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Abstract— This paper presents a scientific strategy for cycling
induced by the functional electrical stimulation. In order to
simulate the FES-cycling movement produced by human body,
a neuro-musculo-skeletal model containing 16 segments and 186
muscles is developed, which can simulate human movements
precisely. This model contains mathematical model of electri-
cally stimulated skeletal muscles. Having known the kinematics
and dynamics of the model, we design an FES-cycling control
system based on the central pattern generator (CPG), which
can produce rhythm stimulus to produce desired torque and
generate rhythm cycling movements. And an approach to
control multiple muscles is proposed. In the end of this paper,
the simulation results are provided.

I. INTRODUCTION

To restore the function of the paralyzed extremities, func-

tional electrical stimulation (FES) has been used since 1960s.

There are mainly three applications of functional electrical

stimulation for rehabilitation of patients with spinal cord

injury (SCI): standing, walking and cycling. FES-cycling has

been mostly studied since it is easier and safer for patients

[1]-[4]. In this paper, we focus on cycling induced by FES.

In this paper, a three-dimensional neuron-musculo-skeletal

model of human body with 16 segments and 186 muscles

is developed. The lower extremities of the model which

contain 7 segments including crank and 86 muscles, is used

for FES-cycling simulation. The muscles are divided into 7

groups in each side. This is meaningful, because one pair

of electrodes may activate more than one muscle or even

may activate several muscle groups [1], depending on its

position and stimulation intensity. The mathematical model

of electrically stimulated skeletal muscles is a nonlinear Hill

type model [1][5]-[7], which is controlled by the pulse width

(or amplitude) and pulse frequency of the electrical stimulus.

An FES-cycling control system based on the central

pattern generator (CPG) is developed. An approach has

been proposed to control multiple muscles and minimize the

stimulation input. Simulation results are given in section III.

II. METHODS

The block diagram of simulation of FES-cycling control

system are shown in Fig. 1.
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Fig. 1. Block diagram of the FES-cycling system.

A. Neuro-Musculo-Skeletal Model

The neuron-musculo-skeletal model has 16 rigid links and

41 degrees of freedom. The muscular model consists of 186

muscles, 86 for lower extremities and 100 for upper body.

The muscles model are based on line segment model [8],

which uses several points and lines to represent muscle. Fig.

2 shows the line segment model of biceps brachii lone head.

Fig. 2. Muscle line segment model.

The inertial properties of each body segment and param-

eters of muscles, including mass and moment of inertia, are

from literatures [9]-[15]. Fig. 3 shows the musculo-skeletal

model we developed in MATLABTM .

B. Kinematics and Dynamics

When cycling, the hip joint is restricted to one degree

of freedom, the ankle joint is fixed with a plastic ankle
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Fig. 3. Musculo-skeletal model.

foot orthosis for protection. The FES cycling model has one

degree of freedom, which is represented by crank angle θ.

The joint angles of left and right legs are symmetrical and

the phase difference is π.

Dynamics of FES cycling model is gotten based on virtual

work principle and Euler-Lagrange formulation.

C. Model of Electrically Stimulated Skeletal Muscle

The model of electrically stimulated skeletal muscle is

based on the Hill type muscle model. Muscle tension can

be represented as [5][6][16][18]

Fm = FmaxL (lm)V (lm, vm) am (1)

where Fmax is the maximum isometric muscle force; lm
is the muscle length; vm is the contractile velocity; L is the

force length relationship; V is the force velocity relationship;

am is muscle activation state.

When muscle is stimulated by electrodes, muscle activa-

tion state am can be expressed as [19]

am = a (wmfm) (2)

where wm is the stimulation pulse width factor and fm is

the frequency factor.

The action potential process is a linear second-order Ca2+

dynamics with time constant TCa and damping coefficient

ζ. The fatigue process which represented by afit, is a first-

order difference equation with fatigue time constant Tfat and

recovery time constant Trec [2][19]. The muscle activation

factor am has a time delay Tdel which accounts for the actin

potential propagation [19].

D. Torque Generate System Based on CPG

Central pattern generator is used to generate rhythm con-

trol signal. CPG can be expressed as [2][16][17][18]

τ
y
0 ẏ0 + y0=−δ max (y1, 0) − βz0 + u0 + feed (3a)

τz
0 ż0 + z0=max (y0, 0) (3b)

τ
y
1 ẏ1 + y1=−δ max (y0, 0) − βz1 + u0 − feed (3c)

τz
1 ż1 + z1=max (y1, 0) (3d)

Cout=max (y0, 0) − max (y1, 0) (3e)

where yi is the inner state of CPG; zi is the fatigue state;

δ is the connecting coefficients; β is the weight of fatigue

state; u0 is the non-specific input; feed can be expressed as

feed
(

θ, θ̇
)

= kp (θd − θ) + kd

(

θ̇d − θ̇
)

+ ki. (4)

The desired quasi-torque is the CPG output with inverse

dynamics

Td = kcCout + ID (θ, 0, 0) . (5)

E. Multi-Muscle Control Strategy

According to (1) and (2), let

si,j = wi,jfi,j

so the force of the jth muscle in the ith muscle group is

FM
i,j = FMax

i,j Li,j (θ) Vi,j

(

θ, θ̇
)

ai,j (si,j)

= Fi,j

(

θ, θ̇
)

a (si,j) . (6)

The moment of crank generated by the jth muscle in the

ith muscle group can be obtained by

Mi,j = M
Hip
i,j

dqh

dθ
+ MKnee

i,j

dqk

dθ

= FM
i,j ×

(

R
Hip
i,j

dqh

dθ
+ RKnee

i,j

dqk

dθ

)

= MMax
i,j

(

θ, θ̇
)

a (si,j) (7)

where R
Hip
i,j , RKnee

i,j are the moment arms about hip and

knee joints of the jth muscle in the ith muscle group.

Muscles of the same group have the same stimulation

intensity, so their activations are the same a (si,j) = a (si).
Thus total moment of the crank can be obtained by

Mcrank =

NGroup
∑

i=1

N
Group,i

Muscle
∑

j=1

Mi,j

=

NGroup
∑

i=1

MMax
i

(

θ, θ̇
)

a (si) (8)

where MMax
i

(

θ, θ̇
)

is the maximum crank moment gen-

erated by the ith muscle group, when this muscle group is

in the highest activation state. MMax
i

(

θ, θ̇
)

can hardly be

obtained analytically. So multilayer perceptrons (MLPs) are

used to approximate each MMax
i

(

θ, θ̇
)

. MLPs are trained

offline by extreme learning machine algorithm.

Since Tfat and Trec are much larger than TCa and Tdel,

the activation state can be expressed as 3rd order ordinary

differential equation without considering muscle fatigue for

simplicity. Let

y = M̂Max
1 a1 + M̂Max

2 a2 + · · · + M̂Max
14 a14

u = M̂Max
1 s1 + M̂Max

2 s2 + · · · + M̂Max
14 s14

so torque generating system can be expressed as

c3

...
y + c2ÿ + c1ẏ + y = u (9)
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where c3, c2 and c1 are coefficients related to TCa and Tdel.

A composite control system with feedback and feedfor-

ward control as shown in Fig. 4 has been designed to control

torque generating system. A tracking differentiator TD has

been used to approximate Td

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

TD(S) xxxxxx
xxxxxx
xxxxxx
xxxxxx

G(S)
Td ++

xx
xx
+

-

Tr+

xxx
xxx
+

+

xxx
xxx
xxxC3xxx
xxx
xxxC2xxx
xxx
xxxC1

U

Td

...̂

Td

..̂

Td

.̂

Td
^

+

+

Fig. 4. Composite control system with tracking differentiator.

TD (S) =
1

(TtrackS + 1)
4

(10)

where Ttrack is the tracking time constant and should be as

small as enough. In this simulation Ttrack = 0.001. Input

signal to the system is given by

u = (Td − Tr) +
(

c3

.̂..
T d + c2

ˆ̈
Td + c1

ˆ̇
Td + T̂d

)

. (11)

With the simulation parameters listed in Tab. I, the close-

loop transfer function can be obtained

Gc (S) = 2.5 × 104

(

S + 4 × 107
)

(S + 1000)
4

·
(S + 58.04)

(

S2 + 32.11S + 861.5
)

(S + 60.19) (S2 + 29.81S + 830.7)

thus

lim
S→0

Gc (S) = 1.000032540108684.

F. Multi-Channel FES Simulation Optimization Strategy

In (9), muscle group activation input can be expressed as

u = M̂Max
1 s1 + M̂Max

2 s2 + · · · + M̂Max
14 s14

where si is the FES stimulation intensity; M̂Max
i is the

maximum crank moment that ith muscle group can generate.

Let

M̂ = [M̂Max
1 , M̂Max

2 , · · ·, M̂Max
14 ]T

S = [s1, s2, · · ·, s14]
T

where si ∈ [0, smax], smax = 0.9 in this simulation.

Based on the energy and muscle fatigue minimization

principle, the stimulation intensities distribution problem

becomes a constrained least square optimization problem

min
S

{

ST S | M̂T S = u
}

.

Finally, it can be obtained that

S =
2uM̂

M̂T M̂
.

If si ≤ 0, si = 0 and if si ≥ smax, si = smax. Redo the

optimization process until all si have been gotten. Then FES

stimulation pulse width factor can be obtained by [19]

wi =
si

fi

where fi = 0.9 when stimulation pulse frequency is 100Hz

in this simulation.

III. SIMULATION RESULTS

The simulation is conducted in MATLABTM environment.

The adaptive Runge-Kutta-Fehlberg integration method is

used to solve differential equations. Parameters for the links

and coordinates of muscles segments are from [9]-[15].

Parameters for the muscle activation state are listed in Tab.

I. Parameters of CPG are listed in Tab. II.

TABLE I

PARAMETERS FOR MUSCLES [19].

TCa Trec Tdel
α β ζs s s

0.04 30 0.025 0.1 0.6 1.0

TABLE II

PARAMETERS FOR CENTRAL PATTERN GENERATOR.

τ
y
i τz

i δ β u0 kp kd ki kc

0.2 0.2 2.0 2.5 5.0 0.5 0.1 0.6 1.0

The result are shown from Fig. 5 to Fig. 10. Results of

the right leg are similar to the left.
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IV. CONCLUSION AND FUTURE WORK

In this paper, an FES-cycling system is developed based on

a three-dimensional musculo-skeletal model. There is much

work deserved in the future. The FES cycling control system

must be further improved. The feedback signal provided to

central pattern generator should be improved. And parame-

ters of CPG need to be optimized.
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