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Abstract. Co-movement among individual firms’ stock prices can reflect complex inter-
firm relationships. This paper proposes a novel method to leverage such relationships for
stock price predictions by adopting inductive graph representation learning on dynamic
stock graphs constructed based on historical stock price co-movement. To learn node rep-
resentations from such dynamic graphs for better stock predictions, we propose the
hybrid-attention dynamic graph neural network, an inductive graph representation learn-
ing method. We also extended mini-batch gradient descent to inductive representation
learning on dynamic stock graphs so that the model can update parameters over mini-
batch stock graphs with higher training efficiency. Extensive experiments on stocks from
different markets and trading simulations demonstrate that the proposed method signifi-
cantly improves stock predictions. The proposed method can have important implications
for the management of financial portfolios and investment risk.
Summary of Contribution: Accurate predictions of stock prices have important implica-
tions for financial decisions. In today’s economy, individual firms are increasingly con-
nected via different types of relationships. As a result, firms’ stock prices often feature
synchronous co-movement patterns. This paper represents the first effort to leverage such
phenomena to construct dynamic stock graphs for stock predictions. We develop hybrid-
attention dynamic graph neural network (HAD-GNN), an inductive graph representation
learning framework for dynamic stock graphs to incorporate temporal and graph attention
mechanisms. To improve the learning efficiency of HAD-GNN, we also extend the mini-
batch gradient descent to inductive representation learning on such dynamic graphs and
adopt a t-batch training mechanism (t-BTM). We demonstrate the effectiveness of our new
approach via experiments based on real-world data and simulations.

History: Ram Ramesh, Area Editor for Data Science &Machine Learning.
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1. Introduction
In financial markets, firms are increasingly connected
via various relationships (Rosenberg and Rudd 1982,
Kwan 1996). One effect of such interconnectedness is
the dynamic co-movement phenomenon (Campbell
et al. 1997), which depicts the synchronous price
movement of firms in stock markets. Researchers
have identified several reasons for such co-movement,
including common industry or sector affiliations
(Chan et al. 2007) or business partnerships via supply
chain networks (Agarwal et al. 2017, Rios et al. 2021),

in which connected firms share similar operating per-
formance or are economically dependent. In addition,
such stock price correlations are also dynamic, as the
correlation between two stocks varies over time
(Schwert 1989) because of economic conditions (Kim
and Qi 2010), industry-wide cycles (Ehling and
Heyerdahl-Larsen 2017), and individual firm behav-
iors (Kock 2005).

Intuitively, better stock movement predictions aid
investment decisions, such as asset allocations (Ban
et al. 2016). However, existing approaches in stock
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prediction, including traditional time-series analysis
methods from finance literature (Yang et al. 2012) or
machine learning–based methods from computing
research (Li et al. 2016a), primarily consider the task
to be a single-stock prediction problem. In other
words, the prediction of a stock’s movement only lev-
erages the stock’s own features in the past.1

As recent research has revealed the predictability of
stock prices based on interfirm relationships (Agarwal
et al. 2017), studies have adopted graph-based learn-
ing methods (Si et al. 2014, Feng et al. 2019) and used
social or business relationships between firms to con-
vert stock prediction into a graph-based problem,
where the prediction for one stock can learn from
other stocks in a graph. For instance, researchers have
identified stocks whose prices are highly correlated
with a focal stock and exploited the historical prices of
these stocks to predict the focal stock movement
(Feng et al. 2019).

However, existing network-based approaches also
have several limitations. First, these approaches
treated all stocks in a graph equally when predicting
the movement of a focal stock. In contrast, business
relationships between firms are multifaceted, includ-
ing those based on common sectors, supply chain
partners, and shareholders. Such complexity, along
with the dynamic co-movement phenomenon, sug-
gests that not all stocks in a graph would contribute
equally to the prediction of a focal stock (Chi et al.
2010). Second, these methods simply aggregate histor-
ical price data from different time periods in the past
without differentiating their importance to the predic-
tion. Nevertheless, more recent stock information has
a greater influence on predicting the future price than
older information (Hu et al. 2018), and periodic pat-
terns in stock movement may also help stock predic-
tions (Elfeky et al. 2005, Yang et al. 2012). Third, these
studies cannot handle dynamic stock graphs. Because
they were based on a static graph with fixed struc-
tures, a model trained on one graph cannot be applied
to another stock graph with a different structure
(Veličković et al. 2018). When relationships between
stocks frequently change over time, as in the dynamic
price co-movement phenomenon, these methods are
not applicable.

To address these limitations, we built dynamic
stock co-movement graphs based on publicly avail-
able data and proposed an inductive representation
learning method for such graphs. The approach first
captures temporal relationships between stocks and
constructs dynamic graphs using a moving time-
window similarity measure of stock co-movement. To
learn from such graphs for stock movement predic-
tions, we proposed a hybrid-attention dynamic graph
neural network (HAD-GNN), a deep learning frame-
work that incorporates attention mechanisms for both

time steps in the past and other nodes in a graph. We
further extended the mini-batch gradient descent to
inductive representation learning on such dynamic
graphs and adopted a t-batch training mechanism
(t-BTM) for HAD-GNN, so that HAD-GNN can be
learned over mini-batch dynamic graphs efficiently.

Overall, the contributions of this paper are three-
fold. First, from a data perspective, the paper repre-
sents the first attempt to construct dynamic stock
co-movement graphs to predict individual stock pri-
ces. Such dynamic stock co-movement graphs are
based on publicly available data and can directly
reflect the ever-changing relationships between firms’
stock performance at a very fine-grained temporal
level. Second, methodologically, we proposed HAD-
GNN, an attention-based inductive and scalable deep
learning model for dynamic co-movement graphs.
Moreover, HAD-GNN provides a powerful attention-
based feature extraction framework, which is the first
to consider the varying levels of influence from differ-
ent historical periods and combine such temporal
attention with node-level attention. Third, from a
design science perspective, this is the first study to
adopt the mini-batch gradient descent for inductive
representation learning on dynamic graphs. We dem-
onstrated that HAD-GNN can be efficiently trained
with t-BTM over stock graphs whose structures
change frequently. Besides stock price predictions,
the proposed method can also be applied to the learn-
ing and inference of other dynamic graphs whose
structures can change over time (e.g., collaboration
networks).

The rest of this paper is organized as follows. Section 2
reviews the related literature. In Section 3, we intro-
duce how to construct dynamic stock co-movement
graphs. In Section 4, the HAD-GNN and t-BTM are
described in detail. Section 5 presents the experimen-
tal results on three real-world stock market data sets.
The paper concludes with discussions of future
research directions in Section 6.

2. Related Work
Our research is conceptually and methodologically
related to previous studies on deep learning–based
stock predictions and graph-based stock predictions.
In this section, we review related work in these areas
and highlight our contributions.

2.1. Deep Learning–Based Stock Predictions
Recently, deep learning methods have led to signifi-
cant advancements in many areas of artificial intelli-
gence, such as computer vision, natural language
processing, and speech recognition. Deep learning has
also been adopted for stock predictions. Based on the
types of inputs for predictions, existing deep learning-
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based stock prediction approaches can be categorized
into finance-based, web-based, and hybrid methods.

Finance-based methods generally use financial data,
such as historical trading data (e.g., prices and vol-
umes) and derivative indicators as inputs to predict
closing prices or movements of stocks. Different varia-
tions of deep learning methods have been adopted to
mine such financial data. For instance, by using possi-
ble long-term temporal dependencies within a time
series, Qin et al. (2017) deployed a temporal attention
mechanism to select relevant hidden states of encoders
across all time steps. In addition, Zhang et al. (2017a)
modified the memory cell of long short-term memory
(LSTM) to decompose the hidden states of cells into
multiple frequency components and combined these
components with the inverse Fourier transform to gain
more accurate predictions in different future time
ranges.

With the availability of large-scale data, including
user-generated content from the Internet, web-based
methods use online content related to the stock mar-
kets, such as news stories and social media posts, to
predict stock movements (Li et al. 2016b). Natural lan-
guage processing and text mining are the most com-
monly used methods for such online data. Ding et al.
(2015) extracted major events from news stories and
represented them as dense vectors using the recurrent
neural networks (RNN) for stock market prediction.
To find valuable information from noisy online news
for stock prediction, Hu et al. (2018) designed a
hybrid-attention RNN by imitating the learning proc-
ess of humans.

Hybrid methods fuse both finance and online data
for stock predictions (Kraus and Feuerriegel 2017, Wu
et al. 2018, Xu and Cohen 2018). For example, Xu and
Cohen (2018) combined features from tweets and his-
torical price information into an LSTM-based neural
variational inference framework to improve stock
price prediction.

Overall, RNN-based models are the underlying
architecture for most deep learning-based stock pre-
dictions, primarily because of the RNN’s superior per-
formance in modeling time sequence data. However,
one major limitation is that these studies have consid-
ered each stock to be an independent entity. Although
the historical performance of a stock indeed provides
signals for its future movement, studies in this stream
ignored another important source of information—the
relationships between firms.

2.2. Graph-Based Stock Prediction
To address the limitations mentioned previously,
graph-based prediction methods incorporate related
stock information to improve the prediction for a tar-
get stock. Graph-based methods can be traced back to
the pairs trading strategy (Elliott et al. 2005), which

matches a long position with a short position in two
stocks with a high historical correlation. Stock graphs,
where stocks are nodes and edges indicate relation-
ships among stocks, represent an important model for
studying stock market characteristics (Bonanno et al.
2001, Chi et al. 2010, Dhar et al. 2014). For stock price
predictions, researchers have built stock graphs based
on co-occurrence in social media (Si et al. 2014) and
shared sector or supplier-customer relationships
(Feng et al. 2019).

However, these stock graphs reflect various busi-
ness relationships that only serve as coarse-grained,
indirect, or noisy proxies for correlated financial per-
formance. For example, co-search or co-mention of
firms on the web may be biased toward firms that
attract the public’s attention or individual investors.
The standard categorization of firms into industry sec-
tors is also becoming more problematic (Hoberg and
Phillips 2016) because of modern companies’ expan-
sion into multiple business types. For example, Ama-
zon.com has businesses in retail, cloud computing,
consumer electronic devices, and digital content dis-
tribution. Even two competing firms may have similar
movements on some days because of the trends in
their common sector (e.g., airlines during COVID-19)
or opposite movements on other days when one of
them faces a disruption (e.g., Boeing and Airbus when
Boeing airplanes were grounded because of safety
issues). Possible multiplex relationships between
organizations further complicate the matter (Zhao
et al. 2012). For example, two firms can be partners
and competitors at the same time. Thus, a machine
learning model must accommodate such multiplexity
if it considers more than one type of business relation-
ship. In addition, it is difficult to obtain large-scale,
temporal, and detailed data for interfirm relation-
ships, such as the flows of products or services and
the level of dependencies between supply chain
partners, over a long period. Therefore, the first con-
tribution of our work is that, for the task of stock price
predictions, we took a more direct approach to cap-
ture correlated stock performance by building a stock
co-movement graph based on publicly accessible data
on stock price correlations in the past. We believe
such a graph can represent the aggregated effects of
different types of business relationships between
firms over time. In addition to this stock graph, the
later adoption of the graph attention mechanism
allows the model to learn from data which ties are
more important for a firm’s stock movement predic-
tion during a specific period so that we do not need to
decide which specific types of business relationships
to use in the model.

From a methodological perspective, although tradi-
tional time-series methods, such as vector autoregres-
sion, have been used to predict stock prices from stock
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graphs (Si et al. 2014), recent studies have incorporated
more powerful deep learning methods, especially
graph representation learning, into stock predictions
using stock graphs (Feng et al. 2019). Graph representa-
tion learning aims at generating low-dimensional vec-
tor representations (e.g., embeddings) for nodes from a
graph. Such representations preserve the nodes’ struc-
tural characteristics and can be input into machine
learning algorithms for network inference tasks.

At the same time, because stock prices change fre-
quently, structures of stock co-movement graphs are
naturally more dynamic than those of graphs based
on relationships, such as business partnerships. How-
ever, existing deep learning methods for stock price
predictions are based on transductive graph represen-
tation learning methods. Such methods include (1)
walk-based methods, which sample node sequences
via random or guided walks in a graph and generate
node embeddings (Perozzi et al. 2014, Grover and
Leskovec 2016), and (2) graph convolutional net-
works, which develop various graph convolutions
based on the spectral graph theory (Bruna et al. 2014,
Defferrard et al. 2016, Kipf and Welling 2017). How-
ever, node embeddings generated by transductive
approaches are dependent on graph structures. When
the structure of a graph changes (e.g., adding or
removing edges or changing the edge weight) or
when dealing with a new graph, embeddings must be
relearned. Therefore, stock prediction methods based
on transductive graph representation learning do not
apply to dynamic stock co-movement graphs whose
structures frequently change over time.

In contrast, inductive graph representation learning
attempts to learn a set of models or aggregation func-
tions from which node embeddings can be generated
from their network neighbors. Hamilton et al. (2017)
proposed GraphSAGE, a nonspectral approach that
defines convolutions directly on groups of network
neighbors at various distances. Other neural network
mechanisms, such as self-attention, have also been
redefined for graphs (Veličković et al. 2018). Such
methods can compute node representations in an
inductive and sometimes supervised manner. Thus,
they often achieve better performance than transduc-
tive methods in network inference tasks. Neverthe-
less, inductive graph representation approaches incur
low training efficiency when a large number of graphs
are involved or when graph structures change fre-
quently. We also find another limitation of the existing
stock prediction models based on graph representa-
tion learning. They do not consider the possible peri-
odic patterns in stock prices nor focus more on recent
price movements, which can be more valuable for pre-
dicting the next move than distant price changes.

To address these issues, we based the HAD-GNN
model on inductive graph representation learning.

The proposed model employs time-based attention
mechanisms for a time series in stock prices and inte-
grates such mechanisms with node-level graph atten-
tion. We adopted a mini-batch gradient descent for
the inductive learning setting to efficiently train the
HAD-GNN on dynamic stock co-movement networks
whose structures change daily.

3. Dynamic Stock Co-Movement Graphs
To capture price co-movements among stocks, we con-
structed dynamic stock co-movement graphs. Intui-
tively, such graphs are based on similarities between
historical prices of different stocks. We defined two
types of co-movement graphs: the Pearson stock
co-movement graph (PSCMG) for predicting stock pri-
ces (i.e., a numerical prediction task) and the Manhattan
stock co-movement graph (MSCMG) for predicting
stock movement directions (i.e., a classification task).
Because of the temporal dynamics in stock prices, price
similarities also change over time. Thus, we used the
moving time-window method introduced by Tian et al.
(2019) to construct dynamic stock co-movement graphs.

We defined a node (stock) set V � {v1,v2, ⋯ ,vL},
with L nodes. The feature vector of stock vi ∈ V at time
t is xit � (xit,1,xit,2, ⋯ ,xit,m) ∈ Rm, where m is the number
of features. The prediction is made daily, and each
time step represents one trading day. In addition, pit
represents the closing price of vi on trading day t.
Please see Online Supplement A for the notation in
this paper.

3.1. PSCMGs
The PSCMGs are based on correlations of stock
returns. Because stock return rates often follow highly
skewed distributions, we applied logarithmic trans-
formations so that log-transformed returns are nor-
mally distributed (Singleton and Wingender 1986,
Hudson and Gregoriou 2015). This normality of distri-
butions is desirable for many statistical analyses and
machine learning applications. Equation (1) defines
the logarithmic return rate for stock vi at time t:

rit � log
pit
pit−1

: (1)

Then the Pearson correlation coefficient ρ
ij
t (Δt)

between stock vi and stock vj at time t during the past
Δt days is the Pearson correlation between their return
rates rit and r jt during Δt.

Definition 1 (PSCMG). Given an observation time
window of length Δt, we define the PSCMG at time t
as an undirected graph GP

t (Δt) � {V,EP
t , Xt}. In addi-

tion, V � {v1,v2, ⋯ ,vL} is a set of L � |V | nodes, and
EP
t ⊆ V × V is the set of edges among nodes, where

eij � (vi,vj) ∈ EP
t denotes an edge between nodes vi and

vj. Furthermore, Xt � {Xi
t, vi ∈ V} denotes the set of
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features of all stocks in V. Additionally, AP
t ∈ R

L×L is
the binary adjacency matrix for GP

t (Δt) based on a
threshold value of 0 ≤ δP ≤ 1. If |ρij

t (Δt)| > δP, then
edge eij exists between vi and vj, and AP

t (i, j) � 1; other-
wise, AP

t (i, j) � 0.
In other words, two nodes (stocks) are connected in

GP
t (Δt) if their prices have high correlations (positive

or negative) during Δt. We considered both positive
and negative correlations because both types can
potentially offer valuable prediction signals. For
example, two firms with partnerships may have a
high and positive price correlation (e.g., Boeing and
Delta Airlines), whereas a high and negative correla-
tion may exist between two competing firms (e.g.,
Coca-Cola versus Pepsi). We incorporated both into
the stock graph so that the model has the chance to
learn the specific level of influence between a pair of
connected stocks.

3.2. MSCMGs
We used the following definition to categorize stock
price movements.

Definition 2 (Daily Movement Label). Given price
change threshold values µ1(1) ∈ [0,∞) and µ2(1) ∈ (0, 1],
we define the daily movement label for stock vi at time t
as lit:

lit �
1, if pit=p

i
t−1 > 1+µ1(1);

0, if 1−µ2(1) < pit=p
i
t−1 ≤ 1+µ1(1);−1, otherwise:

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (2)

This definition separates stock price movements into
three discrete categories. When the price return ratio
of a stock rises above (or descends below) a certain
threshold, we assign a positive “rise” (or a negative
“fall”) label to the stock on that day. Otherwise, we
assign a neutral class label 0 to the stock. Then the
Manhattan distance between stocks vi and vj until
time t is

dijt (Δt) �
∑t

s�t−Δt+1
|lis − ljs | , (3)

where Δt is the size of the observation time window,
and 0 ≤ dijt (Δt) ≤ 2 ∗Δt. We used the Manhattan dis-
tance instead of the Euclidean distance because it has
a lower computational cost and better performance in
finding neighbors in stock graphs (Aggarwal et al.
2001).

Definition 3 (MSCMG). Given the size Δt of the obser-
vation time window, we define MSCMG at time t as
an undirected graph GM

t (Δt) � {V,EM
t ,Xt}. The

MSCMG is similar to the PSCMG, except that its adja-
cency matrix AM

t ∈ R
L×L is based on the Manhattan

distance instead of the Pearson correlation between
stocks. With δM ∈ [0, 2 ∗Δt], if δM ≤ dijt ≤ (2 ∗Δt− δM),

then AM
t (i, j) � 0; otherwise, AM

t (i, j) � 1. In other
words, similar to the PSCMG, stocks that have quite
similar or very different movement labels during Δt
are connected in GM

t (Δt).
The Pearson correlation coefficient and Manhattan

distance are calculated based on the time series of the
stock price within a moving observation time window
with length Δt that ends at t. Thus, the structures of
the two graphs naturally change over time, reflecting
the dynamic nature of stock price co-movements. To
simplify the notation, we use the same notation Gt in
the remainder of the paper to represent GP

t (Δt) and
GM

t (Δt) in numerical prediction and classification
tasks, respectively.

4. Stock Predictions Based on
Co-Movement Graphs

In this section, we first formalize the problem of stock
prediction. Then, we present the inductive learning
framework HAD-GNN, which incorporates hybrid-
attention encoders into inductive graph representa-
tion learning to better leverage dynamic stock
co-movement graphs for stock predictions. Afterward,
we introduce the t-BTM, which can be used to train
the proposed learning framework efficiently.

4.1. Problem Formulation
In stock predictions, the target to predict can be a
stock’s numerical return rate or movement trend in
the future. We formulated the τ-step prospective
return rate prediction as an inductive node-regression
task and the τ-step prospective movement prediction
as an inductive node-classification task.

Definition 4 (t-Step Ahead Return Rate Prediction).
Given a future time window τ, we define the τ-step
ahead return for stock vi at time t as rit(τ):

rit(τ) �
pit+τ
pit

− 1: (4)

Then, at time t, the goal is to predict the return rates τ
days later for stocks in Gt using the HAD-GNN:

r̂t(τ) �HAD−GNN(Gt;Q), (5)

where r̂t(τ) � (
r̂1t (τ), r̂2t (τ), ⋯ , r̂Lt (τ)

)
is the vector of

predicted return rates for L stocks in Gt, and Q repre-
sents all the learnable parameters of the HAD-GNN.

Definition 5 (t-Step Ahead Movement Prediction).
Given the threshold values µ1(τ) ∈ [0,∞) and µ2(τ) ∈(0, 1] for a future time window τ, we define the τ-step
ahead movement label for stock vi at time t as yit(τ),
which categorizes a stock’s price change τ days after t:

yit(τ) �
1, if pit+τ=pit > 1+µ1(τ);
0, if 1−µ2(τ) < pit+τ=pit ≤ 1+µ1(τ);−1, otherwise:

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (6)
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Then, at time t, we predict movement labels τ-day
later for stocks in Gt using the HAD-GNN:

ŷt(τ) �HAD−GNN(Gt;Q), (7)

where ŷt(τ) �
(
ŷ1t (τ), ŷ2t (τ), ⋯ , ŷLt (τ)

)
is the vector of

predicted labels for L stocks in Gt, and Q represents
all the learnable parameters of the HAD-GNN.

4.2. Graph Hybrid-Attention Networks
The HAD-GNN (Figure 1) consists of two compo-
nents: the hybrid-attention encoder and prediction
module. The hybrid encoder generates embedding
vectors for each stock by considering the time
sequence of each stock’s historical features and the
influence of neighboring stocks on dynamic stock
graphs. The prediction module takes a stock’s embed-
ding vector from the hybrid encoder as input and
generates movement or return rate predictions for the
stock. We describe these two components in this
section.

4.2.1. Hybrid-Attention Encoder. We designed a hybrid-
attention encoder with both time-level and node-level
feature extractions. The goal is to capture the influ-
ence of features from different time steps in the past
and from different peer stocks for predicting a focal
stock. At the time level, we built a shared temporal
attention-based LSTM to encode historical features from
nodes (i.e., stocks). The temporal attention mechanism

performs feature extractions from features for different
time steps when the length of the observation period T
becomes long (Raffel and Ellis 2016, Qin et al. 2017). As
illustrated in Figure 2, we first encoded historical fea-
tures at time t by inputting the T-lag (T ≥ 1) historical
feature matrix Xi

t � [xit−T+1, xit−T+2, ⋯ ,xit] ∈ R
m×T for

stock vi into the LSTM, where i ∈ [1,L], m represents the
number of features, and T is the temporal length of the
observation period when features are extracted:

[eis]ts�t−T+1 � LSTM(Xi
t): (8)

The output of the LSTM encoder eis ∈ R
m′

is the latent
vector representation with dimension m′ for historical
features from time s.

To distinguish the contribution of historical features
at different moments from t−T + 1 to t, we intro-
duced a temporal attention layer, which can adap-
tively assign weights to vector eis and combine them
into an expressive high-level vector via a weighted
sum. The numerical weight (i.e., importance) of vector
eis is generated and normalized via the temporal atten-
tion layer as follows:

ãis � tanh(WTAeis +bTA), (9)

where bTA ∈ R
T and WTA ∈ R

T×m′
are parameters to

learn for temporal attention (TA), and the activation
function tanh(·) operates element-wise on a given vec-
tor. In addition, ãis is transformed (i.e., normalized) via

Figure 1. Architecture of the HAD-GNN Illustrated for Sample Stock GraphGtwith Six Nodes and Six Edges
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the softmax function into ais so that the value of the
weight falls within the internal [0, 1]. Vector ai �
[ait−T+1, ⋯ ,ait] assigns a weight for eis for each time
step between t−T + 1 and t. Thus, we obtain a tempo-
ral attention–based representation hi for each stock
vi ∈ V in stock graph Gt:

hi �
∑t

s�t−T+1
aise

i
s: (10)

As all values of hi ∈ R
m′

are for prediction at time t,
we omitted the superscript t for simplicity. The
temporal attention–based LSTM transforms historical
features of a stock into a high-level latent vector repre-
sentation. In addition, according to Equations (8)–(10),
all parameters of the temporal attention–based mod-
ule are independent of the graph structure and can be
shared by all stocks for all observation periods with
length T. For simplicity, we used QTA to denote
parameters of the temporal attention encoder, includ-
ing parameters of LSTM,WTA, and bTA.

Inspired by graph attention networks (GATs)
(Veličković et al. 2018), we also adopted node-level
graph attention mechanisms (illustrated in Figure 3) to
model the different effects of neighboring stocks on a
focal stock. The mechanism takes latent representations
{hi}Li�1 generated by the temporal attention–based
LSTM as input for all stocks in Gt. For each connected
stock pair vi,vj ∈ V, a linear transformation (i.e., a one-
layer neural network) is applied to the latent represen-
tations hi and hj, respectively:

h̃i �WGAhi, h̃j �WGAhj, (11)

where WGA ∈ R
m′×m′

denotes graph attention (GA)
parameters to be learned. Then, h̃i and h̃j are con-
catenated as a new vector, which is input into another
one-layer neural network, parameterized by a weight

vector uGA that is learned. After the dot product with
uGA and a nonlinear transformation (e.g., LeakyReLU),
the concatenated vector is converted into a numerical
coefficient, which is input into a softmax function to
generate nij. The normalized attention coefficient nij
describes the importance of stock vj (represented by
hj) to the prediction of stock vi (represented by hi).
The process can be summarized as follows:

nij �
exp

(
LeakyReLU(u


GA[h̃i; h̃j])
)

∑
k∈Nii

exp
(
LeakyReLU(u


GA[h̃i; h̃k])
) , (12)

where u

GA is the transpose of uGA, Ni is the first-order

neighborhood (i.e., direct neighbors) of node vi
(including vi) in stock graph Gt, and [·; ·] concatenates
two vectors. The activation function LeakyReLU is a
variation of the rectified linear unit (ReLU) (Nair and
Hinton 2010). Designed to fix the “dying ReLU” prob-
lem, it can often make training faster (Maas et al.
2013) and was adopted by the original GAT model
(Veličković et al. 2018). The LeakyReLU has demon-
strated better performance than ReLU in analyzing
images and speech (Xu et al. 2015, Zhang et al. 2017b).
Additional experiments (Figure C1 in Online Supple-
ment C) reveal that the proposed model’s perform-
ance is robust when using ReLU as the activation
function.

With attention coefficients for each neighbor of vi,
we obtain a more comprehensive vector representa-
tion of vi via a weighted sum of all latent representa-
tions of the neighboring stocks h′

i ∈ R
m′
:

h′
i �

∑
j∈Ni

nijhi: (13)

By traversing all stocks in Gt and executing the trans-
formations listed in Equations (11)–(13), we obtain
vector representations for all stocks in Gt. Parameters

Figure 2. Temporal Attention-Based LSTM for the Hybrid-Attention Encoder
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of the node-level graph attention apply to every node.
They are independent of the graph structure and can
be shared by all nodes across all time steps.

After transformations by the hybrid-attention encoder,
all raw features of stocks over time are encoded as vector
representations H′ � [h′

1,h
′
2, ⋯ ,h′

L]. However, h′
i only

aggregates information from the first-order neighbor-
hood of stock vi (i.e., direct neighbors). Researchers
have found that information from second-order neigh-
borhoods (i.e., two-hop neighbors or neighbors of
neighbors) of a focal stock can also improve predictive
powers (Fan et al. 2019). Thus, we added another graph
attention layer, parametrized byW′

GA and u′
GA, to trans-

form h′
i into vector h′′

i ∈ R
m′
. The transformation is per-

formed in the same way that hi is transformed into h′
i

(described previously), so that the output of the second
graph attention layerH′′ � [h′

1,h
′′
2 , ⋯ ,h′′

L ] incorporates
signals from both first- and second-order neighbors of
individual stocks. For simplicity, we used QGA �
{WGA, uGA, W′

GA, u
′
GA} to denote the parameters of

this two-layer node-level graph attention encoder.

4.2.2. Prediction Module. For stock vi, its vector repre-
sentation h′′

i generated by the hybrid-attention encoder
serves as input for the prediction module, which con-
sists of a fully connected (FC) neural network. Depend-
ing on the predictive task, the prediction module can
use different activation and loss functions.

As a classification task, stock movement predictions
can use an FC layer with the activation function
ReLU, which is more suitable for classification (Nair
and Hinton 2010):

oi � ReLU(WOh
′′
i + bO), (14)

where oi is the output for stock vi from the FC layer
parameterized by WO ∈ R

C×m′
, bO ∈ R

C, and C repre-
sents the number of classes or labels to predict. The
softmax activation function normalizes elements
within vector oi into confidence scores, and the class
with the highest score is chosen as the prediction for
stock vi. Standard cross-entropy over all classes and
all stocks can be used as the basic loss function to train
the classification model.

As a regression task, stock return rate predictions
use an FC layer with the activation function tanh. This
function maps any real value into the [−1, 1] interval
and is more suitable for predicting return rates whose
values fall into the same interval:

r̂i � tanh (WRh
′′
i + bR), (15)

where r̂i is the predicted return of stock vi from the
FC layer parameterized by WR ∈ R

m′
, bR ∈ R. The

standard mean absolute error between the predicted
and actual return rates for all stocks serves as the basic
loss function for this prediction task.

For both stock movement and return rate prediction
tasks, regularization terms are also added to the basic
loss functions to prevent overfitting, a common prac-
tice in machine learning research (Goodfellow et al.
2016). Therefore, during the training period [1,TR],
the final loss function is as follows:

L �∑TR

t�1
Lt + γ

2
‖Q‖22, (16)

where Lt represents the basic loss function at time t
for a specific prediction task, Q refers to the set of all
parameters of the HAD-GNN, ‖ · ‖2 is the L2 norm,

Figure 3. Node-Level Graph AttentionMechanism of the Hybrid-Attention Encoder, with Node v3, Its Latent Representation
h3, and Its Node-Level Attention Coefficient Vector n3 as an Example

Notes. Boxes with dotted boundaries represent concatenations of vectors. The process of learning node-level graph attention is illustrated in
Equations (12)–(14).
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and γ is a hyperparameter that controls the weight of
the regularization term. The objective function is a
regularized loss function commonly used in machine
learning research (Goodfellow et al. 2016). The first
part attempts to minimize prediction errors, whereas
the second part (i.e., the regularization term) aims to
reduce the model complexity.

4.3. t-BTM for the HAD-GNN
To solve the optimization problem defined in Equa-
tion (16), we can use the stochastic gradient descent,
batch gradient descent, or mini-batch gradient descent
algorithms. Batch gradient descent computes the gra-
dient over all stock graphs, which demands a tremen-
dous amount of memory and easily lands the batch
gradient trajectory in a saddle point (Goodfellow et al.
2016). In contrast, stochastic gradient descent com-
putes the gradient on each stock graph of the data set
and helps a model escape from saddle points or local
minima. However, it suffers from a longer training
time because of frequent updates to the model (Good-
fellow et al. 2016). Mini-batch gradient descent algo-
rithms represent a middle-ground solution between
the batch and stochastic gradient descent. It divides
stock graphs into small batches to evaluate and
update models. Specifically, for an inductive model,
such as the HAD-GNN, where all stock graphs Gt

share the same set of parameters Q, the reduced
model complexity makes the mini-batch gradient
descent an even better fit to efficiently train the HAD-
GNN.

We adopted the mini-batch gradient descent and
called this approach the t-BTM for the HAD-GNN.
Specifically, we regarded stock graph Gt at time t as a
graph-level instance. Then the training set can be
denoted as GR � {Gt}TR

t�1. Because of time dependencies
between dynamic stock graphs (Kumar et al. 2019),

the t-BTM temporally generates a sequential t-batch
{Gt−SB+1,Gt−SB+2, ⋯ ,Gt} at time t (t ≥ SB) from GR and
allows the HAD-GNN to be trained using the gradient
descent over the t-batch. In addition, SB represents the
t-batch size. If SB � 1, the t-BTM is the same as the sto-
chastic gradient descent, and if SB � TR, which is the
length of the training set, the t-BTM becomes the
batch gradient descent. Figure 4 illustrates the archi-
tecture of the t-BTM.

Similar to other deep learning methods, the t-BTM
trains the HAD-GNN by calculating the loss and
updating the model parameters over the t-batch stock
graphs, which can be efficiently accelerated with
graphic processing units (GPUs). In this study, we
selected the Adam optimizer (Kingma and Ba 2015), a
variant of the gradient descent, as the update method
for the model parameters because of its high training
speed (Ruder 2016). The overall training process for
the HAD-GNN is summarized in Algorithm 1 in
Online Supplement A.

5. Results
This section presents results from experiments on
real-world data sets to evaluate the performance of
the proposed HAD-GNN, along with the ablation,
efficiency, and sensitivity analyses. The practical value
of the model in trading practices is also demonstrated
via simulated trading.

5.1. Data Sets and Experiment Setup
We collected data sets from Yahoo! Finance for three
major stock markets in the United States, China, and
Australia. These stocks represent major companies in
these market indices: Standard and Poor’s 500 (S&P
500), China Securities Index 300 (CSI 300), and Aus-
tralian Securities Exchange 300 (ASX 300). Table 1 pro-
vides detailed statistics for these data sets. Although

Figure 4. t-Batch TrainingMechanism for the HAD-GNN
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the three markets may differ in trading mechanisms
and regulations, the underlying motivation for this
model should still be valid—the prediction of one
stock can benefit from learning from other stocks
whose prices have been correlated with the focal
stock.

After removing stocks traded on fewer than 98% of
all trading days during the corresponding data collec-
tion periods, we retained 475 (S&P 500), 153 (CSI 300),
and 229 (ASX 300) stocks from the three data sets. As
for features, the raw data for a stock on a given trad-
ing day contains five features: the opening price, high
price, low price, closing price, and trading volume.
Following standard practices in time-series forecast-
ing (Brown 2004), we preprocessed the raw stock clos-
ing price using exponential smoothing with a smooth-
ing factor of 0.9 and normalization. For the
predictions, we also incorporated seven technical indi-
cators (listed in Table 2) widely used by investors as
additional features. Each data set was split into three
time intervals: [1,TR] as training (53.3% of the data),
[TR + 1,TR +TV] as validation (13.3%), and [TR +TV +
1,TR +TV +TS] as testing (33.4%). Data sets and code
used in this research have been made publicly avail-
able online.2

We conducted two types of experiments: stock
movement classifications using the MSCMG and stock
return rate regressions using the PSCMG. We designed
the τ-day-ahead prediction tasks for each data set using
three τ values: τ � 1, 5, and 9.

To set up τ-day-ahead stock movement predictions,
we chose threshold values µ1(τ) and µ2(τ) so that the
three classes (+1, 0, and −1) have balanced prior dis-
tributions. This practice is common in machine learn-
ing research (Xie and Qiu 2007) because imbalanced

data sets pose challenges for most machine learning
algorithms (Krawczyk 2016). In practice, although
traders can choose threshold values they want to pre-
dict (e.g., an extremely high or low magnitude of
movement), we still recommend that they maintain a
balanced class distribution to avoid highly skewed
prior distributions that are difficult for machine learn-
ing algorithms to learn from.

To construct the MSCMG, the observation time
window Δt was set to 15 days. The nonlearning
parameters Δt, T, and δM are involved in building
stock graphs and formulating predictions. We fixed
the values of Δt and T to 15 and 10, respectively, for
all data sets because we found that the performance of
the HAD-GNN is stable when the values vary in some
intervals (Section 5.4). Tables 3 and 4 summarize these
parameters in the experiments for τ-day-ahead stock
movement predictions and return rate predictions,
respectively. Another parameter for the MSCMG is
the edge weight threshold δM, which was chosen for
each data set using validation sets, along with its
counterpart edge weight threshold δP for the PSCMG
(details in Table 4).

Tables 3 and 4 summarize the hyperparameters for
learning node representations with the HAD-GNN.
The t-batch size in the t-BTM, the learning rate used in
the Adam optimizer, and the dimensionality of the
hidden layer m′ were chosen based on the validation
sets.

Benchmark methods include individual-based pre-
diction methods and graph-based prediction methods,
both suited for classification and regression tasks.
Individual-based methods include random guess (RG),
the classic time-series prediction method autoregressive
integrated moving average (ARIMA), the traditional

Table 1. Detailed Information on Three Stock Data Sets

Market United States China Australia

Index S&P 500 CSI 300 ASX 300
Data period 2/20/2013–12/28/2018 11/27/2013–3/21/2018 3/5/2013–12/28/2018
No. of stocks 475 153 229
No. of trading days 1,476 1,054 1,476
TR 792 560 792
TV 198 140 198
TS 486 354 486

Table 2. Seven Technical Indicators in the Prediction Model

Technical indicator Definition

Moving average convergence/divergence https://en.wikipedia.org/wiki/MACD
Relative strength index https://en.wikipedia.org/wiki/Relative_strength_index
Stochastic oscillator, %K https://en.wikipedia.org/wiki/Stochastic_oscillator
Williams, %R https://en.wikipedia.org/wiki/Williams_%25R
On-balance volume https://en.wikipedia.org/wiki/On-balance_volume
Price rate of change https://www.investopedia.com/terms/p/pricerateofchange.asp
yit−5(5) Five-step ahead movement label at time t− 5 defined in Equation (6)
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machine learning method support vector machine
(SVM) (support vector regression for return prediction),
and two state-of-the-art deep learning models: LSTM-
Att (Hu et al. 2018) and StockNet (Xu and Cohen 2018).
Graph-based methods include the transductive node
representation learning approach DeepWalk (Perozzi
et al. 2014) and two state-of-the-art inductive graph rep-
resentation learning methods: GraphSAGE (Hamilton
et al. 2017) and GAT (Veličković et al. 2018). Our
experiments used two convolutional layers for GraphS-
AGE and GAT to incorporate information from two-
hop neighbors, like the HAD-GNN. All graph-based
methods, including the proposed method, are based on
the same dynamic MSCMG/PSCMG. Table B1 in
Online Supplement B describes these benchmark meth-
ods and their parameters.

As for performance metrics, we used the standard
accuracy and macro-F1 for movement predictions and
the mean absolute error (MAE) for the return rate pre-
dictions. All models were trained on the training sets
with parameter tuning on the validation sets. After
selecting the hyperparameters, the models were
retrained on the union of training sets and validation
sets. The performance was finally evaluated on the
testing sets.

5.2. Predictive Performance
Because of space limitations, this section only reports the
predictive performance for stocks in the S&P 500. The
average performance for stocks in the CSI 300 and ASX
300 is similar and is reported in Online Supplement C.

The predictions are for individual stocks, and we
aggregated the predictive performance for individual
stocks in one market for easier comparisons.

Table 5 compares the performance for all methods
for τ-day-ahead movement predictions for stocks in
the S&P 500 data set. The proposed HAD-GNN
method dominates all benchmark methods across the
three τ values on both performance metrics. Specifi-
cally, compared with a random guess, the improve-
ments in the accuracy for the HAD-GNN are 79:07%
(τ � 1), 62:47% (τ � 5), and 58:70% (τ � 9). The improve-
ments in macro-F1 reach 98:49% (τ � 1), 99:04%
(τ � 5), and 90:77% (τ � 9). Compared with the non-
random guess methods, the improvements in accu-
racy for the HAD-GNN range from 5:58% to 16:54%
(τ � 1), from 3:36% to 13:62% (τ � 5), and from 3:79%
to 13:06% (τ � 9). The improvements in macro-F1
scores from the HAD-GNN are from 19:02% to
23:03% (τ � 1), from 11:19% to 57:27% (τ �5), and
from 21:86% to 38:56% (τ � 9). The improvement is
also statistically significant, with all p values below
0.05 for the pairwise t tests between the HAD-GNN
and benchmark methods.

Table 6 summarizes the performance for all meth-
ods for τ-day-ahead return rate predictions on S&P
500 stocks. Again, the proposed HAD-GNN has the
best performance across the three τ values. Specifi-
cally, compared with a random guess, the HAD-GNN
reduces the MAE by 38:49% (τ � 1), 35:46% (τ � 5),
and 34:25% (τ � 9). Compared with the nonrandom
guess methods, the HAD-GNN reduces the MAE by
1:12% to 18:38% (τ � 9), 3:39% to 10:14% (τ � 9), and
1:27% to 6:69% (τ � 9). The p values of pairwise t tests
between the HAD-GNN and benchmark methods are
below 0.05, except for the comparison with GraphS-
AGE (p < 0:1 when τ � 1) and the comparison with
GAT (p < 0:1 when τ � 1 and 9).

The improvement of the proposed method over
individual-based methods demonstrates the power of
considering co-movement relationships between
stocks. The superior performance of the proposed
method over graph-based benchmark methods can be

Table 3. Parameters for Stock Movement Predictions

Data set τ

Nonlearning parameters Learning parameters

µ1(%) µ2(%) Δt T δM t-batch size Learning rate m′

S&P 500 1 0.50 0.50 15 10 5 10 1e-4 64
5 1.35 0.85
9 2.00 1.15

CSI 300 1 0.70 0.60 15 10 6 10 1e-4 64
5 1.40 1.40
9 2.80 1.70

ASX 300 1 0.55 0.60 15 10 6 10 1e-4 64
5 1.55 1.45
9 2.24 1.93

Table 4. Parameters for Stock Return Rate Predictions
(HAD-GNN with Different τ Shares the Same
Hyperparameters)

Data
set

Nonlearning parameters Learning parameters

Δt T δP
t-batch
size

Learning
rate m′

S&P 500 15 10 0.80 10 5e-3 64
CSI 300 15 10 0.80 10 5e-3 64
ASX 300 15 10 0.75 10 5e-3 64
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attributed to the novel design of the HAD-GNN,
which provides inductive representation learning on
dynamic stock co-movement graphs with a hybrid-
attention mechanism. As one would expect, unsuper-
vised representation learning based on DeepWalk
does not perform as well as other supervised meth-
ods, including the proposed method. Moreover, the
proposed model outperforms the Rn-LSTM, which
arbitrarily picks the top three correlated stocks with a
focal stock and concatenates the movements of the
three stocks to predict the focal stock. This outcome
demonstrates the value of choosing similar stocks
based on dynamic co-movement graphs and using
node-level graph attention to determine which neigh-
bors of a focal stock can provide better signals for
predictions.

In addition, GraphSAGE can be considered a sim-
plification of the HAD-GNN without the hybrid-
attention encoder. Thus, the improvement of the

HAD-GNN over GraphSAGE comes from feature
extraction based on the hybrid-attention encoder. In
addition, because the GAT only considers graph atten-
tion, our model’s better performance over GAT high-
lights the value of a hybrid-attention mechanism that
also incorporates temporal attention.

5.3. Ablation Analyses
To further evaluate how dynamic stock co-movement
graphs and node-level attention in the proposed
model contributes to the performance of the model,
we compared the proposed HAD-GNN with three of
its variations for τ-day-ahead movement and return
rate predictions.

• TheHAD-GNN-SGuses one static stock co-movement
graph instead of dynamic graphs in the HAD-GNN.
Specifically, the HAD-GNN-SG builds one MSCMG/
PSCMG whose observation time window is the entire
training period (i.e., Δt � TR).

• The HAD-GNN-RG is based on a series of dynamic
random stock graphs without considering stock price
correlations. At each time step, the model randomly
chooses three stocks as neighbors of each stock.

• The HAD-GNN-CW simplifies the HAD-GNN by
replacing the node-level graph attention mechanism
with a simple weighting strategy based on the price
co-movement. For movement predictions on the
MSCMG, this variation replaces the node-level atten-
tion nij with a normalized weight that is inversely pro-
portional to dij, the Manhattan distance between stocks
vi and vj. For return rate predictions on the PSCMG, nij
is replaced with a normalized weight proportional to
the Pearson correlation coefficients ρij between stocks
vi and vj. In other words, the influence from neighbor-
ing stocks is directly based on the historical price
co-movement instead of being learned via an attention
mechanism.

Table 5. Comparison of the Average Performance on Stock Movement Predictions for S&P 500 Stocks

Evaluation metrics

τ

1 5 9

Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

RG 22.07*** 16.58*** 22.26*** 16.68*** 22.59*** 16.80***
ARIMA 33.91*** 25.57*** 31.29*** 29.86*** 31.78*** 26.26***
SVM 35.17*** 25.56*** 33.17*** 26.57*** 31.71*** 26.30***
LSTM-Att 37.38** 27.65*** 33.53*** 23.56*** 32.82*** 23.36***
StockNet 37.43** 26.17*** 33.21*** 24.90*** 31.94*** 23.13***
Rn-LSTM 35.75*** 24.06*** 33.94*** 29.33*** 32.39*** 25.18***
DeepWalk 34.43*** 25.12*** 32.57*** 26.19*** 31.91*** 25.10***
GraphSAGE 37.12** 24.67*** 34.10*** 21.11*** 34.28** 23.67***
GAT 36.54** 26.75*** 34.87** 25.98** 34.54** 24.73***
HAD-GNN 39.52 32.91 36.04 33.20 35.85 32.05

Notes. Best performers are bold. All experiments were repeated five times.
**p < 0.05; ***p < 0.001.

Table 6. Comparison of the Average Performance on Stock
Return Predictions for S&P 500 Stocks

Evaluation metrics

τ

1 5 9

MAE MAE MAE

RG 1.725E-2*** 3.886E-2*** 5.215E-2***
ARIMA 1.300E-2*** 2.791E-2*** 3.675E-2***
SVR 1.265E-2*** 2.714E-2** 3.591E-2**
LSTM-Att 1.113E-2*** 2.634E-2** 3.587E-2**
StockNet 1.139E-2*** 2.684E-2** 3.620E-2***
Rn-LSTM 1.092E-2** 2.672E-2** 3.588E-2**
DeepWalk 1.149E-2** 2.712E-2** 3.598E-2**
GraphSAGE 1.073E-2* 2.596E-2** 3.583E-2**
GAT 1.073E-2* 2.614E-2** 3.473E-2*
HAD-GNN 1.061E-2 2.508E-2 3.429E-2

Note. Best performers are bold.
*p < 0.1; **p < 0.05; ***p < 0.001.
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Tables 7 and 8 reveal that using random stock
graphs, such as in the HAD-GNN-RG, yields the
worst performance, highlighting the value of predic-
tive signals from stock co-movement graphs. In addi-
tion, methods based on dynamic co-movement graphs
(the HAD-GNN and HAD-GNN-CW) perform better
than the HAD-GNN-SG based on a single and static
co-movement graph. This result demonstrates that
dynamics in stock co-movement should be captured
for better predictive performance.

In addition, the fact that the HAD-GNN outper-
forms the HAD-GNN-CW suggests that the node-
level graph attention learned from the data works bet-
ter than the simple weighting heuristics. To further
illustrate the discrepancies between the HAD-GNN
and HAD-GNN-CW, we calculated Pearson correla-
tion coefficients between learned node-level graph
attention coefficients (in the HAD-GNN) and the heu-
ristic weight (as in the HAD-GNN-CW) for each time
step during the training period for the S&P 500 data
set. The correlation coefficients change over time (see
Figure D1 in Online Supplement D), with the average
values being 0.62 (SD � 0:03) and 0.59 (SD � 0:10) for
movement and return rate predictions, respectively.
In other words, graph attention coefficients learned by
this framework are only moderately correlated with
simple measures of stock price co-movement over
time, yet the supervised approach to learning graph
attention can provide significantly better predictive
performance.

5.4. Sensitivity Analyses
This section evaluates the robustness of the proposed
model to changes in the hyperparameters. Each sensi-
tivity experiment changes the value of one target
hyperparameter, whereas the others remain the same.
Again, we only present the S&P 500 stock results,
although the results are consistent for the other two
data sets. The proposed model has two types of
hyperparameters: nonlearning parameters involved in
building stock graphs and formulating predictions
and learning-related parameters related to predictive
model training.

Figure 5 reports the effects of three nonlearning
hyperparameters. The Δt values in panels (a) and (c)
represent the sizes of the observation time window to
construct the MSCMG and PSCMG, respectively. In
panels (b) and (e), T is the temporal length of the his-
torical features for the prediction model. In panels (c)
and (f), δM and δP are the edge weight threshold val-
ues for the MSCMG and PSCMG, respectively. For Δt
and T, which measure how far we should look back in
time, lower values (e.g., Δt � 5 and T � 1 or 5) lead to
lower performance, likely because there is insufficient
historical data from which to learn. However, once Δt
moves beyond 15 and T is above 10, further increases
in the values do not improve or even hurt the
performance. In other words, including historical
information from too long ago is unnecessary for
stock predictions in the very near future (e.g., τ � 1, 5,
or 9 days). Similarly, too large or too small values of
δM and δP lead to worse performance. When the
thresholds are too high, the resulting stock graphs are
very sparse with few edges, and the proposed model
may lose potentially valuable information from mod-
erate co-movement patterns. In contrast, lower thresh-
olds mean many edges between stocks and a higher
noise level from such stock graphs. Online Supple-
ment D provides further discussion on how to choose
values for these nonlearning parameters.

The proposed model is less sensitive to learning-
related hyperparameters. Figure 6, (b) and (e), demon-
strates that the proposed model is insensitive to different
learning rates. The performance increases slightly when

Table 7. Performance of the HAD-GNN vs. Its Variations on τ-Day-Ahead Movement Predictions for S&P 500 Stocks

Evaluation metrics

τ

1 5 9

Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

HAD-GNN-CW 37.28** 29.17** 35.11** 29.95** 35.15* 30.27**
HAD-GNN-SG 36.13*** 25.43*** 34.24*** 26.41*** 34.30** 24.91***
HAD-GNN-RG 34.55*** 24.86*** 34.07*** 29.06*** 33.32** 25.26***
HAD-GNN 39.52 32.91 36.04 33.20 35.85 32.05

Note. Best performers are bold.
*p < 0.1; **p < 0.05; ***p < 0.001.

Table 8. Performance of the HAD-GNN vs. Its Variations on
τ-Day-Ahead Return Rate Predictions for S&P 500 Stocks

Evaluation metrics

τ

1 5 9

MAE MAE MAE

HAD-GNN-CW 1.077E-2* 2.686E-2** 3.589E-2**
HAD-GNN-SG 1.089E-2* 2.719E-2** 3.603E-2**
HAD-GNN-RG 1.093E-2** 2.792E-2*** 3.595E-2**
HAD-GNN 1.061E-2 2.508E-2 3.429E-2

Note. Best performers are bold.
*p < 0.1; **p < 0.05; ***p < 0.001.
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the mini-batch size increases from 1 but becomes sta-
ble after the size becomes greater than 10 (panels (b)
and (e)). Panels (c) and (f) suggest that the dimension-
ality of hidden layers does not need to be more than
32. More details on learning-related hyperparameters
are included in Online Supplement D.

In practice, HAD-GNN can be retrained over time
to get updated parameters and adapt to everchanging
market conditions. Therefore, Online Supplement D
illustrates how retraining our model with a rolling
window scheme can further improve the performance
of HAD-GNN and how users of HAD-GNN can make
decisions on the frequency of model updating.

5.5. Efficiency of the t-BTM
As discussed in Section 4.3, we adopted the mini-
batch gradient descent in the t-BTM for inductive
representation learning on dynamic graphs because
computational efficiency is an important issue, espe-
cially for highly dynamic stock co-movement graphs.
Thus, we compared the running time of the HAD-
GNN with various mini-batch sizes. When the mini-
batch size is one, the HAD-GNN essentially becomes
HAD-GNN with stochastic gradient descent. We
excluded the batch gradient descent from the compar-
ison because it requires a tremendous amount of
memory. Each experiment ran 100 epochs with the
same parameters on the same hardware (80 Intel(R)
Xeon(R) CPU E5-2698 v4 @ 2.20 GHz, Tesla V100
SXM2 with 16 GB). Figure 7 depicts the average

running time of one epoch. For one-day-ahead move-
ment predictions, t-BTM makes the HAD-GNN 4.2 to
11.7 times faster than the stochastic gradient descent
with a mini-batch size of 5 to 30. For one-day-ahead
return rate predictions, the t-BTM is 4.2 to 14.0 times
faster than the stochastic gradient descent. Overall, the
t-BTM represents a more efficient approach for induc-
tive graph representation learning and can scale to
highly dynamic graphs.

5.6. Trading Simulations
Besides performance evaluations using metrics widely
adopted in machine learning research, this section
demonstrates the practical value of the proposed
model via trading simulations on stocks in the S&P
500. Admittedly, simulating stock trading is challeng-
ing because real-world practices involve many factors
beyond stock prices, including volatility, transaction
costs, portfolio management, and other factors. How-
ever, as the predictive model focuses on stock price
movements, the simulations adopt a widely used and
simple strategy in the literature of stock predictions:
buying a stock predicted to rise in price with the high-
est probability (Feng et al. 2019).

For each stock, the model provides three probabil-
ities for classes +1, 0, and −1. For each stock that is
predicted as class +1 (i.e., the probability of being
class +1 is greater than the probability for the other
two classes), its buying score is the ratio between its
predicted probability of being class +1 (increasing)

Figure 5. Effect of Nonlearning Hyperparameters on (a)–(c) StockMovement and (d)–(f) Return Rate Predictions
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and its predicted probability of being class −1
(decreasing). A higher buying score means a higher
chance of rising prices compared with other stocks. In
the simulation, a trader equally splits the budget to
buy stocks with the top 20 buying scores from stocks
predicted to be in the +1 class by τ-day-ahead move-
ment predictions with the HAD-GNN and then holds
for τ trading days. Such a rolling horizon allows the
trader to adjust the portfolio. Besides equal splitting
of the budget, we also tested another strategy to allo-
cate an investment based on the market cap of stocks3

(with the suffix “cap”) (Tütüncü and Koenig 2004).
Transaction costs and short selling are not considered.

An example of simulated trading actions using this
strategy is presented in Online Supplement E.

For comparison, the simulations also included
GAT, the best performer among the benchmark meth-
ods, and Markowitz efficient frontier (MKF) a classic
portfolio optimization method (Markowitz 1968;
details in Online Supplement E). In practice, a sparse
Markowitz portfolio that selects a small number of
assets from an asset pool is a widely used method to
control management fees. In this paper, we created a
sparse Markowitz portfolio with 20 stocks following
the method proposed by Bertsimas and Cory-Wright
(2022). They imposed a ridge regularization term to

Figure 6. Effect of Learning-Related Hyperparameters on (a)–(c) StockMovement and (d)–(f) Return Rate Predictions

Figure 7. Running Time for One Epoch with Various Mini-Batch Sizes in the t-BTM
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reformulate the sparse portfolio optimization problem
as a convex binary optimization problem, solvable via
an efficient outer-approximation procedure.

Investment performance was evaluated with the
standard return ratio and Sharpe ratio (Sharpe 1966).
The Sharpe ratio is a risk-adjusted return measure,
and we used the two-year U.S. Treasury Note as the
risk-free return rate. We also added the market index
of the S&P 500 as a benchmark.

Table 9 compares performance measures for differ-
ent trading strategies at the end of the testing period,
and Fig. E2 (Online Supplement E) illustrates how the
return ratios from different strategies change over
time. Strategies based on the HAD-GNN consistently
achieve the best performance on return measures
across different rolling horizons (τ � 1, 5, and 9).

Overall, although the trading simulations are only
simplifications of real-world trading scenarios and
omit many other important factors (see Online Sup-
plement E for additional analyses on volatility), the
results are still auspicious. The improvements over
the market index, a traditional portfolio optimization
method, and another state-of-the-art deep learning
predictive model support the potential value of the
proposed model in real-world stock trading.

6. Conclusions
This paper proposed the HAD-GNN, an inductive
graph representation learning approach on dynamic
stock graphs for stock prediction. Based on historical
stock price co-movement patterns, we constructed
co-movement graphs to represent relationships between
stocks. Our model design incorporates weight signals
from neighboring stocks and historical time steps to ena-
ble learning and inference on such dynamic stock
co-movement graphs. More importantly, it is an induc-
tive method that can scale to dynamic graphs whose
structures frequently change over time. We extended
the mini-batch gradient descent to inductive representa-
tion learning to improve the training efficiency of the
HAD-GNN model on dynamic stock graphs. Extensive
experiments on real-world data sets from three stock

markets demonstrated that the proposed model pro-
vides significant improvements in predicting stock
movements and return rates.

The three major components of the HAD-GNN (the
hybrid-attention encoder, dynamic stock co-movement
graphs, and t-BTM) were further evaluated via compar-
isons with benchmark methods, ablation analyses, and
computational efficiency analyses. Besides its dominant
performance on traditional performance metrics for
predictive modeling, the proposed model also prevails
in trading simulations. The model leads to much higher
returns than a group of benchmark methods and has
the potential to aid in real-world trading.

The HAD-GNN can extract task-specific latent fea-
tures for financial tasks, such as building investment
portfolios and predicting risks. Moreover, with hybrid
attention from both the node and temporal levels, the
HAD-GNN represents a novel, generalizable, and
scalable inductive framework to learn from dynamic
graphs. Beyond stock graphs in this paper, many
social networks also feature dynamic structures with
node behaviors or attributes that change over time.
The HAD-GNN can be used for learning from and for
inference for such a combination of dynamic graphs
and time sequence data (e.g., to predict whether an
individual will share a piece of information in an
information diffusion network or predict whether a
customer will buy a new product in a viral marketing
campaign).

There are also interesting directions for future
research. For instance, we did not explicitly model tem-
poral dependencies between the stock co-movement
graphs for consecutive time steps in this work. We con-
jecture that incorporating the relationships between
stock co-movement graphs using graph RNNs (Wu
et al. 2019, You et al. 2018) may improve predictions. In
addition, the proposed model only used financial fea-
tures related to stock prices, whereas research has iden-
tified other sources of information beyond financial
data, such as news stories (Mao andWei 2016) and user-
generated content in social media (Bali et al. 2018). It
would be interesting to integrate such information into

Table 9. Simulated Investment Performance of Different Trading Strategies at the End of the Testing Period

Method

τ

1 5 9

Return ratio Sharpe ratio Return ratio Sharpe ratio Return ratio Sharpe ratio

S&P 500 index 0.110 0.026 0.093 0.063 0.110 0.094
MKF 0.098 0.024 0.113 0.086 0.127 0.118
GAT 0.140 0.032 0.111 0.056 0.127 0.100
GAT-cap 0.147 0.030 0.128 0.070 0.126 0.090
HAD-GNN 0.162 0.032 0.414 0.174 0.214 0.140
HAD-GNN-cap 0.262 0.052 0.319 0.131 0.219 0.132

Note. Best performers are bold.
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dynamic co-movement graphs to generate more expres-
sive vector representations for financial predictions.
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Endnotes
1 Features could relate to the stock price (e.g., opening and closing
prices), trading activities (e.g., trading volume), and other technical
indicators (e.g., moving average). We introduce the features used in
the experiments in Section 5.1.
2 See https://github.com/Hugo-CAS/Dynamic-Stock-Co-Movement-
Graphs-for-Stock-Predictions.
3 Monthly market capitalization data for stocks was collected from
https://companiesmarketcap.com/.
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