
 
 

 

 

  

Abstract—An analytic flying model that can well represent 
the physical behavior is derived, where the ball’s self-rotational 
velocity changes along with the flying velocity. Based on the 
least square method, a rebound model that represents the rela-
tion between the velocities before and after rebound is estab-
lished. The initial trajectory is fitted to three second order 
polynomials of the flying time with the measured positions of the 
ball. The initial velocities of the ball in the analytic flying model, 
including the flying velocity and the self-rotational velocity, are 
computed from the polynomials. The ball’s landing position and 
velocity is predicted with the model. The velocities after re-
bound are determined with the rebound model. By taking the 
velocities after rebound as new initial ones, the flying trajectory 
after rebound is described with the model again. In other words, 
the ball’s trajectory is predicted. Experimental results verify the 
effectiveness of the proposed method.  

Index Terms—Trajectory prediction, spinning ball, flying 
modeling, rebounding modeling, least square method, 
ping-pong player robot. 

I. INTRODUCTION 
VER the past few years, the ping-pong robotic system 
has received much attention [1]-[8]. Anderson [1] de-

signed a ping-pong player robot, which used the robotic arm 
PUMA 260. Acosta et al. [2] built a low-cost ping-pong 
player robot. Only one camera was used to detect the ball. 
Moreover, the expert module was applied. Zhang et al. [3] 
designed a 5-degree of freedom (DOF) ping-pong player 
robot, in which a distributed parallel processing vision system 
was developed. There was a computer that received the ball’s 
image coordinates from two cameras through the local area 
network and calculated its 3-dimension (3-D) position online 
in the reference frame. Matsushima et al. [4]-[6] designed a 
4-DOF ping-pong player robot and proposed a learning 
method that consisted of three input-output maps. The 
method could control the paddle to return the ball to a desired 
landing point with a specified flight time. Mulling et al. [7], 
[8] designed a 7-DOF ping-pong robotic arm that could 
mimics human striking behavior. 

Trajectory prediction for the flying ball is one of the key 
techniques in a ping-pong robotic system. The prediction 
results affect the performance of the robot greatly. It is well 
known that the Magnus effect on a sphere arises due to spin, 
the Magnus force that perpendicular to the ball’s spin axis 
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and its flying direction will cause the ball to change its flying 
direction. So the Magnus effect should be considered suffi-
ciently for predicting the trajectory of the spinning ball. Tra-
jectory prediction of non-spinning ball was studied in [3], in 
this case, the Magnus effect was neglected. The rebound 
model was also discussed therein, although the rotational 
velocity was not mentioned therein, the relation of the flying 
velocities just before and after the rebound could be seen as a 
compromise between the spinning and non-spinning cases, 
because the flying velocities used for computing the relative 
parameters were measured under both conditions. Nonomura 
et al. [9] studied the influence of the Magnus force assuming 
that the rotational velocity was measured and calculated.  

The difficulty in studying the Magus effect is the meas-
urement of the rotational velocity, because it seems that the 
rotational velocity has nothing to do with the flying velocity 
and the position. Nakashima et al. [10] provided a method of 
detecting the rotational velocity and derived an analytical 
model that represented the relation between the flying and the 
self-rotational velocities of the ball just before and after the 
rebound. The ball was marked with some feature points. 
These points were recognized in the image through image 
processing, then the rotational velocity was calculated. A 
marked ball was also used for measuring the rotational ve-
locity in [11]. High speed multiple cameras with the capturing 
rate 900 frames per second (FPS) [10] or 1200 FPS [11] are 
needed to capture the image of the ball with marks. Tian [12] 
studied the detection of the rotational velocity through the 
flight trajectory. The rotational velocity during the flight was 
supposed to be constant in the reference frame, which meant 
the spin axis would not change. However, according to the 
experience and observation, it can be concluded that the spin 
axis will always be changing during the entire flight. 

In this paper, we attempt to model the ball’s flying trajec-
tory and estimate its self-rotational velocity. In our model, the 
ball’s self-rotational velocity changes along with its flying 
velocity in the reference frame. A rebound model based on 
the least square method (LSM) is proposed, where the flying 
and self-rotational velocities just before and after the rebound 
are both considered. 

The rest of this paper is organized as follows. Section II 
proposes the flying model of the spinning ping-pong ball. In 
section III, the rebound model between the velocities just 
before and after rebound is discussed. In section IV, the entire 
trajectory prediction is described. In section V, the experi-
ments are provided to verify the effectiveness of the proposed 
method. Finally, a conclusion is given in section VI. 
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II. THE FLYING MODEL OF PING-PONG BALL 
When the spinning ping-pong ball is traveling in the air, it 

is understandable that the spin axis will change along with its 
flying velocity. In this section, a dynamic frame {B} is as-
signed on the ball, as shown in Fig. 1. The axis Yb is parallel 
to the flying direction and towards to the opponent side of the 
robot. The axis Xb is parallel to the table plane and towards 
right side of the robot. It is sure that the ball’s rotational 
velocity can be treated as a constant in the frame {B}. The 
reference frame {R} is assigned at some place on the table. 
The axes Yr and Xr are parallel to the table sides, and Yr is 
from the robot to human.  

 

 
 

Fig. 1. The reference and the ball frames 
 

Denote the flying velocity of the ball in the frame {R} as 
T

x y zv v v v⎡ ⎤= ⎣ ⎦ . For the unit vector of axis Yb in the frame 
{B}, it is written as (1) in the reference {R}. 
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as follows: 
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Similarly, the unit vectors of axes Yb and Zb in the frame 

{B} can be expressed in the reference {R} as follows: 
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where 2 2

xy x yv v v= + , then the rotation matrix is obtained: 
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Denote the self-rotational velocity of the ball in the frame 

{B} as Tb b b b
x y zω ω ω ω⎡ ⎤= ⎣ ⎦ . Using the rotational matrix, the 

ball’s rotational velocity rω  in the frame {R} is obtained: 
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While in the air, the flying ball is subject to a net force 

given by the formula: 
 

g D MF F F F= + +                               (7) 
 

where gF , DF  and MF represent the gravitational, drag and 
Magnus forces, respectively. 

In the frame {R}, gF , DF  and MF  are given by [14], [15]: 
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where m is the mass of the ball, g is the acceleration due to 
gravity, DC  is the drag coefficient, ρ is the density of air, A 
is the ball’s cross-sectional area, MC  is the Magnus coeffi-
cient and r is the ball’s radius.  

The term rω×v can be calculated as 
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( ) ( )r r T r b
xzv v v vω ω ω ω× = × × =            (12) 

 
where 2 2b b b

xz x zω ω ω= + . 
From (11) and (12), we have 
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Noticing (6) and taking the properties of rotational matrix 

into consideration, we have 
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Based on the above discussion, an analytical model is de-

rived from (8), (9), (10), (13) and (14). 
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The discrete form of (15) is 
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where 
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= ; sT is sampling period; x(k), y(k) 

and z(k) are the ball’s position in the frame {R} at k-th sam-
pling; v(k)=[vx(k)  vy(k)  vz(k)]T is the ball’s flying velocity at 
k-th sampling. 

Until now, a flying model has been derived, but the rota-
tional velocity is still unknown. From the last three equations 
in (16), we have 
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If vx(k), vy(k), vz(k) and vx(k+1), vy(k+1), vz(k+1) in (17) are 
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square method (LSM).  
Supposing that a series of coordinates x(t), y(t) and z(t) is 

measured. To fit polynomials to the measured data, we have 
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where ai, bi and ci, i=1,2…n, are the polynomial coefficients. 
Then the velocities are obtained: 
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With the velocities in different sampling moments obtained 

from (19), 
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Observe (7), (8), (9) and (10), it can be found that 
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The discrete form of (23) is 
( 1) ( ) ( ) ( )
( 1) ( ) ( ) ( ) *

( 1) ( ) ( ) ( )

T
x x d x s

y y d y s

z z s d z s

v k v k k v k v k T
v k v k k v k v k T

v k v k gT k v k v k T

⎛ + − + ⎞
⎜ ⎟

+ − +⎜ ⎟
⎜ ⎟+ − + +⎝ ⎠

 

sgn( ( )) ( ) sgn( ( )) ( ) ( ) ( )
( ) ( ) ( ) ( )

sgn( ( )) ( ) sgn( ( )) ( ) ( ) ( )
( ) ( ) ( ) ( )

sgn( ( )) ( ) ( )
0

( ) ( )

y y y x x z

xy xy b
x

y x y y y z b
y

xy xy b
z

y z xy

v k v k v k v k v k v k
v k v k v k v k

v k v k v k v k v k v k
v k v k v k v k

v k v k v k
v k v k

ω
ω
ω

⎛ ⎡ ⎤−
⎜ ⎢ ⎥
⎜ ⎢ ⎥ ⎡ ⎤⎜ ⎢ ⎥− − ⎢ ⎥⎜ ⎢ ⎥ ⎢ ⎥⎜ ⎢ ⎥ ⎢ ⎥⎜ ⎢ ⎥ ⎣ ⎦

⎢ ⎥
⎢ ⎥
⎣ ⎦⎝

0

⎞
⎟
⎟
⎟
⎟ =⎟
⎟

⎜ ⎟
⎜ ⎟⎜ ⎟

⎠

    (24) 

  
  Denote { }r

b ijR R= , i, j=1, 2, 3, 
 

1

2

3

1 1 11 2 21 3 31

2 1 12 2 22 3 32

( 1) ( ) ( ) ( )
( 1) ( ) ( ) ( )
( 1) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

x x d x s

y y d y s

z z s d z s

m v k v k k v k v k T
m v k v k k v k v k T
m v k v k gT k v k v k T
n m R k m R k m R k
n m R k m R k m R k

= + − +           
= + − +          
= + − + +

= + +                 
= + +              

3 1 13 2 23 3 33( ) ( ) ( )n m R k m R k m R k

⎧
⎪
⎪
⎪⎪
⎨
⎪
⎪   
⎪

= + +                ⎪⎩

         (25) 

 

3436



 
 

 

 

1

2 3 1 1 2

3

1 2 3

( ) /

1
[ ]

b
x

b
z

b
y

b
z

T

e

e n n e n

e
e e e e

ω
ω

ω
ω

⎧
=                              ⎪

⎪
⎪⎪

= = − −⎨
⎪
⎪ =                                   
⎪

=                ⎪⎩

                                      (26) 

 
/ sgn( / )b b b

e z xze eω ω ω=                               (27) 
 
From (20), (21) and (24), it can be proved that 
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III. THE REBOUND MODEL BETWEEN BALL AND TABLE 
In this section, the rebound model between the spinning 

ball and the table is discussed. The model represents the 
relation between the flying and self-rotational velocities 
( xoutv , youtv , zoutv , b

xoutω , b
youtω , b

zoutω ) just after rebound and the 
velocities ( xinv , yinv , zinv , b
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zinω ) just before rebound. 
Take the physical properties corresponding to the rebound 

phenomenon into consideration, the rebound model is de-
scribed as 
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where 3 , 1,2, 4,5ib R i∈  = , 2 , 3,6jb R i∈  = . 

Fitting several measured positions before rebound, a group 
of the flying and self-rotational velocities just before rebound 
are calculated with (17), (19), (20), (21), (27) and (28). 
Similarly, a group of velocities just after rebound are calcu-
lated through fitting several measured positions after rebound. 
Once the velocities in (29) have been computed, the pa-
rameters bi are obtained with the LSM. 

After the rebound parameters bi are completed, the output 
velocities ( xoutv , youtv , zoutv , b

xoutω , b
youtω , b

zoutω ) just after re-
bound are calculated using (29) when the new input velocities 
( xinv , yinv , zinv , b

xinω , b
yinω , b

zinω ) just before rebound are 
given. 

IV. THE TRAJECTORY PREDICTION 
In section II and III, we have discussed the flying model of 

ping-pong ball and the rebound model between ball and table. 
In this section, the entire procedure of trajectory prediction is 
described in the following steps. 

Step 1: A series of measured positions are needed from the 
ball’s flying trajectory, which can be obtained using the ste-
reo vision system. These positions are treated as the initial 
trajectory and select one position from it as the initial one. 

Step 2: Fitting three second order polynomials to the initial 

trajectory using (18), then the initial flying velocity is calcu-
lated using (19). According to (17), (19), (20), (21), (27) and 
(28), initial self-rotational velocity is obtained using two 
flying velocities in adjacent sampling moments. 

Step 3: Predict the ball’s flying trajectory from the initial 
state using (16). Once z(k) reaches the ball’s radius, the ball 
lands on the table. The position x(k), y(k) and z(k) at this 
moment is called landing position and the flying velocity 
just before rebound is computed. 

 Step 4: According to (29), the velocities including the 
flying velocity and the self-rotational velocity just after re-
bound are calculated as new initial ones. The prediction 
proceeds with (16) again. 

Step 5: Select a striking position from the predicted tra-
jectory after rebound, this point is used for striking the 
ping-pong ball by the robot player. 

V. EXPERIMENTS AND RESULTS 
In this experiment, a distributed parallel processing stereo 

vision system was used, which could measure the 3-D posi-
tions of the flying ball online.  

Before the prediction, several entire trajectories were 
measured, then the velocities just before and after rebound in 
(29) were computed. The rebound parameters were estimated 
with LSM as follows 
b1 =[ 0.6278   -0.0003  -0.0344]T, b2 =[ 0.7796    0.0011   0.3273]T 
b3 =[-0.5498    0.8735]T, b4 =[ 7.4760    0.1205   39.4228]T 
b5 =[-22.9295  0.1838  -13.4791]T, b6 =[-0.3270    39.9528]T 

 

The other relative experiment parameters were given as 
follows 
m=0.0027kg, g=9.802m/s2, CD=0.5, CM=1, r=0.02m, A=0.0013m2, 
ρ=1.29kg/m3, Ts=1ms. 

A series of experiments was conducted to compare the 
proposed method with the method in [3], in which the ball 
was with heavy self-rotation. In experiments, the ball’s posi-
tions on the flying trajectory were continuously measured in 
order to assess the predicted results with the proposed method 
and the method in [3]. In the prediction procedure, only the 
first several measured positions of the ball’s trajectory were 
used, they were used to fit initial trajectory. The sequent 
trajectory in each experiment was predicted with the pro-
posed method and the method in [3]. The results of the flying 
and self-rotational velocities just before and after the rebound 
predicted with the proposed method were listed in Table I, 
while the flying velocities predicted by the method in [3] 
were listed in Table II. It can be found that the velocities just 
before and after the rebound predicted with the proposed 
method are coincide with the results with the method in [3], 
the self-rotational velocities can be given by the proposed 
method. Here, the actual self-rotational velocities were not 
known since the ball was struck by the human opponent. But 
the estimated velocities could be verified by comparing the 
predicted trajectories with actual ones. It means that if the 
predicted trajectories coincided well with the actual ones, the 
velocities were estimated properly. The landing and striking 
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positions errors were calculated next, these results reflected 
the precision of the predicted velocities to some extent. 

 
TABLE I  

FLYING AND ROTATIONAL VELOCITIES PREDICTED WITH THE PROPOSED METHOD 

No (vxin, vyin, vzin) 
m/s 

(ωxin , ωyin, ωzin) 
rad/s 

(vxout, vyout, vzout) 
m/s 

(ωxout,ωyout,ωzout) 
rad/s 

1 0.92, -2.89, 
-2.46 

-39.85, -9.21, 
1.91 0.54, -1.97, 2.22 12.98, -36.19, 

39.33 

2 -0.20, -3.03, 
-2.57 

-43.34, -28.42, 
29.87 

-0.15, -2.08, 
2.28 

11.53, -14.09, 
30.19 

3 0.45, -3.21, 
-2.60 

27.78, -25.26,   
0.07 

0.26, -2.14,    
2.31 

18.77, -28.45,  
39.93 

4 0.72, -2.96, 
-2.61 

52.33, 20.46, 
0.64 0.41, -1.92, 2.31 23.61, -26.29, 

39.74 

5 0.41, -3.14,  
-2.64 

-23.19, -38.59,  
79.71 

0.24, -2.14,  
2.32 

13.17, -30.16, 
13.89 

6 0.29, -2.70, 
-2.50 

-38.07, -28.61,  
32.62 

0.16, -1.82,  
2.25 

14.67, -25.46,  
29.29 

7 -0.27, -2.71, 
-2.59 

-32.26, -41.99,  
32.28 

-0.19, -1.82,  
2.30 

15.24, -15.12,  
29.40 

8 -0.41,   -3.04,  
-2.86 

-45.19, -13.47,  
10.97 

-0.29, -2.09,  
2.45 

11.24, -6.52, 
36.37 

9 -0.46, -2.64, 
-2.98 

-45.89, -18.06, 
53.94 

-0.32, -1.78, 
2.51 

14.19, -6.19,  
22.31 

10 -0.24, -3.07, 
-2.62 

-43.32, -29.35, 
1.41 

-0.18, -2.11,  
2.31 

11.28, -13.34,  
39.49 

11 -0.52, -3.18, 
-2.68 

-19.41, -55.60, 
9.88 

-0.35, -2.17,  
2.35 

13.29, -11.73,  
36.72 

12 -0.35, -3.17,   
-2.64 

-52.17, -0.19,  
24.67 

-0.25, -2.20,  
2.32 

9.47, -5.48, 
31.89 

 
TABLE II  

FLYING VELOCITIES PREDICTED WITH THE METHOD IN [3] 
No (vxin, vyin, vzin) m/s (vxout, vyout, vzout) m/s 
1 0.66, -2.96, -2.45 0.45, -1.92, 2.20 
2 -0.39, -3.06, -2.49 -0.23, -1.98, 2.23 
3 0.23, -3.23, -2.61 0.17, -2.09, 2.31 
4 0.38, -3.02, -2.62 0.27, -1.95, 2.32 
5 0.34,-3.27, -2.44 0.24, -2.11, 2.20 
6 0.22, -2.74, -2.46 0.17, -1.77, 2.21 
7 -0.41, -2.76, -2.51 -0.24, -1.78, 2.25 
8 -0.67, -3.02, -2.83 -0.41, -1.95, 2.47 
9 -0.62, -2.70, -2.88 -0.37, -1.74, 2.51 
10 -0.40, -3.05, -2.62 -0.24, -1.97, 2.32 
11 -0.76, -3.18, -2.61 -0.46, -2.05, 2.32 
12 -0.54, -3.18, -2.58 -0.32, -2.05, 2.30 

 
Because the ball’s radius was 20 mm, the landing position 

in z-direction was 20 mm. The striking position in z-direction 
was defined to be 250 mm. Fig. 2(a) shows the measured 
landing positions and the landing positions predicted with the 
proposed method and the method in [3] in X-Y plane. Fig. 2(b) 
shows the errors of the landing positions predicted with the 
two methods. The error was the distance between the pre-
dicted and the measured positions. Fig. 2(c) shows the 
measured striking positions and the striking positions pre-
dicted with the proposed method and the method in [3] in 
X-Y plane. Fig. 2(d) shows the errors of the striking positions 
predicted with the different methods. It can be seen from Fig. 
2(b) and 2(d), the proposed method performs much better 
than the method in [3]. For the method in [3], the errors of the 
landing positions are small, because the self-rotational ve-
locity affects the flying trajectory slightly. After the rebound, 
the errors of the striking positions are large. As known, the 

flying velocity changes rapidly just after rebound due to the 
ball’s self-rotational velocity. If the rotational velocity is not 
considered sufficiently, the predicted trajectory after rebound 
will largely deviate from the actual one.  

The actual trajectory and predicted trajectories in experi-
ments are given in Fig. 3. In Fig. 3(a) and 3(b), the maximum 
errors of the trajectory predicted with the method in [3] were 
(-117.32, 8.42, -28.88) mm and (56.55, 5.36, 19.25) mm 
respectively, while the errors of the trajectory predicted with 
the proposed method were (7.90, 6.56, -46.28) mm and (1.51, 
-15.13, 5.29) mm. The direction of self-rotation velocity that 
mainly affect the trajectory in Fig. 3(a) was opposite to the 
one in Fig. 3(b), thus, one trajectory appeared right deviation 
while the other one was left deviation. 
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Fig. 2. Landing and striking positions. (a) Landing positions. (b) Errors of the 
landing positions. (c) Striking positions. (d) Errors of the striking positions. 
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Fig. 3. Actual trajectory and predicted trajectories. (a) First trajectory com-
parison. (b) Second trajectory comparison. 
 

Due to the error of initial velocity computed from the (19), 
the flying velocity and self-rotational velocity are not quite 
accurate, the errors of landing and striking positions are un-
avoidable. More measured positions used for fitting the 
polynomial in (18) will be useful for improving the precision. 
Moreover, the measured positions are affected by several 
factors such as the camera calibration. 

VI. CONCLUSIONS 
An analytic flying model that can well represent the 

physical behavior is proposed. The ball’s self-rotational ve-
locity is estimated from its flying trajectory. The rebound 

model is established using LSM, where a linear relation be-
tween the flying and self-rotational velocities just before and 
after rebound is implemented. The entire procedure of tra-
jectory prediction is described in detail. Experiment shows 
the effectiveness of the proposed method, the prediction of 
landing position and striking position performs satisfactorily. 

REFERENCES 
[1] R. L. Anderson, A Robot Ping-Pong Player: Experiments in Real Time 

Control. Cambridge, MA: MIT Press, 1987. 
[2] L. Acosta, J. J. Rodrigo, J. A. Mendez, G. N. Marichal, and M. Sigut, 

“Ping-pong player prototype,” IEEE Robotics & Automation Magazine, 
vol. 10, no.4, pp. 44-52, 2003. 

[3] Z. Zhang, D. Xu, and M. Tan, “Visual measurement and prediction of 
ball trajectory for table tennis robot,” IEEE Transactions on Instru-
mentation and Measurement, vol. 59, no. 12, pp. 3195-3205, 2010. 

[4] M. Matsushima, T. Hashimoto, M. Takeuchi, and F. Miyazaki, “A 
learning approach to robotic table tennis robotics,” IEEE Transactions 
on Robotics and Automation, vol. 21, no. 4, pp. 767-771, 2005. 

[5] M. Matsushima, T. Hashimoto, and F. Miyazaki, “Learning to the robot 
table tennis task-ball control & rally with a human,” in Proc. IEEE Int. 
Conf. on Systems, Man and Cybernetics, Washington D.C., USA, 2003, 
pp. 2962-2969.  

[6] F. Miyazaki, M. Matsushima, and M. Takeuchi, “Learning to dynami-
cally manipulate: a table tennis robot controls a ball and rallies with a 
human being,” Advances in Robot Control, Springer, 2006. 

[7] K. Mulling, J. Kober, and J. Peters, “Simulating human table tennis 
with a biomimetic robot setup,” Lecture Notes in Computer Science, 
Springer, 2010. 

[8] K. Mulling and J. Peters, “A computational model of human table tennis 
for robot application,” Autonome Mobile Systeme, 2009. 

[9] J. Nonomura, A. Nakashima, and Y. Hayakawa, “Analysis of effects of 
rebounds and aerodynamics for trajectory of table tennis ball,” in Proc. 
SICE Annual Conference, Taipei, Taiwan, 2010, pp.1567-1572. 

[10] A. Nakashima, Y. Ogawa, Y. Kobayashi, and Y. Hayakawa, “Modeling 
of rebound phenomenon of a rigid ball with friction and elastic effects,” 
in Proc. American Control Conference, Baltimore, MD, USA, 2010, 
pp.1410-1415. 

[11] S. Furuno, K. Kobayashi, T. Okubo, and Y. Kurihara, “A study on 
spin-rate measurement using a uniquely marked moving ball,” in Proc. 
ICROS-SICE International Joint Conference, Japan, 2009, 
pp.3439-3442. 

[12] Y. Tian, High-speed Moving Object Identification Prediction And 
Operation Planning For Humanoid Robots. PhD thesis, Beijing insti-
tute of technology, Beijing, China, 2010. 

[13] S. Schaal and C. G. Atkeson,” Robot juggling: an implementation of 
memory-based learning,” IEEE Control Systems Magazine, vol. 14, 
no.1, pp. 57-71, Feb, 1994. 

[14] B. G. Cook and J. E. Goff , “Parameter space for successful soccer 
kicks,” European Journal of Physics, vol. 27, pp. 865-874, 2006. 

[15] R. K. Adir, “The physics of baseball,” Physics Today, pp. 26-31, May, 
1995. 

3439


