection originated, and the other events source 

as also an employee of the B1 Hall, an asymptomatic infected 

erson. These two cases infected up to 10% of the transmission 

vents. According to the investigation and analysis, the asymp- 

omatic patient had been infected as early as June 7, and the nu- 

leic acid positive was detected only on June 26. This shows that 

symptomatic patients still have a strong ability to infect in the 

symptomatic stage. Because there are no significant symptoms, 

he early prevention and control of asymptomatic patients are dif- 

cult. 

In general, we reconstructed the complete transmission chain 

f the second outbreak of COVID-19 in Beijing through Bayesian 

ata enhancement and unveiled the transmission characteristics of 

his epidemic through the analysis of the transmission chain. The 

onclusions from our study can guide the design of more targeted 

nd sustainable mitigation strategies. Our reconstructed transmis- 

ion models will help analyze risk factors for outbreaks and help 

alibrate future modeling effort s. 
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