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Concept learning highly depends on multisensory integration. In this study, we propose

a multisensory concept learning framework based on brain-inspired spiking neural

networks to create integrated vectors relying on the concept’s perceptual strength

of auditory, gustatory, haptic, olfactory, and visual. With different assumptions, two

paradigms: Independent Merge (IM) and Associate Merge (AM) are designed in the

framework. For testing, we employed eight distinct neural models and three multisensory

representation datasets. The experiments show that integrated vectors are closer to

human beings than the non-integrated ones. Furthermore, we systematically analyze the

similarities and differences between IM and AM paradigms and validate the generality of

our framework.

Keywords: concept learning,multisensory, spiking neural networks, brain-inspired, IndependentMerge, Associate

Merge

1. INTRODUCTION

Concept learning, or the ability to recognize commonalities and accentuate contrasts across a group
of linked events in order to generate structured knowledge, is a crucial component of cognition
(Roshan et al., 2001). Multisensory integration benefits concept learning (Shams and Seitz, 2008)
and plays an important role in semantic processing (Xu et al., 2017;Wang et al., 2020). For example,
when we learn the concept of “tea,” acoustically, we will perceive the sound of pouring water and
brewing, the sound of clashing porcelain, the sound of drinking tea; on taste, we can feel the tea is
a bit bitter, astringent or sweet; in touch, tea is liquid and we can feel its temperature; on smell, we
can perceive the faint scent and visually, it often appears together with the teapot or tea bowl, and
the tea leaves will have different colors. Combining information from multiple senses can produce
enhanced perception and learning, faster response times, and improved detection, discrimination,
and recognition capabilities (Calvert and Thesen, 2004). In the brain, multisensory integration
occurs mostly in the superior colliculus according to existing studies (Calvert and Thesen, 2004;
Cappe et al., 2009). Multisensory integration is a field that has attracted the interest of cognitive
psychologists, biologists, computational neuroscientists, and artificial intelligence researchers. The
term “multisensory concept learning” is used in this work to describe the process of learning
concepts using a model that mimics humans and combines information from multiple senses.

For the computational models of multisensory integration, cognitive psychologists’ models
are usually focused on model design and validation from the mechanism of multisensory
integration. These models are highly interpretable, taking neuroimaging and behavioral studies
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into consideration. The cue combination model based on
Bayesian decision theory is a classical model for analyzing
multisensory integration in cognitive psychology. It mainly
models the stimuli of different modalities as the likelihood
functions of Gaussian (Ursino et al., 2009, 2014) or Poisson
(Anastasio et al., 2014) distributions with different parameters,
and calculates the best combination of each modality that makes
the maximum posterior distribution through the assumption
of conditional independence and Bayesian rules. Anastasio et
al. built a model of visual and auditory fusion that combines
neuronal dynamic equations with feedback information, and
this model verified that multimodal stimuli have less response
time than unimodal stimuli (Anastasio et al., 2014). Parise et
al. proposed multisensory correlation detector based models to
describe correlation, lag, and synchrony across the senses (Parise
and Ernst, 2016). A purely visual haptic prediction model is
presented by Gao et al. (2016) with CNNs and LSTMs, which
enables robots to “feel” without physical interaction. Gepner et al.
(2015) developed a linear-nonlinear-Poisson cascade model that
incorporates information from olfaction and vision to mimic
Drosophila larvae navigation decisions, and the model was able
to predict Drosophila larvae reaction to new stimulus patterns
well.

For artificial intelligence researchers, they have proposed
different types of multisensory integration models based on the
available data and machine learning methods, such as direct
concatenation (Kiela and Bottou, 2014; Collell et al., 2017; Wang
et al., 2018b), canonical correlation analysis (Silberer et al.,
2013; Hill et al., 2014), singular value decomposition of the
integration matrix (Bruni et al., 2014), multisensory context (Hill
and Korhonen, 2014), autoencoders (Silberer and Lapata, 2014;
Wang et al., 2018a), and tensor fusion networks (Zadeh et al.,
2017; Liu et al., 2018; Verma et al., 2019). These works are mostly
focused on concept learning and sentiment analysis tasks and are
based on modeling of speech, text, and image data, which are
commonly utilized in AI.

To our knowledge, no work exists to model the five
senses of vision, hearing, touch, taste, and smell together.
This might be because controlling elements for experimental
design is challenging for cognitive psychologists, while data
for some modalities is difficult to get using perceptrons
for AI researchers. Meanwhile, cognitive psychologists
have published several multisensory datasets by asking
volunteers how much they perceive a specific concept
through their auditory, gustatory, tactile, olfactory, and
visual senses in order to establish the strength of each
modality. This provides a solid basis for the design of a
multisensory integration model that includes these five
modalities. In this article, we will model multisensory
integration using brain-like spiking neural networks and
merge input from five different modalities to generate integrated
representations.

This paper is organized as follows: Section 2 will introduce
relevant studies to our model, such as multisensory datasets
and fundamental SNN models; Section 3 will describe the
multisensory concept learning framework based on SNNs, which
includes the IndependentMerge and AssociateMerge paradigms.

Section 4 will exhibit the experiments, and the final section will
explore the future works.

2. RELATED WORKS

2.1. Multisensory Concept Representation
Datasets
Cognitive psychologists label the multisensory datasets of
concepts by asking volunteers how much each concept is
acquired through a specific modality and introducing statistical
methods to establish the representation vector for each concept.
The pioneering work in this area is by Lynott and Connell (2013),
who proposed modality exclusivity norms for 423 adjective
concepts (Lynott and Connell, 2009) and 400 nominal concepts
on strength of association with each of the five primary sensory
modalities (auditory, gustatory, haptic, olfactory, visual). In this
article, we combine these two datasets of their previous works
and denote them as LC823. Lancaster Sensorimotor Norms
were published by Lynott et al. (2019), which included six
perceptual modalities (auditory, gustatory, haptic, interoceptive,
olfactory, visual) and five action effectors (foot/leg, hand/arm,
head, mouth, torso). This dataset (we denote as Lancaster40k)
is the largest ever, with 39,707 psycholinguistic concepts
(Lynott et al., 2019). Binder et al. (2016) constructed a set
of brain-based componential semantic representation (BBSR)
with 65 experienced attributes, including sensory, motor, spatial,
temporal, affective, social, and cognitive experiences, relying
on more recent neurobiological findings. This dataset contains
535 concepts and does an excellent work of separating a priori
conceptual categories and capturing semantic similarity (Binder
et al., 2016). Figure 1 shows the the concept “honey” in the
multisensory concept representation datasets mentioned.

We’ll concentrate on the effect of five forms of senses in this
article: vision, touch, sound, smell, and taste. In BBSR, we employ
the average value of the sub-dimensions corresponding to these
five senses, while using the first five dimensions of Lancaster40k.

2.2. Basic Neuron and Synapse Models
Spiking neural networks (SNNs) are commonly referred to
be the third generation of neural network models since
theyăareăinspired by current discoveries in neuroscience (Maass,
1997). Neurons are the basic processing units of the brain. They
communicate with each other via synapses. When the membrane
potential reaches a threshold, a spike is produced. External
stimuli are conveyed by firing rate and the temporal pattern of
spike trains (Rieke et al., 1999; Gerstner and Kistler, 2002). SNNs
integrate temporal information into the model and are capable
of accurately describing spike timing with dynamic changes in
synaptic weights which are more biologically plausible. We will
use SNNs as the foundation of our model to build a human-like
multisensory integration concept learning framework. Here, we
briefly outline the neural and synaptic models that will be used in
this research.

2.2.1. IF Neural Model
The integrate-and-fire (IF) model is a large family of models
which assumes that a membrane potential threshold controls the
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FIGURE 1 | The concept “honey” in multisensory datasets.

spikes of neurons. A spike is fired when the somatic membrane
potential exceeds the threshold, and the membrane potential
is resumed to reset potential (Gerstner and Kistler, 2002). The
neural processing is properly formalized by the model. In this
article, we follow a standard implementation (Troyer and Miller,
1997), and the membrane potential v(t) obeys

τIF
dv(t)

dt
= vrest − v(t)+ ge(t)(Ee − v(t))

if v(t) > vth, v(t)← vr

(1)

with the membrane time constant τIF = 20 ms, the resting
potential vrest = −14 mV , the threshold for spike firing vth = 6
mV , the reset potential vr = 0 mV , and excitatory potential
Ee = 0 mV . Synaptic inputs are modeled as conductance ge

changes with τe
dge
dt
= −ge, where τe = 5mV .

2.2.2. LIF Neural Model
The leaky integrate-and-fire (LIF) neuron model is one of the
most popular spiking neuron models because it is biologically
realistic and computationally easy to study and mimic. The LIF
neuron’s subthreshold dynamics are described by the equation
below:

τLIF
dv(t)

dt
= vrest − v(t)+ RmI

if v(t) > vth, v(t)← vr

(2)

In this paper, the membrane resistance constance Rm = 1, τLIF =
20, vrest = 1.05, vth = 1, and vr = 0.

2.2.3. Izhikevich Neural Model
Izhikevich model was first proposed in 2003 to replicate spiking
and bursting behavior of known types of cortical neurons.
The model combines the biological plausibility of Hodgkin
and Huxley (1952) dynamics with the computing efficiency
of integrate-and-fire neurons (Izhikevich, 2003). Biophysically
accurate Hodgkin-Huxley neural models are reduced to a

TABLE 1 | Izhikevich models.

Neurons Izhikevich parameters

a b c d

RZ (resonator) 0.10 0.25 −65 2

FS (fast spiking) 0.10 0.20 −65 2

IB (intrinsically bursting) 0.02 0.20 −55 4

LTS (low-threshold spiking) 0.02 0.25 −65 2

RS (regular spiking) 0.02 0.20 −65 8

CH (chattering) 0.02 0.20 −50 2

TC (thalamo-cortical) 0.02 0.25 −65 0.05

two-dimensional system of the following dynamics ordinary with
bifurcation methods:

dv(t)

dt
= 0.04v(t)2 + 5v(t)+ 140− u(t)+ I,

du

dt
= a(bv(t)− u(t))

if v(t) > vth, v(t)← c and u(t)← u(t)+ d

(3)

where the time scale of the recovery variable u is described by
the parameter a, the sensitivity of the recovery variable u to
subthreshold changes of the membrane potential v is described
by the parameter b, the parameter c defines the membrane
potential v’s after-spike reset value, which is induced by quick
high-threshold K+ conductances and after-spike reset of the
recovery variable u induced by slow high-threshold Na+ and K+

conductances is described by the parameter d (Izhikevich, 2003).
The model simulates the spiking and bursting activity of

known kinds of cortical or thalamic neurons such as resonator
(RZ), fast spiking (FS), intrinsically bursting (IB), low-threshold
spiking (LTS), regular spiking (RS), chattering (CH), and
thalamo-cortical (TC) based on these four parameters. These
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models are employed extensively in our work and details are
illustrated in Table 1.

2.2.4. STDP Synapse Models
Spike-timing-dependent plasticity (STDP) is a biological process
that modifies the strength of neural connections in the brain.
Learning and information storage in the brain, as well as the
growth and refinement of neural circuits throughout brain
development, are thought to be influenced by STDP (Bi and Poo,
2001). The typical STDP model is used in this research, and the
weight change 1w of a synapse relies on the relative time of
presynaptic spike arrivals and postsynaptic spike arrivals. 1w =
6tpre6tpostW(tpost − tpre), where the functionW(·) is defined as:

W(1t) =
{
A+exp(1t

τ+ ) 1t > 0

−A−exp(−1t
τ− ) 1t < 0

(4)

When implement STDP, we follow the way of Brian2 (Stimberg
et al., 2019), which defines two variables apre and apost as the
“traces” of of pre- and post-synaptic activity, governed by the
following differential equations

τpre
apre

dt
= −apre

τpost
apost

dt
= −apost

(5)

Once a presynaptic spike occurs, the presynaptic trace is updated
and the weight is modified according to the rule

apre ← apre + Apre

w← w+ apost
(6)

And when a postsynaptic spike occurs:

apost ← apost + Apost

w← w+ apre
(7)

This is proved to be equivalent for the two kinds of STDP
formulations. And, in this article τpre = τpost = 1ms.

3. THE FRAMEWORK OF MULTISENSORY
CONCEPT LEARNING FRAMEWORK
BASED ON SPIKING NEURAL NETWORKS

We present a multisensory concept learning framework based on
SNNs in this part. The model’s input is a multisensory vector
labeled by cognitive psychologists, with an integrated vector as
the output following SNNs merging. Since there is no biological
study to show whether the information of multiple senses
is independent or associated before integration, two different
paradigms: Independent Merge (IM) and Associate Merge (AM)
are designed in our framework. The types of inputs and outputs
are the same for both paradigms, but the architectural design of
SNNs is different. These two paradigms involve the same phase
in the framework, and only oneăparadigm is chosen for concept
integration, depending on the assumption that whether multiple
sensory input is independent before integration.

Figure 2 illustrates the workflow: Firstly, for each modality
of the concept, we employ a neural model and transform
its perceptual strength in the concept’s multisensory vector
into external stimuli to the neuron (we work on five sensory
modalities: auditory, gustatory, haptic, olfactory, visual, so
the dimensions of the multisensory vector is five); Secondly,
the architecture of SNN is designed according to different
assumptions. We choose the IM paradigm if we assume that
multiple senses are independent of each other before fusion, and
we choose the AM paradigm if we assume that multiple senses
are associated with each other; Thirdly, we specify the neuron
model in SNN and sequentially feed concepts to the network,
with STDP rules adjusting the network’s connection weights.
Given the running interval [0,T], we record the spike trains
of each neuron; Finally, we convert the spike trains of specific
neurons into binarycode as the final integrated representation.
The framework is described in detail with the IM and AM
paradigms individually in the following sections.

3.1. The Framework
3.1.1. Independent Merge
The IM paradigm is founded on the commonly used cognitive
psychology assumption that information for each modality of
the concept is independent before integration. It’s a two-layer
spiking neural network model, with five neurons corresponding
to the stimuli of the concept’s five separate modal information
in the second layer, and a neuron reflecting the neural state
after multisensory integration in the second layer. We record the
spiking train of the postsynaptic neuron and transform them into
integrated vectors for the concept.

For each concept, we get its representation from human-
labeled vectors, Em = [mA,mG,mH ,mO,mV ]. The subscripts
here represent the concept’s perceptual strength as indicated by
auditory, gustatory, haptic, olfactory, and visual senses. We min-
max normalize the multisensory representation of the concept in
the dataset as input to the model during the data preparation
stage such that each value of the vector is between 0 and 1.
In LC823, for instance, the vector for the concept “honey” is
[0.13, 0.95, 0.57, 0.75, 0.80]. We employ LIF or Izhikevich as
presynaptic neural models and IF as postsynaptic neural models
independently for the generality of the framework. Initially, for
each presynaptic neuron, we regard the current I = mi ∗ Iboost
as the stimuli to the neuron where i ∈ [A,G,H,O,V] The the
conductance ge of the postsynaptic neuron is updated whenever
the presynaptic neuron fires as ge ← ge + 1Wij, and the
postsynaptic neuron generates spikes based on the IF model.
The synaptic strength between the postsynaptic neuron and the
presynaptic neuron is referred to as the weight 1Wij in this
case. The initial weights between presynaptic and postsynaptic
neurons Wi

0 =
gi

6n
i gi

where gi = 1
σ 2
i

,σ 2
i represents the variance

for each kind of multisensory data. They are calculated using
the Bayesian formula and the assumption that each modal is
independent before to fusion (details in the Appendix). At the
same time, the spike trains of presynaptic and postsynaptic
neurons will dynamically adjust to the weights in accordance
with the STDP law. During [0,T], we record the spike train of
the postsynaptic neuron Spost([0,T]) and transform them into
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FIGURE 2 | The framework of multisensory concept learning framework based on spiking neural networks. Firstly, for each modality of the concept, we employ a

neural model and transform its perceptual strength in the concept’s multisensory vector into external stimuli to the neuron; Secondly, the architecture of SNN is

designed according to different assumptions. We choose the IM paradigm if we assume that multiple senses are independent of each other before fusion, and we

choose the AM paradigm if we assume that multiple senses are associated with each other; Thirdly, we specify the neuron model in SNN and sequentially feed

concepts to the network, with STDP rules adjusting the network’s connection weights. Given the running interval [0,T ], we record the spike trains of each neuron;

Finally, we convert the spike trains of specific neurons into binarycode as the final integrated representation.

binarycode Bpost([0,T]), as the final integration representation
for the concept in the following manner:

Bpost([0,T]) = [T (Spost((0, tol])), T (Spost((tol, 2 ∗ tol])), · · · ,

T (Spost(((k− 1) ∗ tol, k ∗ tol])), · · · , T (Spost((⌊ T
tol
⌋ ∗ tol,T]))]

(8)
Here T (interval) operationmeans that if there is any spikes in the
interval, then the bit is 1, otherwise it is 0.

3.1.2. Associate Merge
The AM paradigm assumes that the information for each
modality of the concept is associate before integration. It’s a
five-neuron spiking neural network model, with five neurons
corresponding to the stimuli of the concept’s five separate modal
information. They are connected to one another, and there are no
self-connections. We record the spiking trains of all neurons and
transform them into integrated vectors for the concept.

We use LIF or Izhikevich neural models to model each
neuron for the generality of the framework. For each concept, we
get its normalized representation from human-labeled vectors,
Em = [mA,mG,mH ,mO,mV ]. Initially, for each neuron i ∈
[A,G,H,O,V], we consider I = mi ∗ Iboost as the stimuli. The
the current I of the postsynaptic neuron is updated whenever
the presynaptic neuron fires as I ← I + 1Wij. And the
postsynaptic neuron generates spikes based on the its model.
The weight Wij is the synaptic strength between the presynaptic
neuron and the postsynaptic neuron. The initial value for the
weight is determined by the correlation each modality pair
overall the representation dataset, i.e., W0 = Corr(i, j) where
i, j ∈ [A,G,H,O,V], which is different from AM paradigm.
Simultaneously, presynaptic and postsynaptic neurons’ spike
trains will dynamically change to the weights in accordance with
the STDP law. We denote Si([0,T]) as the ith neuron’s spike

trains during [0,T] and corresponding binary vector Bi([0,T]).
And we record the spike trains of all neurons, transform them
into binarycode Bi([0,T]) and concatenate them as the final
integration vector B([0,T]) in the following way:

Bi([0,T]) = [T (Si((0, tol])), T (Si((tol, 2 ∗ tol])), · · · ,

T (Si(((k− 1) ∗ tol, k ∗ tol])), · · · , T (Si((⌊ T
tol
⌋

∗ tol,T]))]

(9)

B([0,T]) = [BA([0,T])⊕ BH([0,T])⊕ BG([0,T])⊕ BO([0,T])

⊕BV ([0,T])] (10)

4. EXPERIMENTS

4.1. Concept Similarity Test
Concept similarity test is commonly used in the field of
artificial intelligence to evaluate the effectiveness of system-
generated representations (Agirre et al., 2009). Generally,
humans score the similarity of a particular concept pair, while the
concept pair corresponds to the system-generated representation
to calculate the similarity score. After the two scores are
ranked in the measure dataset, the Spearman’s correlation
coefficient is calculated to reflect how close the system-generated
representations are to humans. In this article, we evaluate the
closeness of the concepts’ original or multisensory integration
representations and human beings with WordSim353 (Agirre
et al., 2009) and SCWS1994 (Huang et al., 2012).

4.1.1. The Experiment
To thoroughly test our framework, we did experiments for
IM and AM paradigms with three multisensory datasets
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(BBSR, LC823, Lancaster40k) respectively and analyzed the
effectiveness differences between the representations after SNN
integration and the original representations. In the experiments,
both IM and AM paradigms involve a unique parameter in
the process of conversion from spike trains to binarycode:
the tolerance tol. It represents the size of the reducing
window for converting spike trains in the time interval
into binarycode, which reflects the strength of compressing
the spike sequence into a integrated binarycode. In each

dimension of the integrated vector, a larger tol signifies
a higher degree of information compression and a bigger
reducing window, and vice versa. But, if tol is too small, the
representation vector’s dimensionality will be too large, and
if tol is too big, the diversity of all representations will be
damaged. Therefore, we traverse tol across the range [0, 500]
while restricting diversity to the range [0.05, 0.95], and the
results indicate the present model’s ideal results as well as
the matching tol.

TABLE 2 | Concept similarity test results.

Merge way Model BBSR LC823an Lancaster40k

Tol WordSim353 SCWS1994 Average Tol WordSim353 SCWS1994 Average Tol WordSim353 SCWS1994 Average

Origin – – 0.4182 0.5838 0.5010 – 0.1321 0.5525 0.3423 – 0.2640 0.3974 0.3534

AM Izh-RZ 93 0.3455 0.6089 0.4772 165 0.3804 0.4260 0.4032 9 0.3560 0.3295 0.3427

Izh-FS 95 0.4955 0.5659 0.5307 312 0.4223 0.3788 0.4006 9 0.3787 0.3471 0.3629

Izh-IB 384 0.5455 0.5870 0.5662 32 0.3696 0.5277 0.4486 25 0.3388 0.3818 0.3603

Izh-LTS 174 0.5068 0.6127 0.5598 17 0.3107 0.5390 0.4249 16 0.3557 0.3629 0.3593

Izh-RS 366 0.4955 0.5857 0.5406 84 0.5179 0.5271 0.5225 55 0.3206 0.3708 0.3457

Izh-CH 170 0.4273 0.5928 0.5100 7 0.1089 0.4884 0.2986 14 0.3150 0.3349 0.3249

Izh-TC 148 0.5068 0.6103 0.5586 6 0.2214 0.5181 0.3698 7 0.3979 0.3364 0.3672

LIF 187 0.5727 0.6927 0.6327 330 0.5036 0.6330 0.5683 86 0.1788 0.3500 0.2644

IM Izh-RZ 17 0.4636 0.634 0.5488 10 0.5545 0.5618 0.5581 4 0.2026 0.3139 0.2583

Izh-FS 17 0.4636 0.6388 0.5512 10 0.5545 0.5617 0.5581 21 0.3371 0.2910 0.3140

Izh-IB 7 0.5477 0.5988 0.5733 24 0.5509 0.5491 0.5500 31 0.1597 0.3040 0.2319

Izh-LTS 83 0.5000 0.6417 0.5708 18 0.6080 0.5361 0.5721 56 0.3610 0.3448 0.3529

Izh-RS 196 0.5023 0.5530 0.5276 163 0.4830 0.4613 0.4722 68 0.0757 0.2959 0.1858

Izh-CH 94 0.4659 0.5786 0.5222 8 0.5696 0.4746 0.5221 50 0.3843 0.3813 0.3828

Izh-TC 17 0.4636 0.6125 0.5381 5 0.4509 0.5310 0.4909 20 0.3387 0.3042 0.3215

LIF 143 0.4205 0.6167 0.5186 3 0.0643 0.5672 0.3158 324 0.0018 0.1481 0.1965

The bold values indicates the current measure dataset reflect the best results, while the underlined values imply that the multisensory integrated representation is closer to humans than

the original representation.

FIGURE 3 | Modality exclusivity demonstration. Modality exclusivity (ME) is a metric measuring how much of a concept is perceived through a single perceptual

modality. For each concept, the value of ME is calculated as the perceptual strength range divided by the sum, and spanning from 0 to 100% for completely

multimodal to completely unimodal perception.

Frontiers in Systems Neuroscience | www.frontiersin.org 6 May 2022 | Volume 16 | Article 845177

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Wang and Zeng Multisensory Concept Learning Framework

We used the evaluation datasets WordSim353 and SCWS1994
for testing, and the inputs of the models were from different
sources of multisensory representation datasets: BBSR, LC823an,
Lancaster40k, and tested using two paradigms, IM and AM,
respectively. For the AMparadigm, Izhikevich’s sevenmodels and
LIF model were used, while for the IM paradigm, IF model were
used for postsynaptic neurons and Izhikevich’s seven models and
LIF model were used for presynaptic neurons. The running time
of all the tests is 100 ms and Iboost = 100.

4.1.2. Results and Analysis
From the overall results for both IM and AM paradigms,
the integrated vectors are closer to humans than the
original vectors based on our models: 37 submodels
achieved better results for a total of 48 tests for both IM
and AM, as Table 2 shows. In terms of overall dataset,
15/16 tests work better for the BBSR dataset, 14/16 tests
work better for LC823an, and 8/16 tests work better for
Lancaster40k.

In almost all experiments, multisensory integrated
representations based on our framework outperform
unintegrated ones, with the exception of the instability
shown in IM and AM paradigms when Lancaster40k
is employed as the input. For any of the multisensory
vectors, an integration way could be found to improve their
representations.

4.2. Comparisons Between IM and AM
Paradigms
Unlike the analysis of the macro-level above, in this section we
introduce the concept feature norms to compare IM and AM
paradigms from the micro-level perspective of each concept.
Concept feature norms are a way of representing concepts
by using standardized and systematic feature descriptions that
mirror human comprehension. The similarities and differences
of concepts are related to the intersection and difference
of concept feature norms. McRae’s concept feature norms,
introduced by McRae et al. (2005), are the most prominent
work in this area. They not only supplied 541 concepts
with feature norms, but also proposed a methodology for
generating them. For example, the feature norms of the
concept “basement” are “used for storage,” “found below ground,”
“is cold,” “found on the bottom floor,” “is dark,” “is damp,”
“made of cement,” “part of a house,” “has windows,” “has a
furnace,” “has a foundation,” “has stairways,” “has walls,” “is
musty,” “is scary,” and “is the lowest floor.” Another semantic
feature norms dataset analogous to McRae is CSLB (Centre
for Speech, Language, and the Brain). They collected 866
concepts and improved the feature normalization and feature
filtering procedure (Devereux et al., 2014). The McRae and
CSLB criteria for human conceptual cognition are used in this
research to investigate how each concept is similar to human
cognition.

We compare and analyze IM and AM paradigms from
two perspectives. First, we use the perceptual strength-related
metric Modality Exclusivity to compare the two paradigms

TABLE 3 | The sensibility of IM and AM results to modality exclusivity.

Izhkevich model
AM IM

McRae CSLB McRae CSLB

RZ 0.0149 −0.0987 −0.1524 −0.4848
FS 0.2679 0.0901 −0.134 −0.4447
IB −0.0559 0.0191 −0.2672 −0.4986
LTS 0.2113 0.035 −0.12 −0.0453
RS 0.1943 −0.0087 −0.006 −0.1997
CH 0.0988 0.0197 0.0294 0.0964

TC 0.2078 0.0398 −0.2115 −0.4761

to explore the sensitive of them to the concepts’ strength
distribution of multisensory information. Then, to assess the
generality of the IM and AM paradigms, we introduce nine
psycholinguistic dimensions derived from the concept’s nature,
which are unrelated to perceptual strength.

4.2.1. Modality Exclusivity
Modality Exclusivity (ME) is a metric measuring how much
of a concept is perceived through a single perceptual modality
(Lynott and Connell, 2013). For each concept, the value of ME is
calculated as the perceptual strength range divided by the sum,
and spanning from 0 to 100% for completely multimodal to
completely unimodal perception. Figure 3 show some examples.

In the concept feature norms dataset, we first obtain all
similar concepts csimilar for each concept c based on the
number of feature overlaps and record their rank list Rsimilar

c

sorted by similarity. Then, for all concepts, the corresponding
multisensory integrated binary representations BIM and BAM

are produced using the IM and AM paradigms, respectively.
Next, for concept c, its k similar concepts ck similar

IM and ck similar
AM

are computed based on integrated binarycodes and harming
distance, respectively. We query the rank of these k similar
concepts in the feature norms space Rsimilar

c and take the average
value, denoted as kARcIM and kARcAM , which reflects the closeness
of the multisensory representations to human cognition using
two ways of integration in our framework. Smaller values of
kAR indicate closer to human cognition at the microscopic
level. Finally, we focus on all concepts in the representation
dataset and calculate the correlation coefficients between the
kARcIM or kARcAM arrays obtained using the above approach and
the ME arrays corresponding to the concepts. This coefficient
reflects the correlation between the two different multisensory
concept integration paradigms and modal exclusivity. And in
this experiment we only test the Izhikevich model and set
k to 5.

The results in Table 3 reveal the difference between IM
and AM paradigms. The IM paradigm has a stronger negative
correlation in both concept feature norms test sets, but the
AM paradigms has a slightly positive correlation. We investigate
this discrepancy further by viewing the FS model in detail,
as shown in Figure 4. The results reveal that for concepts
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FIGURE 4 | The correlation between ME and average of five similar concept rankings.

with higher ME (such as “spring,” “thunder,” “yellow,” “debate,”
“clang” in Figure 3), the IM paradigm is better at multisensory
integration. While the AM paradigm is less input biased
for each modality, it benefits the concept of uniform modal
distribution (such as “theory,” “knowledge,” “pig,” “duck,” “lake”
in Figure 3).

4.2.2. Generality Analysis
The ME metric used in the previous experiments is a perceptual
strength-related indicator for the concept representation. In this
part, we will test the framework from the input concept itself.
And we introduce Glasgow norms which are a set of normative

assessments on nine psycholinguistic dimensions: arousal
(AROU), valence (VAL), dominance (DOM), concreteness
(CNC), imageability (IMAG), familiarity (FAM), age of
acquisition (AOA), semantic size (SIZE), and gender association
(GEND) for 5,553 concepts (Scott et al., 2019).

In the same manner as the previous experiment. In concept
feature norms, we first record all similar concepts for each
concept, then sort them by similarity and rank them. Then, for
IM and AM paradigms, we use the same concept input, get the
integration vector for each concept, find their k similar, and
get the mean value of their ranking in concept feature norms
as kARcIM and kARcAM . Finally, we determine the correlation
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FIGURE 5 | The heatmap of generality analysis results.

FIGURE 6 | The beeswarm of correlation distribution.
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coefficient between each psychological characteristic and the
concept’s average ranking value kAR for the two paradigms. We
still only test the Izhikevich model in this experiment, and the
value is set to 5.

We used heatmaps (Figure 5) to visualize the correlation
coefficients between the IM and AM paradigms’ kAR and
nine psycholinguistics in the two concept feature norms sets
McRae and CSLB. Additionally, we omit the adopted Izhikevich
submodels and provide the correlation coefficients using a
beeswarm (Figure 6) to explain them more clearly.

According to the experimental results presented, the absolute
values of all correlation coefficients are<0.3. The effect of vectors
after integration of either IM or AM paradigms does not have
any relationship with the nature of the concepts for several
dimensions, including AOA, AROU, FAM, IMAG, and VAL.
This indicates that both paradigms have good generality and the
framework is not affected by the concepts themselves.

5. DISCUSSION

In this study, we propose a SNN-based concept learning
framework for multisensory integration that can generate
integration vectors based on psychologist-labeled multimodal
representations. Vision, hearing, touch, smell, and taste are
among the five modalities used in our research, which also
includes a brain-like SNN model. We intend to add more
brain-like processes in the future, such as multisensory fusion
plasticity. The multisensory data we currently use are labeled by
cognitive psychologists, which is relatively expensive and small,
and in the future we consider expanding the relevant dataset
by mapping for larger scale experiments. The current research
focuses on multisensory representation of concepts, which is
a subset of pattern representation in AI, and future research
can be deeply integrated with downstream tasks to create AI

systems that incorporate multisensory integration. At the same
time, this places more demands on multisensory perceptrons.
Human perception of concepts has not only multisensory
perception but also more textual information based on abstract
information, and it is also worth exploring how to combine
these two parts to build human-like concept learning systems in
the future.
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APPENDIX

The Initial Weights in IM
Similar to what cognitive psychologists (Ursino et al., 2014)
have done before, we assume that for the concept s and its
each modality i ∈ [A,G,H,O,V] representations, p(xi|s) ∼
N(xi; s, σi), where N(x;µ, σ ) stands for the normal distribution
over x with mean µ and standard deviation σ . They are
conditionally independent from each other and by Bayes’ rule,

p(s|xA, xG, xH , xO, xV ) ∝ p(xA, xG, xH , xO, xV |s)

∝
∏

i

p(xi|s) =
1

∏
i(
√
2πσi)

e
−6i

(xi−s)2
2σ2i

∝ −6i
(xi − s)2

2σ 2
i

(11)

The maximum-a-posteriori estimation for s is ŝ = 6i

1

σ2i

6i
1

σ2i

xi,

where 1
σ 2
i

reflects the reliability of each modality for the

same concept s. In our IM schema, we regard normalized
reliability as the initial weights between pre-synaptic neurons
(describing each modality) and the post-synaptic neuron(for
integration), i.e.,

w0
i =

1
σ 2
i

6i
1
σ 2
i

(12)

where we can get each σi via psychologist-labeled multisensory

datasets.
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