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Abstract—The 2019 Novel Coronavirus Disease (COVID-19)
vaccines have been placed significant expectation to end the
COVID-19 pandemic sooner. However, issues related to vaccines
still need to be resolved urgently, including the vaccination num-
ber and range. In this paper, we proposed an epidemic spread
model based on the hierarchical weighted network. This model
fully considers the heterogeneity of the community social contact
network and the epidemiological characteristics of COVID-19
in China, which enables to evaluate the potential impact of
vaccine efficacy, vaccination schemes, and mixed interventions
on the epidemic. The results show that a mass vaccination can
effectively control the epidemic but cannot completely eliminate
it. In the case of limited resources, giving vaccination priority
to the individuals with high contact intensity in the community
is necessary. Joint implementation with non-pharmacological
interventions strengthening the control of virus transmission.
The results provide insights for decision-makers with effective
vaccination plans and prevention and control programs.

Index Terms—vaccination, COVID-19, hierarchical weighted
network, strategy evaluation, transmission model

I. INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) has rapidly spread globally due to high transmissibility
and pathogenicity [1]. As of 26 August 2021, the disease has
infected more than 200 million people across 216 countries
and territories. In response to the global public health and
economic crisis caused by the outbreak, governments across
the world have implemented a variety of nonpharmaceuti-
cal interventions, including lockdown, limited travel, social
distancing, and remote learning. Despite these efforts are
critical for slowing transmission in the short term, a vaccine
that protects against the SARS-CoV-2 and halts community
transmission is the most effective way to successfully prevent
and control the pandemic [2].

There are currently 135 vaccine candidates worldwide, six
of which have been evaluated for safety and efficacy by the
World Health Organization. But it is still unclear what levels
of vaccine efficacies will be sufficient to curb the spread of
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the virus. And it is critical that decision-making on vaccine
distribution is well-motivated, particularly in the initial phases
when vaccine availability is limited [3]. While most current
studies have focused on the performance of clinical trials of
vaccines, few articles have assessed the potential impact of
vaccine efficacy, vaccination schemes, and mixed interventions
on outbreaks. Clear answers to these questions surrounding
vaccines are required urgently because they could inform
decisions by national governments and thus effectively contain
outbreaks and reduce losses.

Mathematical models have been widely used for evaluating
the effectiveness of control strategies [4]. Through mathemat-
ical modeling, the epidemiological characteristics and trans-
mission mechanism of infectious diseases can be reflected.
And the scenarios considering distinct hypothetical conditions
that are impossible to analyze in real circumstances can be
tested [5]. In the past few decades, the design of mathematical
models of disease transmission has attracted the attention
of scholars. The classical SIS (Susceptible-Infect-Susceptible)
and SIR (Susceptible-Infect-Recovered) epidemic models orig-
inally proposed by Kermack [6] and Bailey [7] laid the founda-
tion for later development. With the deepening understanding
of epidemic diseases, some extended models have been applied
to predict and analyze the spread of disease, such as SEIR [8],
[9], SIRD [10], and SIVS [11] compartmental models. These
models, all based on assumptions of randomness and uniform
mixing, are appropriate for explaining the global behavior
of an epidemic on larger scales. Because populations have
underlying structural properties and individuals tend to interact
with each other, the interaction between individual behaviors
at the micro-level is considered in the model. The complex
network theory has been used in epidemiology [12]–[14]. In
the latest study, Nande [13] built a stochastic epidemic model
to examine the transmission network structure on the outcomes
of social distancing interventions.

However, limited studies used mathematical models to as-
sess the impact of COVID-19 vaccines on epidemic trends
and do not take into account realistic population-based het-
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Fig. 1. Schematic of the hierarchical contact network.

erogeneous contact patterns. Evaluation of vaccine strategies
is an important tool to assist authorities in making informed
decisions. To quantify the effectiveness of the vaccine strategy,
based on the patterns of community contact and the evolution
of the COVID-19 outbreak in China, this paper proposed a
SEINRHD (Susceptible, Exposed, Infectious, No symptoms,
Hospitalized and reported, Recovered, Death) transmission
model based on hierarchical weighted network. This network
explicitly characterizes the heterogeneity of social contact
networks, reflecting the differences in contact patterns of
individuals at the family level, social level, and community
level. The model was then used to conduct computational
experiments to evaluate the effects of vaccination on the
infection curve in various cases. We examined the impact of
vaccination rates, protection rates, vaccination schemes, and
mixed strategies of nonpharmaceutical control interventions on
outbreaks, respectively. Finally, some constructive suggestions
on the present stage of vaccination are provided according to
the experimental results. This study is timely and significant to
the understanding of vaccination scheme choices to pandemic
evolution.

II. METHODS

A. Constructing the hierarchical contact network with edge
weights

In the modeled network structure, we aimed to incorpo-
rate the pattern of transmission of COVID-19 in a Chinese
community. We constructed a weighted three-layer network,
consisting of a layer for within-household connections, social
connections, and community connections (Fig. 1). Then, con-
sidering the strength of the connections that cause different

propagation possibilities, we set weights for the edges in the
network. In our simulation, the number of individuals in the
network was set to n=10000, which can represent a typical
community size [13].

Household layer: Individuals were first assigned households
using the distribution of household sizes in China (data ob-
tained from the 2019 China National Population Sampling
Survey). The distribution of family size is shown in Fig. 2.
All individuals in a household were interconnected. Then, we
set a network tie strength (edge weight), which represents the
intensity of a possible transmission over household ties to be
1 as a default [15], [16].

Social layer: The social layer represents the social contacts
of people. Friends, coworkers, and classmates who study,
work, or are in close contact with this node. On this layer, the
degree distribution of nodes follows the social contact survey
by Sun [17]. These connections constitute total social contacts
for the individuals and can be considered as close ties [18].
we set the network tie strength of close ties to be 0.5, as the
secondary attack rate of close ties is around half of the tie
strength of family ties [18].

Community layer: This layer constitutes the additional
random contacts an individual has during the course of their
day. For example, customers or employees who interact with
this individual in restaurants, entertainment venues, or other
service settings. On this layer, the degree distribution of nodes
follows the community contact survey by Sun [17]. Since the
frequency of encounters is much lower than in the previous
two layers, the connections in this layer are considered as weak
ties. The past literature [15] shows that the secondary attack
rate or the possibility of transmission more broadly of family
ties is 10 times as high as that of weak ties. The tie strength
of weak ties is set as 0.1.

B. Modeling the transmission and clinical progression of
COVID-19

We extended the classic SEIR compartmental epidemiolog-
ical model (susceptible (S), exposed (E), clinically ill and
infectious (I), and recovered (R)) to describe the dynamics
of COVID-19 infection in China. Considering the spread
characteristics and treatment strategies of COVID-19 in the

TABLE I
MODEL PARAMETERS

Variable Meaning Values
ω1 Proportion of no symptoms 27.3%

ω2 Proportion of mildly symptoms 55.9%

ω3 Proportion of severely symptoms 10.0%

ω4 Proportion of critically symptoms 6.8%

Te Incubation period (days) N (5.1, 1)

µ2 Symptomatic infection period (days) 7

µ1 Asymptomatic infection period (days) 7.5

δc Mortality rate of criticallysymptoms 53.4%

β Propagation rate 0.0665
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Fig. 2. (a)-(b) The distribution of the number of distinct contacts (degree
distribution) of the individuals in community layer and social layer. (c) The
distribution of household size.

Chinese environment, SEINRHD model added no symptoms
status (N), hospitalized and reported (H), and death (D) status,
and classified the symptomatic status according to the severity
of the disease (Fig. 3). Table I presents the value of model
parameters. After infection, individuals pass through an ˜5-day
incubation period before developing an infection. Infectious
individuals are divided into either no symptomatic or different
symptomatic groups: mild, severe, or critical symptoms. The
proportion of Infectious individuals was summarized from the
previous literature [15], [19]–[24], and http://wjw.sz.gov.cn/.
The incubation period in our model followed a truncated nor-
mal distribution with a mean of 5.1 and a variance of 1 [25]–
[27]. The symptomatic patients are hospitalized and diagnosed
within an average delay of 7 days, and the asymptomatic
patients become recovered after an average period of 7.5 days
[27]. Both recovered and hospitalized individuals are no longer
capable of infection. Among hospitalized individuals, only
critically patients are likely to die [19], and the mortality
rate of critical patients is 53.4% [19]–[21], [26], [28]. The
remaining patients recover and become immune after a period
of treatment. All parameters in the model are consistent with
epidemiological studies of COVID-19.

C. Converting R0 to β for network-based propagation model

The reproduction number R0 is defined as the average
number of new infections generated by one infected individual
during the entire infectious period in a fully susceptible popu-
lation. Propagation rate β means the probability of transmitting
the virus per day per network tie. R0 for the network-based
SEINRHD is given by [29]:

R0 = β ×N × τ (1)

Where, β represents the average duration of infectiousness
and N means the number of network ties per infectious
individual. is given as below when the model employs a
structured social network as its framework [30]:

N = m+
s2

m
(2)

The “network N” here incorporates the mean degree (m) as
well as the SD (s) of the degree distributions. In our model,
we obtained the network N of 6.55. Then, we calculated β =
0.0665 using (1).

D. Setting up the parameters and simulation scenarios

In the vaccine strategy evaluation experiment, we assumed
that the individuals protected by the vaccine would not become
infected and would not be capable of transmission. People who
were given the vaccine were already completed vaccination of
all injections. Experimental parameters are shown in Table II,
where rho represents the proportion of vaccination. r repre-
sents the protection rate of the vaccine. There are two ways
of vaccination: random and targeted. Random refers to the
random vaccination in the population, and the targeted refers to
the priority vaccination of individuals with high contact in the
community-layer network. d1 represents the reduced contact
intensity of the community layer. d2 represents the reduced
contact intensity of the social layer. In all experiments, the
default protection rate is set to 65.9% [18].

The experiment is measured in days. Experiment 1 studied
the effect of vaccination rate on disease transmission. Ex-
periment 2 studied the influence of vaccination way on the
epidemic situation. Experiment 3 studied the effect of vaccine
protection rate on disease transmission, and Experiment 4 stud-
ied the effect of mixed strategies on disease transmission. The
results of each group of experiments are the statistical results
after 1000 simulations under the setting of this parameter. The
total duration of all experiments was 180 days.

III. RESULTS

A. A mass vaccination can curb the outbreak and reduce the
pressure of hospitalization

We first considered the impact of the COVID-19 vaccination
rate on the scale of the epidemic and its peak. Fig. 4(a) shows
the progression of the epidemic under different scenarios. We
call the case of no vaccination as the benchmark scenario.

The 100th day, rising epidemic, relative to the benchmark,
infection density after vaccination was reduced by 45.5%
(ρ = 25%), 73.8% (ρ = 50%), 89.5% (ρ = 75%), 98.1%
(ρ = 100%) (Fig. 4(a)). On day 150, the epidemic reached
a plateau with almost no new cases. Compared with the
benchmark, the overall scale of infection per 10,000 people
decreased by 1027.4(ρ = 25%), 1899.4 (ρ = 50%), 2833.5
(ρ = 75%) and 3805.3 (ρ = 100%) (Fig. 4(a)). Overall, a
population vaccination rate of 50% would reduce the epidemic
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Fig. 3. The SEINRHD model of epidemic progress.

TABLE II
MODEL PARAMETERS PER EXPERIMENT

Experiment Schemes Values
Exp 1: 0 ρ = 0

r = 65.9% 1 ρ = 25%

d1 = d2 = 0 2 ρ = 50%

random 3 ρ = 75%

4 ρ = 100%

Exp 2: 1 ρ = 10%, random
r = 65.9% 2 ρ = 10%, targeted
d1 = d2 = 0 3 ρ = 25%, random

4 ρ = 25%, targeted

Exp 3: 1 r = 65%

ρ = 50% 2 r = 75%

d1 = d2 = 0 3 r = 85%

random 4 r = 95%

Exp 4: 1 ρ = 50%

r = 65.9% 2 ρ = 75%, d1 = 0,d2 = 0

d1 = d2 = 0 3 ρ = 50%, d1 = 25%, d2 = 0

random 4 ρ = 50%, d1 = 50%, d2 = 0

5 ρ = 50%, d1 = 50%, d2 = 50%

by 43.6% compared with no vaccination at all. Full vaccination
could reduce the number of cases by 87.2 % .

Compared with the benchmark, when the vaccine coverage
rate reaches 50% in the population, the peak number of new
infections will be reduced by 56.6% and the peak number
of new hospitalizations will be reduced by 54.4% (Fig. 4(f)).
When the vaccine is fully covered, the peak number of new
infections will be reduced by 92.7%, and the peak number of
new hospitalizations will be reduced by 91.9% (Fig. 4(f)).

B. In the case of limited vaccines, priority should be given
to the allocation of vaccines according to the role of the
community

Secondly, considering a very practical problem, in the initial
stage of vaccine use, vaccines cannot be supplied on a large
scale. Which groups of people should be given priority to
allocate the small part of the vaccine to be more conducive to

the control of the epidemic? Therefore, we studied the impact
of vaccination schemes on the development of the epidemic.
In Experiment 2, we studied the progression of epidemics
under both random and targeted vaccination modes at 10%
and 25% vaccination rates (Fig. 4(b)). In random vaccination,
when the vaccination rate is 10%, we can find that due to the
low vaccination rate, compared with the benchmark (ρ = 0),
the final outbreak scale is only reduced by 7.4%. However,
if targeted vaccination is adopted, community workers, public
place attendants, etc. are given priority for vaccination, and the
final scale will be reduced by 17.7%. When the vaccination
rate is 25%, compared with random vaccination, targeted vac-
cination can reduce infections by 16.8% (Fig. 4(b)). When the
vaccination rate is 10%, compared with random vaccination,
targeted vaccination will reduce the peak number of new infec-
tions by 21.2%, and the peak number of new hospitalizations
by 20.5%. When the vaccination rate is 25%, 23.4% and 23.2%
are reduced accordingly. Analyzing from multi-dimensional
indicators (Fig. 4(b)(e)(f)), when 10% targeted vaccination is
carried out, the effect of random vaccination can be close to
25%.

C. The vaccine protection rate should be further increased to
reduce losses

In the first set of experiments, we found that when the
vaccination rate reached 100%, it still infected about 5.8%
of the population, and those individuals who were vaccinated
but not protected were still at risk of infection. According to
empirical studies, the protection rate of current vaccines on
the market is between 65% and 95%. We simulated epidemic
trends under different vaccine protection rates. In Experiment
2, The vaccine protection rates were 65%, 75%, 85% and 95%,
respectively. Other parameters were fixed. Fig. 4(c) shows the
progression of the epidemic under different scenarios. The
effect of the vaccine protection rate on the total scale of
infection was uniform. A 10% increase in vaccine protection
was associated with an average 5.4% reduction in morbidity
per 10,000 population, an average 18.7 reduction in peak
new infections and an average 12.7 reduction in peak new
hospitalizations (Fig. 4(e)(f)).

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on July 12,2022 at 08:47:06 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 4. (a)-(d) Infection status changes in density of infection. The lines represent the mean density of infection per 10,000 people, while the shaded areas
represent the 95% reference range. (e)-(f) The peak number of daily newly infected individuals and reported individuals. Bars represent 5th and 95th percentile.

D. The mixed strategy of social distancing and vaccination
can achieve the best prevention and control effect

As can be seen from the results of the first three experi-
ments, if only vaccine intervention was implemented, there are
very high requirements for vaccine production and vaccination
scale to achieve good control effects, and it is a great challenge
for human and material resources. So, we continue to study
the impact of mixed strategies combined with social distancing
on the epidemic curve. In the case of a 50% vaccination rate,
a 50% reduction in community-layer contacts resulted in a
11.4% reduction in cumulative infection density, and a 50%
reduction in social-layer contacts resulted in a 24.8% reduction
in cumulative infection density. When 50% of the community
layer and 50% of social layer contacts were reduced, the
cumulative infection density will reduce by 82.2% (Fig. 4(d)).
The scale of infection at this time was much lower than the
75% vaccination rate under the single vaccination strategy
and close to the outbreak scale under the 100% vaccination
strategy. Compared with the single strategy, the number of
deaths under the three mixed strategies decreased by 8.3%,
23.3%, and 72.6%, respectively.

IV. DISCUSSION

As SARS-CoV-2 continues to spread globally, pharmaceu-
tical companies are also racing to produce safe and efficient
vaccines to combat the spread of disease. Pfizer Inc BioNTech,
and Moderna have announced positive results from the first
interim analyses of their Phase 3 vaccine trials. These results
are more reflected at the individual level. In order to quan-
tify the effectiveness of vaccination for the entire pandemic,
our study used a SEINRHD model based on a hierarchical
weighted network to simulate COVID-19 spreading in Chinese

communities and assessed the effect of vaccination on pan-
demic reduction. This research aims to provide evidence for
future decisions. However, since the obtained data is collected
in Chinese communities, the model might not be accurately
applicable to other countries.

Experimental results show that the implementation of vacci-
nation intervention can effectively control the epidemic. When
a large-scale vaccination is carried out, the outbreak can be
controlled within a small area. However, due to the limited
protection rate of the vaccine, even the complete vaccination
of the population will not eliminate the epidemic.

When the vaccine protection rate is further increased, the
scale of the outbreak decreases linearly. The lower the effec-
tiveness of the vaccine, the more people need to be vaccinated
to eliminate the peak of infection. Under the same vaccination
rate, the effect of targeted vaccination strategy is significantly
better than random vaccination. Compared with the scheme
when solely considering vaccination, the integrated measures
mixed with social distancing are more conducive to the control
of the epidemic. On the basis of vaccination, it is more
effective to limit the social contact than to the community
contact. At the same time, the effect of limit the contact of
social layer and the community layer is higher than the sum
of the two schemes implemented separately.

For public health guidance, regardless of the vaccine, the
introduction of vaccination has reduced the scales of in-
fections. A high protection rate can contain the epidemic
more efficiently. It highlights the necessity of vaccination
and improving the protection rate of vaccines. However, the
government should consider that when the vaccine is first put
into use, it often faces a decline in public confidence in the
vaccine, which may lead to hesitation in vaccination. On the
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other hand, due to the limited supply of vaccines, especially in
the early stages of deployment, most authorities must choose
between priority plans for vaccination. We can represent the
coupling interaction of individuals in the family, social circles,
and communities as a hierarchical weighted network based on
case investigations. Accordingly, we can clearly understand
the roles that individuals play in different layers. Individuals
with larger degree in the community layer are mostly workers
in departments such as medical services, food services, and
accommodation. They have a higher risk of being infected
as they contact more people in their work environment. The
results of targeted vaccination show that this strategy can solve
the shortage of vaccines and maximize the relative effect.

Due to the inability of vaccination to completely contain
the epidemic and resource constraints, relevant departments
can appropriately implement integrated measures combined
with non-pharmaceutical interventions. In addition to those
individuals reduce their contact with people at the community
level, they should also avoid unnecessary contacts at the social
level. When the scale of vaccination is insufficient, relevant
departments can formulate implementation strategies after
cost analysis. In summary, our model provides individuals,
governments, and organizations with strategic insights into
vaccination during a pandemic.
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