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Abstract—In this article, a new time-varying adaptive dynamic
programming (ADP) algorithm is developed to solve finite-horizon
optimal control problems for a class of discrete-time affine nonlin-
ear systems. Inspired by the pseudolinear method, the nonlinear
system can be approximated by a series of time-varying linear
systems. In each iteration of the time-varying ADP algorithm, the
optimal control law for the time-varying linear system is obtained.
For an arbitrary initial state, it is proven that states of the time-
varying linear systems converge to the states of discrete-time
affine nonlinear systems. It is also shown that the iterative value
functions and the iterative control laws converge to the optimal
value function and the optimal control law, respectively. Finally,
numerical results are presented to verify the effectiveness of the
present method.

Index Terms—Adaptive dynamic programming, approximate dy-
namic programming, finite horizon, nonlinear systems, optimal
control, pseudolinear approximation.

I. INTRODUCTION

Adaptive dynamic programming (ADP), proposed in [1], is an effec-
tive technique to solve optimal control problems and has gained much
attention [2]–[5]. However, there exist some disadvantages for the neu-
ral network implementations of traditional ADP methods [6]–[8]. First,
approximation via neural networks requires the collection of arrays of
state and control data for training neural networks. Second, structures of
neural networks are difficult to determine and the convergence of neural
networks is difficult to analyze. Third, neural networks often result in
huge computation time, especially for large-scale data approximation.

On the other hand, it is worth pointing out that the iterative con-
trol laws and the iterative value functions in each iteration of tra-
ditional ADP methods are generally nonanalytical functions, so that
neural networks are used for numerical approximations. In [9], for
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continuous-time nonlinear systems ẋ = A(x)x+B(x)u, the “pseu-
dolinear” method is used to develop a near-optimal control law. This
provides a simple and efficient nonlinear design method by extending
the principles of linear-quadratic regulator theory to continuous-time
affine nonlinear systems [10]–[13]. In each iteration of the pseudolinear
method, the analytical expressions of the time-varying iterative control
laws and the iterative value functions can be obtained. It implies that the
optimal control law and optimal value function can be approximated by
a series of analytical time-varying iterative control laws and iterative
value functions, if the Riccati equation is solvable in each iteration.

Many physical systems are described by continuous-time equations.
They need to be discretized in order to develop an effective controller
based on modern computer control technology implemented using
microprocessors. One of the goals of this article is to develop an optimal
control approach based on the discrete-time pseudolinear method,
which can eliminate the use of neural networks in traditional ADP
methods to obtain analytical expressions of the iterative control laws
and the iterative value functions.

In this article, inspired by the continuous-time pseudolinear meth-
ods [9]–[13], a time-varying adaptive dynamic programming algo-
rithm is developed, which can solve the finite-horizon optimal control
problem for a class of discrete-time affine nonlinear systems. Main
contributions of this article include the following.
1) It is proven that discrete-time affine nonlinear systems are approx-

imated by a series of time-varying linear systems.
2) The analytical expressions of the iterative control laws and the iter-

ative value functions are given. As the iteration index increases, the
iterative control laws and the iterative value functions converge to
the optimal control law and the optimal value function, respectively.

3) Detailed implementation of the present method is demonstrated
with simulation results.

II. PROBLEM FORMULATION

Consider a class of discrete-time affine nonlinear systems

xk+1 = F (xk, uk)

= (I +ΔTA(xk))xk +ΔTB(xk)uk (1)

where xk ∈ Rn is the state and uk ∈ Rm is the control input. Let A(·)
and B(·) be the system functions. Let x0 be the initial state. ΔT > 0 is

the sampling time interval. Let u
Tf−1

k = {uk, uk+1, . . . , uTf−1} be an
arbitrary control sequence from k to Tf − 1, where the terminal time
Tf is a positive integer. The value function is defined as

Jk(xk, u
Tf−1

k ) = Ψ(xTf ) +

Tf−1∑
τ=k

U(xτ , uτ ) (2)

where U(xτ , uτ ) is the utility function. It is expressed as U(xτ , uτ ) =
xT
τQ(xτ )xτ + uT

τR(xτ )uτ with Q(xτ ) ≥ 0 and R(xτ ) > 0 for ∀xτ ,
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respectively. Let Ψ(xTf ) = xT
TfΓ(xTf )xTf be the terminal cost func-

tion, where Γ(xTf ) ≥ 0 for xTf . Results of this article are based on the
following assumptions.

Assumption 1: The system (1) is controllable. For any xk, yk ∈ Rn,
assume that A(·), B(·), Q(·), R(·), and Γ(·) are Lipschitz continuous
functions, such that
1) ‖A(xk)−A(yk)‖≤LA‖xk−yk‖
2) ‖B(xk)−B(yk)‖≤LB‖xk−yk‖
3) ‖Q(xk)−Q(yk)‖≤LQ‖xk−yk‖
4) ‖R(xk)−R(yk)‖≤LR‖xk−yk‖
5) ‖Γ(xk)−Γ(yk)‖≤LΓ‖xk−yk‖

where ‖ · ‖ denotes the Euclidean norm, and the parameters L(·) are
positive constants.

For any state xk, we attempt to find an optimal control law μk(xk),
such that the value function is minimized. For a fixed control law μ
of (1), the map from state xk to (2) is called a value function Jμ

k (xk).
The optimal value function is defined as J∗

k(xk) = infμ Jμ
k (xk), ∀k =

0, 1, . . . , Tf . According to Bellman’s principle of optimality, for k =
0, 1, . . . , Tf − 1, J∗

k(xk) satisfies the following discrete-time Bellman
equation:

J∗
k(xk) = inf

uk

{
U(xk, uk) + J∗

k+1(xk+1)
}
. (3)

The terminal cost is defined as J∗
Tf (xTf ) = xT

TfΓ(xTf )xTf . For k =
0, 1, . . . , Tf − 1, we define the optimal control law as

u∗
k(xk) = arg inf

uk

{
U(xk, uk) + J∗

k+1(xk+1)
}
. (4)

Hence, the Bellman equation (3) for k = 0, 1, . . . , Tf − 1 can be
rewritten as

J∗
k(xk) = U(xk, u

∗
k(xk)) + J∗

k+1(F (xk, u
∗
k(xk))). (5)

Remark 1: Many physical systems are described by continuous-time
dynamics but are controlled by discrete-time controllers. In order to
get the discrete-time affine nonlinear systems (1), continuous-time
affine nonlinear systems in [10] and [11] with the form χ̇ = A(χ)χ+
B(χ)ν are discretized in this article, where χ is the state and ν
is the control input. Considering a sampling time interval ΔT > 0,
we have χ̇=χ(t+ΔT )−χ(t)

ΔT
. Then, we can derive χ(k+1)ΔT = (I +

ΔTA(χkΔT ))χkΔT +ΔTB(χkΔT )νkΔT . Letxk anduk, wherek =
0, 1, . . ., be the system state and control input, such that xk = χkΔT

and uk = νkΔT , respectively. Then, the discrete-time affine nonlinear
systems can be expressed as (1).

III. TIME-VARYING ADAPTIVE DYNAMIC PROGRAMMING ALGORITHM

In this section, a new time-varying ADP method will be introduced
to obtain the finite-horizon optimal control law for discrete-time affine
nonlinear systems (1).

A. Derivation of the Time-Varying Value Function

According to the form of discrete-time affine nonlinear systems (1),
for the iteration index i = 0, the initial linear system can be expressed
as

x
[0]
k+1 = (I +ΔTA(x0))x

[0]
k +ΔTB(x0)u

[0]
k (6)

where x
[0]
0 = x0. The iterative value function is expressed as

V
[0]
k (x

[0]
k ) = x

[0]T
Tf Γ(x0)x

[0]
Tf

+

Tf−1∑
τ=k

(x[0]T
τ Q(x0)x

[0]
τ + u[0]T

τ R(x0)u
[0]
τ ). (7)

For i = 1, 2, . . ., the time-varying linear system equation is expressed
as

x
[i]
k+1 = (I +ΔTA(x

[i−1]
k ))x

[i]
k +ΔTB(x

[i−1]
k )u

[i]
k (8)

where x
[i]
0 = x0. The corresponding iterative value function is ex-

pressed as

V
[i]
k (x

[i]
k ) = x

[i]T
Tf Γ(x

[i−1]
Tf )x

[i]
Tf

+

Tf−1∑
τ=k

(x[i]T
τ Q(x[i−1]

τ )x[i]
τ + u[i]T

τ R(x[i−1]
τ )u[i]

τ ). (9)

B. Iterative Control Law and the Closed-Loop System

According to (6)–(9), for any i = 0, 1, . . ., the iterative systems are
discrete-time time-varying linear systems and the value functions are
expressed in time-varying quadratic forms. In this situation, the iterative
value function in (7) and (9) for i = 0, 1, . . ., can be described by a
quadratic form [14], which is expressed as

V
[i]
k (x

[i]
k ) = x

[i]T
k P

[i]
k x

[i]
k ∀k = 0, 1, . . . , Tf (10)

and when k = Tf , P [0]
Tf = Γ(x0) for i = 0 and P

[i]
Tf = Γ(x

[i−1]
Tf ) for

i = 1, 2, . . ..
For i = 0, 1, 2, . . ., let v[i]k (x

[i]
k ) denote the pseudolinear feedback

iterative control law (iterative control law in brief). Then, according to
the principle of optimality [14], [15], the iterative control law v

[i]
k (x

[i]
k )

∀k = 0, 1, . . . , Tf − 1 is expressed as

v
[i]
k (x

[i]
k )

= −ΔT
(
R(x

[i−1]
k ) + ΔT 2BT(x

[i−1]
k )P

[i]
k+1B(x

[i−1]
k )

)−1

×BT(x
[i−1]
k )P

[i]
k+1(I +ΔTA(x

[i−1]
k ))x

[i]
k (11)

where P
[i]
k , k = 0, 1, . . . , Tf − 1 and i = 0, 1, 2, . . ., in the iterative

value function (10), which satisfies the following Riccati equation:

P
[i]
k = Q(x

[i−1]
k ) + (I +ΔTA(x

[i−1]
k ))TP

[i]
k+1

× (I +ΔTA(x
[i−1]
k ))−ΔT 2(I +ΔTA(x

[i−1]
k ))T

× P
[i]
k+1B(x

[i−1]
k )

(
R(x

[i−1]
k ) + ΔT 2BT(x

[i−1]
k )P

[i]
k+1

×B(x
[i−1]
k )

)−1

BT(x
[i−1]
k )P

[i]
k+1(I +ΔTA(x

[i−1]
k )) (12)

with the terminal constraints P [0]
Tf = Γ(x0) and P

[i]
Tf = Γ(x

[i−1]
Tf ). For

i = 1, 2, . . ., the feedback system is expressed as

x
[i]
k+1 = (I +ΔTA(x

[i−1]
k ))x

[i]
k −ΔT 2B(x

[i−1]
k )

(
R(x

[i−1]
k )

+ ΔT 2BT(x
[i−1]
k )P

[i]
k+1B(x

[i−1]
k )

)−1

BT(x
[i−1]
k )

× P
[i]
k+1(I +ΔTA(x

[i−1]
k ))x

[i]
k (13)

where x
[i−1]
k = x0 for i = 0, k = 0, 1, . . . , Tf − 1. The time-

varying adaptive dynamic programming algorithm is summarized in
Algorithm 1.
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Algorithm 1: The Time-Varying ADP Algorithm.

Initialization:
Give an initial state x0.
Set a sampling time interval ΔT .
Give the terminal time Tf .

Define a value function Jk(xk, u
Tf−1

k ) in (2).
Choose a positive integer imax.
Choose a positive number T̄ > 1.
Choose a computation precision ε.

Iteration:
1: Let the iteration index i = 0;
2: Obtain the control system (6).
3: Obtain P

[0]
k , k = 0, 1, . . . , Tf − 1 by solving the Riccati

equation (12) with the terminal constraint P [0]
Tf = Γ(x0).

4: Solve the iterative control law v
[0]
k (x

[0]
k ) with (11) and

obtain the feedback system (13).
5: Record the trajectory of the state x[0]

k and V
[0]
k (x

[0]
k ), where

k = 0, 1, . . . , Tf .
6: Let i = i+ 1 and go to the next step.
7: Obtain the discrete-time time-varying linear system (8)

with the initial state x0.
8: Obtain P

[i]
k , k = 0, 1, . . . , Tf − 1 by solving the Riccati

equation (12) with the terminal constraint
P

[i−1]
Tf = Γ(x

[i−1]
Tf ).

9: Solve the iterative control law v
[i]
k (x

[i]
k ) with (11) and

obtain the feedback system (13).
10: If ‖x[i]

k − x
[i−1]
k ‖ ≤ ε, k = 0, 1, . . . , Tf , then go to Step

13. Else, go to Step 11.

11: If i < imax, then go to Step 12. Else, let ΔT =
ΔT

T̄
and

go to Step 12.
12: Record the trajectory of the state x

[i]
k and V

[i]
k (x

[i]
k ),

∀k = 0, 1, . . . , Tf and go to Step 6.

13: return ΔT , v[i]k (x
[i]
k ), and V

[i]
k (x

[i]
k ).

C. Properties of the Time-Varying Adaptive Dynamic
Programming Algorithm

In this section, properties of the time-varying ADP algorithm will
be discussed. Before the analysis, a notation will be defined. For i =
0, 1, 2, . . . and for k0, such that 0 ≤ k0 < k + 1, let Φ[i−1](k + 1, k0)

denote the transition matrix generated by I +ΔTA(x
[i−1]
k ) in (6) and

(8), which can be expressed as

Φ[i−1](k + 1, k0) =
k∏

τ=k0

(
I +ΔTA(x[i−1]

τ )
)

(14)

where x
[i−1]
τ = x0 for i = 0. Then, according to the definition of the

transition matrices in (14), we can derive the following lemmas.
Lemma 1: For i = 0, 1, . . ., and for an initial time 0 ≤ k0 < k + 1,

let Φ[i−1](k + 1, k0) be the transition matrices defined in (14). Then,
for any given x0 ∈ Rn, there exists a positive constant A > 0, such
that

‖Φ[i−1](k + 1, k0)‖ ≤ (1 +ΔTA)k−k0+1. (15)

Lemma 2: For i = 0, 1, . . ., and k = 0, 1, . . . , Tf , let the time-
varying ADP algorithm be implemented by (6)–(11) with an initial state
x0. Consider the Riccati equation (12) with the definite state x0, there is

an upper bound for the norm of the matrix P
[i]
k , where i = 0, 1, . . ., and

k = 0, 1, . . . , Tf , i.e., ‖P [i]
k ‖ ≤ LP , where LP is a positive constant.

Proof: First, for i = 0, according to P
[0]
Tf = Γ(x0), it can be derived

that the norm of P
[0]
Tf−1 in the Riccati equation (12) is bounded, as

A(xk), B(xk), Q(xk), R(xk), and Γ(xk) are Lipschitz continuous.
According to mathematical induction, we have that the norm of P [0]

k ,
k = 0, 1, . . . , Tf − 2, is bounded. Then, it can be derived that the norm

of P [0]
k , ∀k = 0, 1, . . . , Tf , is bounded, i.e., ‖P [0]

k ‖ ≤ L[0]
P , where L[0]

P

is a positive constant.
Second, for i = 1, we have that the norm of P

[1]
Tf = Γ(x

[0]
Tf ) is

bounded. Using mathematical induction, it can be proven that the norm
of P [1]

k , ∀k = 0, 1, . . . , Tf , is bounded, i.e., ‖P [1]
k ‖ ≤ L[1]

P , where L[1]
P

is a positive constant.
Third, according to mathematical induction, it is proven that the

norm of P [i]
k , i = 0, 1, . . ., and k = 0, 1, . . . , Tf , in Riccati equation

(12) is bounded with an initial state x0, i.e., ‖P [i]
k ‖ ≤ LP , where LP =

max{L[i]
P }. The proof is completed. �

Remark 2: Given a deterministic initial state x0, the iterative state
x
[i]
k+1 of the time-varying linear system (8) is finite in a finite time step

Tf . According to Assumption 1, P [i]
Tf = Γ(x

[i−1]
Tf ), i = 1, 2, . . ., is fi-

nite. In addition, according to (9), we have V [i]
k+1(x

[i]
k+1)− V

[i]
k (x

[i]
k ) =

−U(x
[i]
k , u

[i]
k ). The iterative value functionV [i]

k (x
[i]
k ) (10) is decreasing

for (x[i]
k , u

[i]
k ) �= 0, as k increases. Thus, the norm of the matrix P

[i]
k ,

i = 0, 1, . . . and k = 0, 1, . . . , Tf is bounded.
We are now in a position to prove the following theorem.
Theorem 1: For i = 0, 1, . . ., let A > 0 be a positive constant, such

that the transition matrix Φ[i−1](k + 1, k0) satisfies (15). Then, for
i = 1, 2, . . ., we have

‖Φ[i−1](k + 1, k0)− Φ[i−2](k + 1, k0)‖

≤ LAΔT (k − k0 + 1)(1 +ΔTA)k−k0

× ‖x0‖ sup
s∈[k,k0]

‖x[i−1]
s − x[i−2]

s ‖. (16)

Proof: For i = 0, 1, . . ., consider the following zero-input systems:

x
[i]
k+1 = (I +ΔTA(x

[i−1]
k ))x

[i]
k , x

[i]
k0

= x0 (17)

and

x
[i−1]
k+1 = (I +ΔTA(x

[i−2]
k ))x

[i−1]
k , x

[i−1]
k0

= x0. (18)

It is obvious that Φ[i−1](k + 1, k0) and Φ[i−2](k + 1, k0) are the solu-
tions of the systems (17) and (18), respectively. According to (17) and
(18), we can derive

x
[i]
k+1 − x

[i−1]
k+1

= (I +ΔTA(x
[i−1]
k ))x

[i]
k − (I +ΔTA(x

[i−2]
k ))x

[i−1]
k

= (I +ΔTA(x
[i−1]
k ))(x

[i]
k − x

[i−1]
k )

+ ((I +ΔTA(x
[i−1]
k ))− (I +ΔTA(x

[i−2]
k )))x

[i−1]
k .

(19)

Considering the definition of the transition matrixΦ[i−1](k + 1, k0),
i = 0, 1, . . ., in (14), we can obtain

x
[i]
k+1 − x

[i−1]
k+1

= Φ[i−1](k + 1, k0)(x
[i]
k0

− x
[i−1]
k0

)
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+
k∑

τ=k0

Φ[i−1](k + 1, τ + 1)
(
(I +ΔTA(x[i−1]

τ ))

− (I +ΔTA(x[i−2]
τ ))

)
x[i−1]
τ

=
k∑

τ=k0

Φ[i−1](k + 1, τ + 1)
(
(I +ΔTA(x[i−1]

τ ))

−(I +ΔTA(x[i−2]
τ ))

)
Φ[i−2](τ, k0)x

[i−1]
k0

. (20)

According to Assumption 1 and Lemma 1, we can obtain

‖x[i]
k+1 − x

[i−1]
k+1 ‖

≤
k∑

τ=k0

(I +ΔTA)k−τ

(
LAΔT sup

s∈[k,k0]

‖x[i−1]
τ − x[i−2]

τ ‖
)

× ‖x0‖ (I +ΔTA)τ−k0

≤ LAΔT (k − k0 + 1)(1 +ΔTA)k−k0

× ‖x0‖ sup
s∈[k,k0]

‖x[i−1]
s − x[i−2]

s ‖. (21)

According to (21), the inequality (16) can be verified. �
According to (13), for i = 1, 2, . . ., defining

C(x
[i−1]
k ) = −B(x

[i−1]
k )

(
R(x

[i−1]
k ) + ΔT 2BT(x

[i−1]
k )P

[i]
k+1

×B(x
[i−1]
k )

)−1

BT(x
[i−1]
k )P

[i]
k+1

× (I +ΔTA(x
[i−1]
k )) (22)

the feedback system in (13) can be expressed as

x
[i]
k+1 = (I +ΔTA(x

[i−1]
k ))x

[i]
k +ΔT 2C(x

[i−1]
k )x

[i]
k

x
[i]
0 = x0. (23)

Then, the convergence property can be analyzed.
Theorem 2: For i = 0, 1, . . ., and k = 0, 1, . . . , Tf , the time-

varying ADP algorithm is implemented by (6)–(11) with a definite
initial state x0. Then, there exists a sampling time interval ΔT , such
that the iterative system state x[i]

k converges to the state xk in (1) under

the feedback control law v
[i]
k (x

[i]
k ), as i → ∞, i.e.,

lim
i→∞

x
[i]
k = xk, k = 0, 1, . . . , Tf . (24)

Proof: This theorem is proven in three steps.
Step 1: According to (22), let

C(xk) = −B(xk)(R(xk) + ΔT 2BT(xk)Pk+1

×B(xk))
−1BT(xk)Pk+1(I +ΔTA(xk)). (25)

Based on Assumption 1 and Lemma 2, it is proven that C(xk) is a
Lipschitz continuous function.

First, it is easy to get that ΔT 2BT(xk) is a Lipschitz continuous
function because

‖ΔT 2BT(xk)−ΔT 2BT(yk)‖ ≤ ΔT 2‖(B(xk)−B(yk))
T‖

≤ LTB‖xk − yk‖ (26)

where LTB = ΔT 2LB is a positive constant.
Second, it is shown that Pk+1B(xk) is a Lipschitz continuous

function because

‖Pk+1B(xk)− Pk+1B(yk)‖ ≤ ‖Pk+1‖ ‖B(xk)−B(yk)‖

≤ LPB ‖xk − yk‖ (27)

where LPB = LPLB is a positive constant.
Third, based on the proof in (26)–(27), we can prove

that ΔT 2BT(xk)Pk+1B(xk), R(xk) + ΔT 2BT(xk)Pk+1B(xk) and
Pk+1(I +ΔTA(xk)) are all Lipschitz continuous functions for
xk, yk ∈ Rn.

Based on the above analysis, we can derive that C(xk) is a Lipschitz
continuous function, such that

‖C(xk)− C(yk)‖ ≤ LC ‖xk − yk‖ ∀xk, yk ∈ Rn. (28)

Step 2: According to (22), based on Assumption 1 and Lemma 2,
it is proven that the norm of C(x

[i−1]
k ), where i = 0, 1, . . ., and k =

0, 1, . . . , Tf , is bounded with an initial state x0.

First, for i = 0, according to x[i−1]
k = x0, where k = 0, 1, . . . , Tf −

1, the norm of C(x
[i−1]
k ) can be derived as

‖C (x0)‖ ≤ ‖B (x0)‖
∥∥∥(R (x0) + ΔT 2BT (x0)P

[0]
k+1

× B (x0)
)−1
∥∥∥∥∥∥BT(x0)

∥∥∥∥∥P [0]
k+1(I+ΔTA (x0))

∥∥∥ .
(29)

Letting σ
[0]
j , j = 1, 2, . . . , n, be the singular values of the matrix

R(x0) + ΔT 2BT(x0)P
[0]
k+1B(x0), then we have [16]∥∥∥∥(R (x0) + ΔT 2BT (x0)P

[0]
k+1B (x0)

)−1
∥∥∥∥ =

1

min
j

σ
[0]
j

. (30)

Letting σ̄
[0]
j =1/minj σ

[0]
j , then ‖C(x0)‖ can be derived as

‖C (x0)‖ ≤ σ̄
[0]
j (LB ‖x0‖+ ‖B(0)‖)2LP

× (1 + ΔT (LA ‖x0‖+ ‖A(0)‖)) . (31)

It can easily be derived that ‖C(x0)‖ ≤ C[0], where
C [0]=σ̄

[0]
j (LB‖x0‖+ ‖B(0)‖)2LP (1 + ΔT (LA‖x0‖+

‖A(0)‖)) is a positive constant.
Second, for i = 1, according to x

[i]
0 = x0 and (29)–(31), the norm

of C(x
[i−1]
k ) can be derived as∥∥∥C (x[0]

k

)∥∥∥ ≤ σ̄
[1]
j

(
LB

∥∥∥x[0]
k

∥∥∥+ ‖B(0)‖
)2

LP

×
(
1 +ΔT

(
LA

∥∥∥x[0]
k

∥∥∥+ ‖A(0)‖
))

where σ̄
[1]
j =1/minj σ

[1]
j , j = 1, 2, . . . , n, and σ

[1]
j are the singu-

lar values of matrix R(x
[0]
k ) + ΔT 2BT(x

[0]
k )P

[0]
k+1B(x

[0]
k ). Then, it

can easily be derived that ‖C(x
[0]
k )‖ ≤ C[1], where C [1] = σ̄

[1]
j (1 +

ΔT (LA‖x[0]
k ‖+ ‖A(0)‖))LP (LB‖x[0]

k ‖+ ‖B(0)‖)2 is a positive
constant.

Third, according to mathematical induction, the norm of C(x
[i−1]
k ),

i = 0, 1, . . . and k = 0, 1, . . . , Tf , is upper bounded with the initial
state x0, such that

‖C(x
[i−1]
k )‖ ≤ C (32)

where C = max{C[i]}, i = 0, 1, . . ., is a positive constant.
Step 3: Prove (24).
For k = 0, 1, . . . , Tf − 1, considering the feedback control system

(23), we have
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x
[i]
k+1 − x

[i−1]
k+1 = (I +ΔTA(x

[i−1]
k ))x

[i]
k +ΔT 2C(x

[i−1]
k )x

[i]
k

− (I +ΔTA(x
[i−2]
k ))x

[i−1]
k

−ΔT 2C(x
[i−2]
k )x

[i−1]
k . (33)

According to the definition of Φ[i−1](k + 1, k0), i = 0, 1, . . ., in (14),
we can get

x
[i]
k+1 − x

[i−1]
k+1

= (Φ[i−1](k + 1, 0)− Φ[i−2](k + 1, 0))x0

+
k∑

τ=0

ΔT 2Φ[i−1](k + 1, τ + 1)C(x
[i−1]
k )(x[i]

τ − x[i−1]
τ )

+
k∑

τ=0

ΔT 2Φ[i−1](k+1, τ+1)(C(x
[i−1]
k )−C(x

[i−2]
k ))x[i−1]

τ

+

k∑
τ=0

ΔT 2(Φ[i−1](k + 1, τ + 1)− Φ[i−2](k + 1, τ + 1))

× C(x
[i−1]
k )x[i−1]

τ . (34)

AsA(·) is Lipschitz continuous forxk, then for i = 0, 1, . . ., the system
state x[i]

k+1 is finite under any initial state x0, where we let x[−1]
k ≡ x0.

Then, for i = 0, 1, . . . andk0 ≥ 0, there exists a positive numberσ > 0,
such that

sup
s∈[k,k0]

‖x[i]
s − x[i−1]

s ‖ ≤ σ sup
s∈[k,k0]

‖x[i]
s+1 − x

[i−1]
s+1 ‖. (35)

According to (23), we can obtain

‖x[i]
k+1‖ ≤ (1 +ΔTA+ΔT 2C)k+1‖x0‖. (36)

According to (15), (16), (28), (32), and (34)–(36), it can be derived
that

sup
s∈[k,0]

‖x[i]
s+1 − x

[i−1]
s+1 ‖

≤ LAΔT (k+1)(1+ΔTA)k‖x0‖ sup
s∈[k,0]

‖x[i−1]
s −x[i−2]

s ‖

+
k∑

τ=0

(
ΔT 2C(1 + ΔTA)k−τ sup

s∈[k,0]
‖x[i]

s − x[i−1]
s ‖

)

+
k∑

τ=0

(
ΔT 2LC(1 + ΔTA)k−τ (1 + ΔTA+ΔT 2C)τ

× ‖x0‖ sup
s∈[k,0]

‖x[i]
s −x[i−1]

s ‖
)
+

k∑
τ=0

(
LACΔT 3(k − τ)

× (1 + ΔTA)k−τ−1(1 + ΔTA+ΔT 2C)τ

× ‖x0‖ sup
s∈[k,0]

‖x[i]
k − x

[i−1]
k ‖

)
. (37)

Letting ξ
[i]
k+1 = sups∈[k+1,0] ‖x

[i]
s − x

[i−1]
s ‖ and according to (35)

and (37), we can obtain(
1−ΔT 2Cσ

k∑
τ=0

(1 + ΔTA)k−τ

)
ξ
[i]
k+1

≤ LAΔTσ(k + 1)(1 +ΔTA)k‖x0‖ξ[i−1]
k+1

+ΔT 2LCσ‖x0‖
k∑

τ=0

(
(1 + ΔTA)k−τ

× (1 + ΔTA+ΔT 2C)τ
)
ξ
[i−1]
k+1 + LACΔT 3

× σ‖x0‖
k∑

τ=0

(
(k − τ)(1 + ΔTA)k−τ−1

× (1 + ΔTA+ΔT 2C)τ
)
ξ
[i−1]
k+1 . (38)

Then, we obtain

ξ
[i]
k+1 ≤ ηk+1ξ

[i−1]
k+1 (39)

where ηk+1 is expressed as in (40) on the next page.
From (40), if we choose a small ΔT , such that ηk+1 < 1, then

according to (39), for i → ∞, we have ξ
[i]
k+1 → 0, which implies that

x
[i]
k+1 is convergent.

Letting limi→∞ x
[i]
k+1 = x

[∞]
k+1, the system (13) can be derived as

x
[∞]
k+1 = (I +ΔTA(x

[∞]
k ))x

[∞]
k +B(x

[∞]
k )v

[∞]
k (x

[∞]
k ) (41)

where v
[∞]
k (x

[∞]
k ) is expressed as

v
[∞]
k (x

[∞]
k )

= −ΔT 2
(
R(x

[∞]
k ) + ΔT 2BT(x

[∞]
k )P

[∞]
k+1B(x

[∞]
k )
)−1

×BT(x
[∞]
k )P

[∞]
k+1(I +ΔTA(x

[∞]
k ))x

[∞]
k . (42)

Letting xk+1 = x
[∞]
k+1 and uk = v

[∞]
k , we can obtain (1) for k =

0, 1, . . . , Tf − 1, which implies x
[i]
k+1 → xk+1 as i → ∞. As x

[i]
0 =

x0, ∀i = 0, 1, . . ., (24) can easily be derived, which implies (24) holds
for all k = 0, 1, . . . , Tf . The proof is completed. �

Theorem 2 shows that the iterative system state x[i]
k of time-varying

linear systems converges to the state xk of the nonlinear system (1), as
i → ∞. In the following statement, the optimality of the time-varying
ADP algorithm will be discussed.

Theorem 3: For i = 0, 1, . . ., let the time-varying ADP algorithm be
implemented by (6)–(11). There exists a finite sampling time interval
ΔT , such that the iterative value function V

[i]
k (x

[i]
k ) converges to the

optimal value function J∗
k(xk), as the iteration index i increases to

infinity, i.e.,

lim
i→∞

V
[i]
k (x

[i]
k ) = J∗

k(xk), k = 0, 1, . . . , Tf . (43)

Proof: In the time-varying ADP algorithm (6)–(11), the system (1)
is approximated by a series of time-varying linear systems which are
expressed by (6) and (8), respectively, for i = 0, 1, . . .. Let x[i−1]

k = x0

for i = 0. Then, for any i = 0, 1, . . ., the iterative control laws v[i]k (x
[i]
k )

in (11) are derived by the following equation:

v
[i]
k (x

[i]
k ) = argmin

u
[i]

k

{
x
[i]T
k Q(x

[i−1]
k )x

[i]
k + u

[i]T
k R(x

[i−1]
k )u

[i]
k

+ V
[i]
k+1(x

[i]
k+1)

}
(44)

where

V
[i]
k (x

[i]
k ) = x

[i]
k P

[i]
k x

[i]
k , k = 0, 1, . . . , Tf − 1

V
[i]
Tf (x

[i]
Tf

) = x
[i]
TfΓ(x

[i−1]
Tf )x

[i]
Tf

(45)

and P
[i]
k satisfies the Riccati equation (12).
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For i → ∞, choosing a small ΔT , according to Theorem 2, we have
x
[i]
k → x

[∞]
k , as i → ∞. For i → ∞, define

V
[∞]
k (x

[∞]
k ) = x

[∞]
k P

[∞]
k x

[∞]
k , k = 0, 1, . . . , Tf − 1

V
[∞]
Tf (x

[∞]
Tf ) = x

[∞]
Tf Γ(x

[∞]
Tf )x

[∞]
Tf

(46)

where P
[∞]
k satisfies the following Riccati equation:

P
[∞]
k = Q(x

[∞]
k ) + (I +ΔTA(x

[∞]
k ))TP

[∞]
k+1

× (I +ΔTA(x
[∞]
k ))−ΔT 2(I +ΔTA(x

[∞]
k ))T

× P
[∞]
k+1B(x

[∞]
k )

(
R(x

[∞]
k ) + ΔT 2BT(x

[∞]
k )P

[∞]
k+1

×B(x
[∞]
k )
)−1

BT(x
[∞]
k )P

[∞]
k+1(I +ΔTA(x

[∞]
k )) (47)

with the terminal constraint P [∞]
Tf = Γ(x

[∞]
Tf ). According to Lemma

2, it is known that V [∞]
k (x

[∞]
k ) is finite for k = 0, 1, . . . , Tf , since the

trajectory of x[∞]
k , k = 0, 1, . . . , Tf , is fixed. For k = 0, 1, . . . , Tf − 1,

v
[∞]
k (x

[∞]
k ) is defined as (42). According to (44) and (46), we can derive

v
[∞]
k (x

[∞]
k ) = argmin

u
[∞]

k

{
x
[∞]T
k Q(x

[∞]
k )x

[∞]
k

+ u
[∞]T
k R(x

[∞]
k )u

[∞]
k + V

[∞]
k+1(x

[∞]
k+1)

}
. (48)

Thus, V [∞]
k (x

[∞]
k ), k = 0, 1, . . . , Tf − 1, satisfies

V
[∞]
k (x

[∞]
k )

= x
[∞]T
k Q(x

[∞]
k )x

[∞]
k +v

[∞]T
k (x

[∞]
k )R(x

[∞]
k )v

[∞]
k (x

[∞]
k )

+ V
[∞]
k+1

(
(I +ΔTA(x

[∞]
k ) + ΔT 2C(x

[∞]
k ))x

[∞]
k

)
= min

u
[∞]

k

{
x
[∞]T
k Q(x

[∞]
k )x

[∞]
k + u

[∞]T
k R(x

[∞]
k )u

[∞]
k

+ V
[∞]
k+1(x

[∞]
k+1)

}
(49)

which is the Bellman equation (3). For k = Tf , the terminal constraint
function satisfies

V
[∞]
Tf (x

[∞]
Tf ) = x

[∞]
Tf Γ(x

[∞]
Tf )x

[∞]
Tf = J∗

Tf (xTf ). (50)

It shows that J∗
k(xk) = V

[∞]
k (x

[∞]
k ), for k = 0, 1, . . . , Tf . The proof is

completed.
Corollary 1: For i = 0, 1, . . ., let the time-varying ADP algorithm

be implemented by (6)–(11). If the sampling time interval ΔT is small
enough, then the iterative control law v

[i]
k (xk) converges to the optimal

control law u∗
k(xk) in (3), as i → ∞.

Remark 3: According to Theorem 3, for a given initial state x0, the
optimal value function J∗

k(xk), k = 0, 1, . . . , Tf , can be approximated

by the iterative value function x
[i]T
k P

[i]
k x

[i]
k as i → ∞. However, it

should be emphasized that it does not mean that J∗
k(xk) is a quadratic

function for all xk ∈ Rn. For example, if the initial state x0 is changed

to x̄0, where x0 �= x̄0, then the iterative value function is also changed,
such as x̄

[i]T
k P̄

[i]
k x̄

[i]
k . Generally speaking, J∗

k(xk), ∀xk ∈ Rn, is a
nonanalytical function for nonlinear systems, which cannot be ap-
proximated by a single quadratic function for the entire state space.
On the other hand, given an initial state x0, it is declared that the
Bellman equation is not solved for all xk ∈ Rn by the time-varying
ADP algorithm. Actually, for the initial state x0, the time-varying ADP
algorithm obtains a pointwise optimal solution of the affine nonlinear
system (1), which is not the optimal solution for all xk ∈ Rn.

IV. SIMULATION STUDIES

In this section, simulation results are shown to verify the per-
formance of our time-varying ADP algorithm. The optimal control
problem for the inverted pendulum system [17] with modifications is
considered, where the sinusoidal term is replaced by polynomial terms.
m = 1/2 kg and 	 = 1/3m are the mass and length of the pendulum
bar, respectively. Let κ = 0.2 and g = 9.8m/s2 be the frictional factor
and the gravitational acceleration, respectively. Let the approximation
parameters be θ0 = −6 and θ1 = 120, respectively. Discretization of
the system function with the sampling time interval ΔT leads to[

x1(k+1)

x2(k+1)

]
=

[
1 ΔT
ΔT g

�
(1 + 1

θ0
x2

1k + 1
θ1
x4

1k) 1−ΔTκ	

]

×
[
x1k

x2k

]
+

[
0
ΔT
m�2

]
uk. (51)

Let the value function be expressed by (2). ChooseQ = I1 andR = I2,
where I1 and I2 denote the identity matrices with suitable dimensions.
Let Tf = 500. Choose Γ(xk) = I1, ∀xk. As Algorithm 1 cannot be
implemented for infinite times to reach the convergence, a computation
precision ε is given. If the inequality ‖x[i]

k − x
[i−1]
k ‖ ≤ ε is satisfied for

k = 0, 1, . . . , Tf , then the state is regarded as convergent. It is required

to use a small positive number ε in Algorithm 1, such that the statex[i−1]
k

is sufficiently close tox[i]
k . We choose ε = 0.01 and an initial statex0 =

[5, 2]T to illustrate the effectiveness of our algorithm. Let imax = 20,
the initial sampling time intervalΔT = 0.1 and T̄ = 10. Implement the
time-varying adaptive dynamic programming algorithm in Algorithm
1. The algorithm returns ΔT = 0.01 and it takes 20 iterations to reach
the computation precision.

The trajectories of the iterative value function V
[i]
k (x

[i]
k ), which start

with the initial state x0, are shown in Fig. 1. The word “In” denotes
initial iteration and the word “Lm” denotes the limiting iteration. It is
shown that the iterative value functions V [i]

k (x
[i]
k ) converge to the opti-

mum, as the iteration index i increases. Implementing the time-varying
ADP algorithm with the initial state x0 = [5, 2]T, the trajectories of
states and controls are shown in Fig. 2(a)–(c), respectively, where
iterative system states x[i]

k and control law v
[i]
k (x

[i]
k ) both converge to

their optimums.
In the implementation of the time-varying ADP algorithm, in order

to obtain the iterative control law (11), we have to solve the Riccati
equation (12) in each iteration. P

[i]
k ∈ R2×2 is the solution of the

Riccati equation (12) associated with the nonlinear system (51), which

ηk+1= ΔT ‖x0‖
[
LAσ (k + 1) (1 +ΔTA)kx0 +ΔTLCσ

k∑
τ=0

(
(1 + ΔTA)k−τ(1 +ΔTA+ΔT 2C

)τ)

+LACΔT 2σ
k∑

τ=0

(
(k − τ) (1 +ΔTA)k−τ−1(1 +ΔTA+ΔT 2C

)τ /(
1−ΔT 2Cσ

k∑
τ=0

(1 +ΔTA)k−τ

))]
(40)
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Fig. 1. Trajectories of the iterative value functions V
[i]
k

(x
[i]
k
) started by

the initial state.

Fig. 2. State and control trajectories. (a) State trajectories of x1.
(b) State trajectories of x2. (c) Control trajectories.

Fig. 3. Plots of the solution P
[i]
k

in the Riccati equation. (a) P [i]
k

(1, 1).

(b) P [i]
k

(1, 2). (c) P [i]
k

(2, 1). (d) P [i]
k

(2, 2).

is defined as P
[i]
k = [P

[i]
k (1, 1), P

[i]
k (1, 2);P

[i]
k (2, 1), P

[i]
k (2, 2)]. The

plots of [P [i]
k (1, 1), P

[i]
k (1, 2);P

[i]
k (2, 1), P

[i]
k (2, 2)] are shown in Fig. 3

. It is shown that the four elements of P [i]
k converge to the solutions of

the Riccati equation, as the iteration index i increases. The optimal
trajectories of the states and control are shown in Fig. 4(a)–(c),
respectively.

Fig. 4. State and control trajectories based on the time-varying ADP
algorithm and the direct collocation methods. Dashed line: Time-varying
ADP. Solid line: Direct collocation methods. (a) State trajectory of x1. (b)
State trajectory of x2. (c) Control trajectory. (d) State trajectory of x1. (e)
State trajectory of x2. (f) Control trajectory.

In order to show the effectiveness of the present ADP method, the nu-
merical solution of the optimal control problem of the nonlinear system
(51) is obtained by direct collocation methods [18], [19]. In detail, the
continuous-time optimal control problem is formulated as a nonlinear
programming problem [18]. Then, the resulting nonlinear programming
problem is solved by the primal-dual Lagrange multiplier method [19].
In the comparison, the optimal control solver is implemented with the
same initial conditions for the nonlinear system (51). The trajectories
of the states and controls are shown in Fig. 4(d)–(f), respectively.

From Fig. 4, it is shown that the trajectories obtained by the time-
varying ADP algorithm are similar to the ones by the direct collocation
and primal-dual Lagrange multiplier methods, which verifies the effec-
tiveness of the developed time-varying ADP algorithm. On the other
hand, using the direct collocation, the optimal control problem of the
nonlinear system is formulated as a nonlinear programming problem,
which is solved by primal-dual Lagrange multiplier methods in an
open loop. In contrast, the optimal control law by the time-varying
ADP algorithm is a closed-loop control law. Furthermore, using the
direct collocation and primal-dual Lagrange multiplier methods, the
numerical solution of the nonlinear programming problem is obtained.
It is declared that the control law by the time-varying ADP algorithm
is an analytical one. Thus, superiorities of our ADP method can be
verified.

V. CONCLUSION

In this article, a new discrete-time time-varying adaptive dynamic
programming (ADP) is developed to solve the finite-horizon optimal
control for a class of discrete-time affine nonlinear systems. Given an
initial state, it is proven that the states of the time-varying pseudolinear
systems converge to the ones of the nonlinear system. It is shown that
the iterative value function and iterative control law converge to the
optimal value function and the optimal control law, respectively, if the
sampling time interval is small enough. The detailed implementation
of the time-varying ADP algorithm has been provided.

In addition, it is pointed out that the present method can only be used
to solve the optimal control problem of discretized affine nonlinear
systems, but not the genuine discrete-time systems. In our future
work, we will focus on the applications of the pseudolinear method
to the genuine discrete-time systems and the stability of nonlinear
systems.
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