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Multihop knowledge reasoning aims to �nd missing entities for incomplete triples
by �nding paths on knowledge graphs. It is a fundamental and important task. In
this article, we devise a hierarchical reinforcement learning algorithm to model the
reasoning process more effectively. Unlike existing methods directly reason on
entities and relations, we adopt a high-level reasoning layer to deal with abstract
concepts, which guides the reasoning process conducted at the low level for
concrete entities and relations. Our approach yields competitive results on link
prediction on both NELL-995 and FB15k-237 datasets. The comparison to baselines
also demonstrates the effectiveness of the hierarchical structure.

Knowledge graphs store knowledge in the form
of graphs and provide a solid foundation for
various applications of artificial intelligence.

However, knowledge graphs suffer from the problem
of incompleteness, which harms the performance of
downstream applications. Knowledge graph reasoning
is an important task dedicated to addressing this
problem.

The goal of the knowledge graph reasoning is com-
pleting a given triple ðh; r; ?Þ, i.e., find the tail entity t
that satisfies the relation r with head entity h. In this
article, we situate our study in multihop reasoning,
which aims to discover missing links based on several
known links in the knowledge graph. For example, for
head entity “Kurt Cobain” and relation “person lan-
guage” to learn the tail entity “English,” the multihop
reasoning models find three links in knowledge graph:
(Kurt Cobain, born in, Washington), (Washington,
located in, United States), (United States, country
speak, English). Thus, the multihop reasoning model
learns the missing link (Kurt Cobain, person language,
English).

Existing methods start directly with the head entity
and find the target entity by finding paths on the
knowledge graph. However, this approach cannot
model hierarchical reasoning. For example, in Figure 1,
a natural way for humans to find paths with semantic
“person language” is to decompose the target “person
language” into a combination of several concepts that
may not exist in the knowledge graph, like “nationality”
and “language,” then find actual reasoning paths that
satisfy these concepts as much as possible according
to the specific entities and edges in the knowledge
graph.

The goal of this article is to simulate the hierarchi-
cal reasoning process by using a two-level structure.
We conduct reasoning on concrete entities at the low
level, which is guided by high-level reasoning on
embeddings of abstract concepts. In contrast to exist-
ing methods that deal directly with entities and rela-
tions, we find paths by first computing an abstract
relation embedding as the goal, transitions between
concrete entities are based on this embedding. Hierar-
chical reinforcement learning (HRL) can model this
process perfectly.1 Therefore, we propose an HRL-
based reasoning model to address this issue.

Specifically, for a query ðh; r; ?Þ, starting with h,
we first learn a high-level strategy to reason on
the abstract embeddings and determine whether the
target entity is reached. If not, we compute the
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embedding of the next chosen relationship and pro-
ceed to the low-level reasoning. We set this relation
embedding as the goal of the low-level reasoning,
where we select the concrete paths in the knowledge
graph. Once the goal is reached, then we return to the
high level to continue the previous process until the
target entity t is reached.

We conducted the link prediction experiment on
two large datasets and obtained outstanding results.
The comparison with the single-level reinforcement
learning (RL) approach also demonstrates the effec-
tiveness of the proposed hierarchical structure.

RELATED WORK
Multihop reasoning is proposed to address the draw-
back of embedding-based reasoning on knowledge
graphs. Embedding-based reasoning methods treat
triples separately, and reasoning based on the learned
embeddings of entities and relations. This kind of
methods include TransE,2 TransR,3 DistMult,4 Com-
plEx,5 etc.

Different from embedding-based reasoning, multi-
hop reasoning is based on paths instead of separate
triples. One class of methods treats the paths in
knowledge graphs as sequences and infer relations
based on the semantic embeddings learned from the
paths. These methods include PRA,6 Compositional
Reasoning,7 RNN-Chains,8 etc. PRA6 is the first multi-
hop reasoning model, which reasons in discrete space
and hard to generalize. Compositional reasoning and

RNN-Chains extend PRA to continuous space, and
improves the generalization ability.

The other class of methods is based on RL. They
frame the paths as Markov Decision Process and
solve the problem using RL, such as DeepPath,9

MINERVA,10 and AttnPath.11 Compared to models in
the first class, RL-based models can control the prop-
erties of the found paths and learn long chains of rea-
soning. However, existing methods only reason on
specific entities and relations. Using MINERVA as an
example, it starts from the head entity, transferred to
the next entity by selecting the optimal relation at
each step. It cannot model hierarchical reasoning and
its reasoning ability is limited.

Hierarchical RL,1 as an improved model of RL, can
model multilevel decision-making processes in two
levels, which is a good simulation of hierarchical rea-
soning. In this article, we attempt to reason on knowl-
edge graphs using hierarchical RL.

METHODOLOGY
In this section, we introduce the HRL-based reasoning
model. The overall structure of our model is shown in
Figure 2.

ProblemDe�nition
A knowledge graph G is a collection of triples, G …
fðh; r; tÞg � E �R� E, where E and R are sets of enti-
ties and relations. A triple ðh; r; tÞ indicates that head
entity h and tail entity t have relation r. This article

FIGURE 1. Example of hierarchical reasoning.
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aims to settle the problem ðhq; rq; ?Þ, which is finding
the missing tail entity tq among E. It is more difficult
than fact prediction task, which aims to determine
whether a triple ðhq; rq; tqÞ is true. We represent the
reasoning process as a Markov decision process and
address it using the REINFORCE algorithm.

Hierarchical RL Formulation
Given a query ðhq; rq; ?Þ, we conduct reasoning at two
levels in each step. At the high level, we determine
whether the target entity is reached, end the reason-
ing if so. Otherwise, we compute the embedding of
the relation to be taken in the next step and proceed
to the low-level reasoning. At the low level, we reason
on the concrete entities with the embeddings learned
from high level as the goal. To facilitate the above iter-
ation, we add an inverse relation r�1 for each r to
make it possible to return to previous states. We also
add a self-loop relation for each entity, which leads to
the stop of reasoning.

We describe this process as a hierarchical semi-Mar-
kov decision process: 1) the high-level RL processmodels
the transitions between abstract embeddings; and 2) the
low-level RL process models the transitions between
concrete entities in the given knowledge graph.

High-Level RL
High-level reasoning simulates state transits between
abstract concept states. At the high level, reasoning
starts from the head entity hq with goal rq .

States: The state of the agent at time step t should
include the head entity hq and relation rq in the query
to guide the reasoning process, as well as the answer
entity tq to assign rewards and the current entity et at
time step t. Thus, the overall state at time step t is
defined as sh

t … ðhq; rq; tq; etÞ.
Observations: The environment is partially observ-

able as the answer entity is not known during the rea-
soning. Then, the observation function Oh at high level
is defined as oh

t … O
hðsh

t … ðhq; rq; tq; etÞÞ … ðhq; rq; etÞ,
where oh

t is the observation at time step t at high level.
Actions: At the high level, the agent is responsible

for determining whether or not the answer entity has
been reached. The set of possible actions is Ah …
f0; 1g, where Ah is the action space in high level.
Denote ah

t as the action at time step t in high level,
ah

t 2 A
h. If the target entity has been reached, then

ends the reasoning with ah
t … 0, and the current entity

is the found target entity. Otherwise ah
t … 1, the agent

enters the low-level reasoning.
Transition: If ah

t … 0, the agent finds the target
entity and the reasoning process ends; otherwise, the
agent enters the low-level reasoning, which focuses
on the transitions on concrete entities and starts at
entity et with goal rrh

t . rrh
t is the action embedding and

will be explained later. In this case, the transition func-
tion is defined as shðsh

t Þ … sl
t, where shð�Þ is the transi-

tion function in the high level, sh
t and sl

t denotes the
state at t in high level and low level, respectively.

Rewards: The reward Rh is set based on whether
the target entity the agent chosen is the correct

FIGURE 2. Overall architecture of our model, using the same example as in Figure 1.
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answer entity tq . If the final entity eT is correct, i.e.,
eT … tq , the reward is set to be þ1, otherwise the
reward is 0

Rh … 1; if eT … tq
0; otherwise:

�
(1)

Low-Level RL
The low-level reasoning is concerned with the transi-
tion of states between specific entities and relations.
At the low level, reasoning starts from the current
entity et with goal rrh

t , where et indicates that the agent
is at entity e at time step t, and rrh

t is the action embed-
ding from high level and set as the query embedding
in low level, which will be discussed later.

States: The agent reasons at the low level by vary-
ing between specific entities. The low-level reasoning
is considered as an independent RL process whose
time step is denoted as t0. The state of the agent at
time step t0 should include the query embedding rrh

t to
guide the reasoning process, as well as the specific
entity et0 at time step t0. Thus, after entering the low
level at time t, the overall state at time step t0 in low
level is defined as sl

t0 … ðet0 ; rrh
t Þ.

Observations: At low level, observations are the
same as states, i.e., ol

t0 … O
lðsl

t0 … ðet0 ; rrh
t ÞÞ … ðet0 ; rrh

t Þ,
where ol

t0 is the observation at time t0 in low level, and
Ol is the observation function at low level.

Actions: At the low level, the agent transfers
between specific entities to find the target entity. The
action space Al includes all the outgoing edges of the
entity. Al at time step t0 consists of all the relations
and entities at time t0 þ 1, then Al

t0 …
fðrt0þ1; et0þ1Þjðet0 ; rt0þ1; et0þ1Þ 2 Gg. Note that we add a
self-loop edge for each entity. Choosing the self-loop
edge indicates the end of the reasoning, and the cho-
sen target entity is the current entity.

Transition: In low-level RL, states transit between
entities by selecting relations outgoing from current
entity et0 . The query embedding rrh

t stays unchanged
during the transition. The transition function is defined
as slðet0 ; rrh

t Þ … ðet0þ1; rrh
t Þ, where slð�Þ is the transition

function in low level.
Rewards: At low level, no direct feedback can be

obtained. In order to evaluate its reasoning perfor-
mance, we use the score function in the representa-
tion learning method. We assume the low-level
reasoning starts from entity et00

and reaches tail entity
et0T

, the representation of the path corresponds to the
query embedding rrh

t . Then, the score function is used
to calculate reward Rl. Take model TransE as an exam-
ple, the low-level reward Rl is set as

Rl … �keet00
þ rrh

t � eet0T
k2: (2)

We use this setting in our model, it can be flexibly
replaced by other more complicated score functions.

Policy Network
At step t at the high level, we use a history embedding
hhh

t to store the historical information to help choose
action. The history embedding hhh

t is computed based
on the previous history embedding hhh

t�1, previous rela-
tion embedding rrh

t�1, and the embedding of current
observation ooh

t

hhh
t … LSTM ðhhh

t�1; ‰rrh
t�1; ooh

t �Þ (3)

where LSTM is the long short-term memory network.
Then, we apply a policy network to compute the

embedding rrh
t of the next step. At high level, rrh

t is fed
into an MLP classifier to determine whether to end
the reasoning

rrh
t … ReLU ðW ‰hhh

t ; ooh
t �Þ (4)

ah
t … MLP ðrrh

t Þ (5)

where W is a parameter matrix.
At the low level, a relation is chosen according to a

similar process, the history embedding hhl
t0 at time t0 in

low level is calculated as

hhl
t0 … LSTM ðhhl

t0�1; ‰rrt0�1; ool
t0 �Þ (6)

where rrt0�1 is the embedding of the specific relation
chosen at time step t0 � 1.

The specific relation is chosen according to

al
t0 � Categorical ðsoftmax ðAAtReLU ðW ‰hhl

t0 ; ool
t0 �ÞÞÞ

(7)

where al
t0 is corresponding to the chosen relation and

AAt is the stacked embeddings of relations in Al
t0 .

Training
In the training phase, we aim to find optimal parame-
ters uh; ul to maximize both rewards in low level and
high level

JhðuhÞ … Ea1 ;a2;...;aT�1�ph ‰RhðeT Þ� (8)

JlðulÞ … Ea01;a02;...;a0T�1�pl ‰Rlðet0T
Þ� (9)

where uh; ul are parameters of high level and low level,
respectively, ph; pl are the policies of high level and
low level, respectively.

74 IEEE Intelligent Systems January/February 2022

KNOWLEDGE REPRESENTATION

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on April 14,2022 at 00:56:08 UTC from IEEE Xplore.  Restrictions apply. 



REINFORCE12 algorithm is employed to optimize
the rewards. The training algorithm is shown in
Algorithm 1.

Algorithm 1. Training Algorithm

1: Initialize uh; ul

2: for episode 1 toN do
3: Create a pathph

4: Initialize history embedding hh0  0
5: for i 1 tojphj do
6: Calculate history embeddinghhh

t  LSTM ðhhh
t�1;

‰rrh
t�1; ooh

t �Þ
7: Create a pathpl

8: for j 1 tojplj do
9: Calculate rewardRlðpl

jÞ
10: Calculate gradientrJl  � @

@ul log pl

ðej
i jei�1; rrh

i�1Þ
11: end for
12: Calculate rewardRhðph

i Þ
13: Calculate gradientrJh  � @

@uh log phðaijhhh
i ; ooh

i ;
ai�1; ulÞ

14: end for
15: Updateuh; ul usingrJh;rJl

16: end for

EXPERIMENTS
In this section, we evaluate the model on two large
datasets. The experimental results show the effective-
ness of the hierarchical structure.

Dataset
We employ NELL-99513 and FB15k-237,14 to evaluate
both of them are widely adopted datasets. NELL-995
is extracted from a never-ending language learning
(NELL) system. FB15k-237 is from Freebase, which pro-
vides general facts of the world. NELL-995 has 12 sub-
tasks while FB15k-237 has 20. Each of these subtasks
is composed of triples containing the same relation.
Statistics in detail are shown in Table 1.

Baselines and Implementation Details
Ten methods are included in the set of baselines.
Of which, five are embedding-based models includ-
ing TransE,2 TransR,3 DistMult,4 ComplEx,5 and
ConvE.15 The other five are multihop reasoning
methods, including PRA,6 RNN-Chain,8 DeepPath,9

MINERVA,10 and AttnPath.11 Our reinforcement-
based learning approach belongs to multihop rea-
soning, and thus multihop reasoning methods are
the focus of comparison. Among them, MINERVA is

a single-level reasoning model based on RL, the
comparison with MINERVA shows the effect of the
hierarchical structure.

Before training, we initialize embeddings with the
embeddings generated by TransE, the dimension of
the embedding is set to be 50. We train each subtask
separately and limit the training times as 500 for each
task, then we pick the optimal parameters for each
subtask, respectively.

Link Prediction
Given h and r in a triple ðh; r; ?Þ, link prediction aims to
rank all the possible tail entities to complete the triple.
For each triple, we construct several corresponding
“corrupted” triples, which are not in the knowledge
graph and considered as negative examples. For a
query triple, all entities are ranked in descending order
according to the likelihood that they are the answer
entity, then the rank of the correct answer entity is
recorded for evaluation.

We adopt three metrics for evaluation: mean aver-
age precision (MAP), percentage of correct entities
ranked in top N (Hits@N), and mean reciprocal rank of
correct entities (MRR). The higher these three metrics
are, the better the evaluated method is. Results of
Hits@N and MRR are shown in Table 2 and the results
of MAP are shown in Table 4. Hits@N and MRR are
mainly adopted to evaluate embedding-based meth-
ods, so they are not employed to evaluate models
designed for fact prediction, like DeepPath. We also
show the MAP scores for different subtasks on data-
set NELL-995 in Table 3.

Compared with baselines, we can see that our
method yields competitive results to the state-of-the-
art models, especially in the case of Hits@N and MRR.
This implies that our method can effectively reason on
the correct missing entities. Table 3 shows that our
approach brings a wide range of improvements in dif-
ferent tasks. Since hierarchical RL is able to model
more complicated reasoning processes and has more
expressive power compared to single-layer RL, the
introduction of a high-level abstraction layer of rea-
soning improve the accuracy of prediction signifi-
cantly compared to baselines.

TABLE 1. Statistics of datasets FB15k-237 and NELL-995.

Dataset jEj jRj #Triples #Tasks

FB15k-237 14,505 237 310,116 20

NELL-995 75,492 200 154,213 12
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Ablation Test
We conducted ablation tests on the structure of
the model. The model with single-layer RL and the

model with hierarchical RL but only getting rewards
of higher level are set as baselines. Ablation tests’
results are shown in Table 5. It confirms the effec-
tiveness of the hierarchical structure and the
reward setting.

For hierarchical RL with only high-level reward,
consider the simplest case: each step in the high-level

TABLE 3. Link prediction results (MAP) on different relations of dataset NELL-995. we report the results of 10 subtasks in detail

as in previous work.

Tasks TransE TransR PRA DeepPath MINERVA AttnPath Our model

athleteHomeStadium 0.718 0.722 0.859 0.890 0.895 0.894 0.937

athletePlaysForTeam 0.627 0.673 0.547 0.750 0.824 0.761 0.862

athletePlaysInLeague 0.773 0.912 0.841 0.960 0.970 0.965 0.985

athletePlaysSport 0.876 0.963 0.474 0.957 0.985 0.970 0.979

organizationHeadquarteredInCity 0.620 0.657 0.811 0.790 0.946 0.941 0.954

organizationHiredPerson 0.719 0.737 0.599 0.742 0.851 0.816 0.882

personBornInLocation 0.712 0.812 0.668 0.757 0.793 0.786 0.821

personLeadsOrganization 0.751 0.772 0.700 0.795 – 0.828 0.840

teamPlaysSport 0.761 0.814 0.791 0.738 0.846 0.821 0.843

worksFor 0.677 0.692 0.681 0.711 0.825 0.775 0.836

TABLE 2. Link prediction results (hits@n & MRR) on datasets NELL-995 and FB15k-237.

Model NELL-995 FB15k-237

Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR

TransE 0.241 0.392 0.413 0.307 0.206 0.316 0.454 0.289

TransR 0.239 0.399 0.411 0.313 0.229 0.331 0.513 0.291

DistMult 0.347 0.454 0.495 0.410 0.193 0.307 0.409 0.243

ComplEx 0.382 0.473 0.522 0.467 0.204 0.316 0.420 0.261

ConvE 0.452 0.564 0.629 0.587 0.241 0.354 0.490 0.312

MINERVA 0.663 0.773 0.831 0.725 0.217 0.329 0.456 0.293

Ours 0.679 0.801 0.862 0.734 0.325 0.442 0.511 0.326

TABLE 4. Link prediction results (MAP) on datasets NELL-995

and FB15k-237.

Models NELL-995 FB15k-237

TransE 0.737 0.532

TransR 0.789 0.540

PRA 0.675 0.541

RNN-Chain 0.790 0.512

DeepPath 0.796 0.572

MINERVA - 0.552

AttnPath 0.858 0.661

Ours 0.894 0.601

TABLE 5. Ablation test results (MAP) on datasets NELL-995

and FB15k-237.

Models NELL-995 FB15k-237

Single-layer RL – 0.552

Hierarchical RL
with only high-
level reward

0.882 0.583

Our model 0.894 0.601
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corresponds to only one step in the low level, then the
history in high level can be written in form:

hhh
t … LSTM ðhhh

t�1; ‰ReLUðW ‰hhh
t�1; ooh

t�1�Þ; ooh
t �Þ (10)

compared to the original form of history in single level
RL:

hht … LSTM ðhht�1; ‰aat�1; oot�Þ (11)

a neural network is added into the reasoning, and
therefore the expressiveness of the model is
improved.

The model in this article goes further to give the
lower level reasoning a reward based on embeddings
and TransE, which introduces more information into
the original reasoning process, so the model perfor-
mance is further improved.

CONCLUSION
In this article, we proposed a hierarchical RL-based rea-
soningmodel on knowledge graphs. Compared to exist-
ing reasoning models based on the single-level RL, we
added a high-level abstract conceptual reasoning layer
to guide the reasoning on concrete entities at the low
level. Our model achieves competitive performance on
the link prediction task for two large datasets, and the
effectiveness of the proposed hierarchical structure is
validated by comparison withMINERVA.

ACKNOWLEDGMENTS
This work was supported in part by the National Key
Research and Development Program of China under
Grant 2020AAA0103405, in part by the National Natural
Science Foundation of China under Grant 71621002, and
in part by the Strategic Priority Research Program of Chi-
neseAcademy of Sciences under Grant XDA27030100.

REFERENCES
1. T. G. Dietterich, “Hierarchical reinforcement learning

with the MAXQ value function decomposition,” J. Artif.
Intell. Res., vol. 13, pp. 227–303, 2000.

2. A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and

O. Yakhnenko, “Translating embeddings for modeling

multi-relational data,” Proc. 26th Int. Conf. Adv. Neural
Inf. Process. Syst., Lake Tahoe, USA, 2013,

pp. 2787–2795.

3. Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu, “Learning entity

and relation embeddings for knowledge graph

completion,” in Proc. 29th AAAI Conf. Artif. Intell.,
Austin, TX, USA, 2015, pp. 2181–2187.

4. B. Yang,W. Yih, X. He, J. Gao, and L. Deng, “Embedding

entities and relations for learning and inference in

knowledge bases,” inProc. Int. Conf. Learn.
Representations, USA, 2015.

5. T. Trouillon, J. Welbl, S. Riedel, Gaussier, and G.

Bouchard, “Complex embeddings for simple link

prediction,” in Proc. Int. Conf. Mach. Learn., vol. 48, Jun.
2016, pp. 2071–2080.

6. N. Lao, T. Mitchell, and W. W. Cohen, “Random walk

inference and learning in a large scale knowledge

base,” in Proc. Conf. Empirical Methods Natural
Lang. Process., Edinburgh, Scotland, U.K., Jul. 2011,
pp. 529–539.

7. A. Neelakantan, B. Roth, and A. McCallum,

“Compositional vector space models for knowledge

base completion,” in Proc. 53rd Annu. Meet. Assoc.
Comput. Linguistics/7th Int. Joint Conf. Asian
Federation Nat. Lang. Process., Beijing, China, 2015, pp.
156–166.

8. R. Das, A. Neelakantan, D. Belanger, and A. McCallum,

“Chains of reasoning over entities, relations, and text

using recurrent neural networks,” in Proc. 15th Conf.
Eur. Chapter Assoc. Comput. Linguistics, Valencia,
Spain, Apr. 2017, pp. 132–141.

9. W. Xiong, T. Hoang, and W. Y. Wang, “DeepPath: A

reinforcement learning method for knowledge graph

reasoning,” in Proc. Empirical Methods Nat. Lang.
Process., Copenhagen, Denmark, Sep. 2017,

pp. 564–573.

10. R. Das et al., “Go for a walk and arrive at the answer:

Reasoning over paths in knowledge bases using

reinforcement learning,” in Proc. Int. Conf. Learn.
Representations, 2018.

11. H. Wang, S. Li, R. Pan, and M. Mao, “Incorporating graph

attention mechanism into knowledge graph reasoning

based on deep reinforcement learning,” in Proc.
Empirical Methods Natural Lang. Process., Hong Kong,

China, 2019, pp. 2623–2631.

12. R. J. Williams, “Simple statistical gradient-following

algorithms for connectionist reinforcement learning,”

Mach. Learn., vol. 8, no. 3/4, pp. 229–256, May 1992.

13. A. Carlson et al., “Toward an architecture for never-

ending language learning,” in Proc. 24th AAAI Conf.
Artif. Intell., Atlanta, GA, USA, 2010, pp. 1306–1313.

14. K. Toutanova, D. Chen, P. Pantel, H. Poon, P.

Choudhury, and M. Gamon, “Representing text for joint

embedding of text and knowledge bases,” in Proc.
Empirical Methods Nat. Lang. Process., Lisbon,
Portugal, Sep. 2015, pp. 1499–1509.

15. T. Dettmers, P. Minervini, P. Stenetorp, and S. Riedel,

“Convolutional 2D knowledge graph embeddings,”

in Proc. 32nd AAAI Conf. Artif. Intell., 2018,
pp. 1811–1818.

January/February 2022 IEEE Intelligent Systems 77

KNOWLEDGE REPRESENTATION

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on April 14,2022 at 00:56:08 UTC from IEEE Xplore.  Restrictions apply. 



ZIKANG WANG is currently working toward the Ph.D. degree

with the Institute of Automation, Chinese Academy of Scien-

ces, China. Her research interests include knowledge graph

and natural language processing. She received the B.S.

degree in computer science from Central South University,

Hunan, China. Contact her at wangzikang2016@ia.ac.cn.

LINJING LI is currently an associate professor with the State

Key Laboratory of Management and Control for Complex Sys-

tems, Institute of Automation, Chinese Academy of Sciences,

Beijing, China. His research interests include game theory,

mechanism design, auction theory, and machine learning. He

received the B.E. degree in electrical engineering and auto-

mation, and the M.E. degree in control theory and control

engineering from the Harbin Institute of Technology, Harbin,

China, and the Ph.D. degree in computer applied technology

from the Graduate University of the Chinese Academy of Sci-

ences, Beijing, China. He is a member of the IEEE. Contact

him at linjing.li@ia.ac.cn.

DANIEL DAJUN ZENG is a research fellow with the Institute

of Automation, Chinese Academy of Sciences. His research

interests include intelligence and security informatics, infec-

tious disease informatics, social computing, recommender

systems, software agents, and applied operations research

and game theory. He received the B.S. degree in economics

and operations research from the University of Science and

Technology of China, Hefei, China, and the M.S. and Ph.D.

degrees in industrial administration from Carnegie Mellon

University, Pittsburgh, PA, USA. He is a Fellow of the IEEE.

Contact him at dajun.zeng@ia.ac.cn.

78 IEEE Intelligent Systems January/February 2022

KNOWLEDGE REPRESENTATION

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on April 14,2022 at 00:56:08 UTC from IEEE Xplore.  Restrictions apply. 


