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Abstract— A lower limb rehabilitation robot, namely iLeg,
has been developed recently. Since active exercises have been
proven to be effective for neurorehabilitation and motor recov-
ery, they are suggested to be implemented on iLeg. To this goal,
patients’ motion intention should be recognized. Therefore,
a method based on the dynamic model of the human-robot
interface (HRI) is designed to recognize the human motion
intention. This paper is devoted to modeling and identifying the
dynamics of the HRI. Firstly, the dynamic model of the HRI
is designed by combining the dynamic models of the human
leg and iLeg, where the human leg dynamic model (HLDM)
is mainly concerned. By considering the motion trajectories
during the rehabilitation exercises provided by iLeg, the human
leg can be taken as a manipulator with two degrees of freedom;
meanwhile, the joint angles and torques of the human leg
can be measured indirectly by using the position and torque
sensors mounted on the joints of iLeg. As a result, an 8-
parameter HLDM can be designed by using the Lagrangian
method. Then, the dynamic model of the HRI is identified by
respectively and independently identifying the undetermined
dynamic parameters of iLeg and the HLDM, where the dynamic
parameters of the HLDM are mainly considered. Finally, the
feasibility of the dynamic model of the HRI is validated by
experiments.

I. INTRODUCTION

The number of patients with lower limb dysfunctions
including paraplegia and hemiplegia is increasing rapidly
in recent years because of various causes, especially stroke
[1] and spinal cord injury (SCI) [2] brought out by traffic
accidents or natural calamities. It usually needs long time to
recover from the suffering for the patients after the instant
therapy. The traditional methods for lower limb rehabilitation
usually need lots of physicians and nurses, and hence, impose
heavy social and economic burden on the family and society.
Therefore, more and more attentions have been paid to
lower limb rehabilitation robot (LLRR), which is supposed
to be able to provide personal rehabilitation prescriptions,
enhance the effects, and meanwhile reduce the burden of
the associated people. Recently, an LLRR prototype, namely
iLeg, has been developed at Institute of Automation, Chinese
Academy of Sciences. As shown in Fig. 1, iLeg consists of
three parts: one chair and two leg mechanisms. Both the leg
mechanisms, with the same structures, have three degrees
of freedom (DOFs): the hip, knee, and ankle joints. In this
paper, one of the leg mechanisms is referred as iLeg for easy
description.

*The authors are with State Key Laboratory of Management and
Control for Complex Systems, Institute of Automation, Chinese A-
cademy of Sciences, Beijing 100190, China (weiqun.wang@ia.ac.cn,
hou@compsys.ia.ac.cn.)

Fig. 1. The prototype of iLeg.

A. Recognition of the Human Motion Intention

According to whether or not the voluntary intention of
the patients is involved, rehabilitation exercises can basically
be divided into two kinds: passive and active exercises.
Although the passive exercises, in which the voluntary in-
tention is not involved, can be implemented more easily
by rehabilitation robots or machines, the active ones are
more effective for neurorehabilitation and motor recovery
[3], and hence have received more attentions nowadays.
In order to implement active rehabilitation exercises, the
voluntary motion intention of the patients should be recog-
nized, which in the literature has been carried out by using
the electromyography (EMG) [4] or electroencephalogram
(EEG) [5] signals. Whereas, it is shown in the clinical trials
that EMG and EEG signals have a strong dependence on
individuals and a plenty of factors can affect the accuracy of
the estimation. Therefore, it is difficult and complicated to
use EMG and EEG signals in rehabilitation practice.

In this paper, position and torque sensors are used to
recognize the human motion intention, since the information
from these sensors is more reliable and robust. The proposed
active rehabilitation exercise architecture is given in Fig.
2, where the torques and joint angles are measured by the
associated sensors which are mounted on both the hip and
knee joints of iLeg.

It can be seen from Fig. 2 that the human motion intention
is recognized based on the dynamic model of the human-
robot interface (HRI) of iLeg. The HRI dynamics consists of
two components: the dynamics of the human leg and iLeg.
Therefore, the dynamic model of the HRI is derived in this
way: firstly, the dynamics of the human leg and iLeg are
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the dynamic model of 

the HRI

Fig. 2. The active rehabilitation exercise architecture based on the dynamic
model of the human-robot interface (HRI). τm and τc are respectively the
measured and estimated torque vectors, where τc is calculated from the
dynamic model of the HRI. Sr , the velocity or position vector depending
on the control strategy, is derived from ∆τ which represents the human
motion intention.

identified respectively and independently, and then the HRI
dynamics is obtained by combining the two components.
In this paper, the human leg dynamic model (HLDM) is
mainly concerned; meanwhile, the dynamic model of iLeg is
designed by using the traditional method.

B. Dynamics of the Human Leg

Usually human dynamic model is designed to be suitable
for a particular type of motions and the specific circumstance.
In [6], a simple 3-segment human body model was designed
in order to reconstruct the motion trajectories of the shank,
thigh and head-arms-trunk (HAT) segments in sit-to-stand
motion by using low-cost inertial sensors. A 54 DOFs model
suitable for analysis of skilled motions such as movements in
sports, driving movements, etc., was proposed in [7], where
the HLDM had 14 DOFs for each leg. The most commonly
used human dynamic model is a 15 links model with 34
DOFs, where the HLDM has 7 DOFs: both the hip and
ankle joints are taken as spherical joints and have 3 DOFs,
respectively; the knee joint has 1 DOF [8]. It has been proven
in [7], more complex models can describe more precisely the
kinematics of human motions. Whereas, the computational
load will increase and the stability will decrease when the
complexity of the models rises. Therefore, it is usually
a trade-off among the estimation precision, stability, and
computational load.

When patients are doing rehabilitation exercises with iLeg,
motions of their legs are restricted in the sagittal plane;
hence, the hip and ankle joints have only 1 DOF respectively.
Moreover, in the exercises provided by iLeg, the angular
range of the ankle joint is relatively small and has little effect
on the dynamics, therefore the ankle joint is neglected in the
HLDM of this paper. As a result, the lower limb of the patient
doing rehabilitation exercise with iLeg can be regarded as a
2 DOFs planar manipulator.

In order to implement parameters estimation of the HLD-
M, joint torques or contact forces between the human foot
and the pedal or other foot supporter, which can be converted
to joint torques by the Jacobian matrix, should be measured.
In [9], the contact force measured by the force-plate was

Fig. 3. The schematic plot of the HRI. The hip and ankle joints axes of
the human leg match those of iLeg well. The knee joint axis of the human
leg usually does not match that of iLeg since lengths of the thigh and crus
of the human leg usually don’t exactly equal to the corresponding links of
iLeg.

used to identify the inertial parameters since joint torques
of the human leg are usually more difficult to be measured
in practice. Whereas, as for iLeg, torques measured by the
torque sensors mounted on the joints are more robust to
the disturbance on the foot pedal, which is common in the
rehabilitation exercises. Furthermore, the method using force
sensors mounted on the foot pedal to recognize the patients’
motion intention will impose additional constraints on the
patients’ feet, which will inevitably lead to uncomfortable
manipulations. Therefore, in this paper, the torque and posi-
tion sensors mounted on both the hip and knee joints of iLeg
are used to identify the HLDM and to recognize the human
motion intention.

The remainder of this paper is organized as follows:
Section II describes the dynamic model of the HRI and the
identification method; the experiments and results are given
in Section III; the paper is concluded in Section IV.

II. MODELING AND IDENTIFICATION OF THE HRI
DYNAMICS

The schematic plot of the HRI based on iLeg is given in
Fig. 3. It is shown that, the HRI consists of two components:
the human leg and iLeg, where the hip and ankle joints of
the human leg respectively well match those of iLeg. As
analyzed in the above section, both ankle joints of the two
components are neglected, such that both the human leg and
iLeg have two 2 DOFs and can be taken as 2 DOFs robots,
respectively. The dynamic model of the HRI is derived by
combining the HLDM and the dynamic model of iLeg.

A. The HLDM

Since the human leg doing exercises with iLeg can be
taken as a 2 DOFs robot, the methods for modeling robotic
dynamics can be used to design the HLDM. In this paper,
the Lagrangian equations are used, which are defined by:

τi,h =
d

dt
(
∂Lh

∂θ̇i,h
)− ∂Lh

∂θi,h
, ∀i = 1, 2, (1)

where τi,h, θi,h, and θ̇i,h are respectively the ith joint torque,
angle, and angular velocity of the human leg, as is shown in
Fig. 3; Lh, the Lagrangian function of the system, is defined
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by:
Lh = Kh(Θh, Θ̇h)− Ph(Θh), (2)

where Kh and Ph are respectively the kinetic and potential
energies; Θh = (θ1,h, θ2,h)

T and Θ̇h = (θ̇1,h, θ̇2,h)
T are

respectively the angle and angular velocity vectors.
In order to model the dynamics of the human leg as

accurately as possible, the integral method is used to derive
the kinetic and potential energies. The joint friction model
is derived from the traditional friction model of robotic ma-
nipulator given in [10] by neglecting the Coulomb friction.
Then, by eliminating the similar terms and regrouping the
parameters, the following HLDM can be obtained:

Φh(Θh, Θ̇h, Θ̈h)Ph = τh, (3)

where Φh is a 2 × 8 function matrix, representing the
regressor; τh = [τ1,h, τ2,h]

T , is the torque vector in the
human leg joint space; Ph is the dynamic parameter vector.
The elements of Φh and Ph are defined respectively by:

ϕh
1,1 = 2θ̈1,h, ϕh

1,2 = cos(θ1,h),

ϕh
1,3 = 2θ̈1,h + 2θ̈2,h,

ϕh
1,4 = 2θ̈1,h cos(θ2,h) + θ̈2,h cos(θ2,h)

− 2θ̇1,hθ̇2,h sin(θ2,h)− θ̇22,h sin(θ2,h)

+ g cos(θ1,h + θ2,h)/l1,h,

ϕh
1,5 = −2θ̇1,hθ̇2,h cos(θ2,h)− θ̇22,h cos(θ2,h)

− 2θ̈1,h sin(θ2,h)− θ̈2,h sin(θ2,h)

− g sin(θ1,h + θ2,h)/l1,h,

ϕh
1,6 = − sin(θ1,h), ϕh

1,7 = θ̇1,h, ϕh
1,8 = 0,

ϕh
2,1 = 0, ϕh

2,2 = 0, ϕh
2,3 = 2θ̈1,h + 2θ̈2,h,

ϕh
2,4 = θ̇21,h sin(θ2,h) + θ̈1,h cos(θ2,h)

+ g cos(θ1,h + θ2,h)/l1,h,

ϕh
2,5 = θ̇21,h cos(θ2,h)− θ̈1,h sin(θ2,h)

− g sin(θ1,h + θ2,h)/l1,h,

ϕh
2,6 = 0, ϕh

2,7 = 0, ϕh
2,8 = θ̇2,h,

(4)

and

ph1 =

∫
V1

1

2
ρvl2vdv +

∫
V2

1

2
ρvl21,hdv,

ph2 =

∫
V1

ρvlvg cos(θv)dv +
∫
V2

ρvl1,hgdv,

ph3 =

∫
V2

1

2
ρvl2vdv, ph4 =

∫
V2

ρvlv cos(θv)l1,hdv,

ph5 =

∫
V2

ρvlv sin(θv)l1,hdv,

(5)

ph6 =

∫
V1

ρvglv sin(θv)dv, ph7 = c1,1, ph8 = c2,1,

where V1 and V2 are respectively the volumes of the human
thigh and crus; dv is a micro-element. ρv, lv and θv, all
correlated with the location, are respectively the material
density, the distance between dv and the associated joint axis,
and the angular deviation of dv from the center line; g is the

gravitational acceleration; c1,1 and c2,1 respectively describe
the damping characteristics of the hip and knee joints; ph1 -
ph8 are the undetermined parameters to be identified.

B. The Dynamic Model of iLeg

The dynamic model of iLeg used in this paper is derived
by using the traditional joint friction model given in [10]
and the Lagrangian method. The obtained dynamic model is
given by:

Φr(Θr, Θ̇r, Θ̈r)Pr = τr, (6)

where Φr is a 2×12 regressor matrix and all of the elements
of Φr are functions of the joint angles, angular velocities and
accelerations of iLeg, which are represented by Θr, Θ̇r and
Θ̈r, respectively; Pr, a 12×1 vector, represents the dynamic
parameters for iLeg; Θr = [θ1,r, θ2,r]

T ; τr = [τ1,r, τ2,r]
T .

C. The Dynamic Model of the HRI

By combining the HLDM and the dynamics of iLeg, the
following dynamic model of the HRI can be obtained:

JT
r J−T

h Φh(Θh, Θ̇h, Θ̈h)Ph +Φr(Θr, Θ̇r, Θ̈r)Pr = τhri,
(7)

where the first term represents the contribution of the HLDM,
which is derived by mapping the joint torques in the joint
space of the human leg into that of iLeg; τhri is the total
joint toque vector of the HRI, which can be measured by
the torque sensors mounted on iLeg joints; Jh and Jr are
Jacobian matrixes respectively for the human leg and iLeg,
which are defined respectively by:

Jh =

[
Jh
1,1 Jh

1,2

Jh
2,1 Jh

2,2

]
, Jr =

[
Jr
1,1 Jr

1,2

Jr
2,1 Jr

2,2

]
, (8)

where

Jh
1,1 =− l1,h sin(θ1,h)− l2,h sin(θ1,h + θ2,h),

Jh
1,2 =− l2,h sin(θ1,h + θ2,h),

Jh
2,1 =l1,h cos(θ1,h) + l2,h cos(θ1,h + θ2,h),

Jh
2,2 =l2,h cos(θ1,h + θ2,h),

Jr
1,1 =− l1,r sin(θ1,r)− l2,r sin(θ1,r + θ2,r),

Jr
1,2 =− l2,r sin(θ1,r + θ2,r),

Jr
2,1 =l1,r cos(θ1,r) + l2,r cos(θ1,r + θ2,r),

Jr
2,2 =l2,r cos(θ1,r + θ2,r).

D. Identification of the Dynamic Model of the HRI

It is shown by (7), both components of the dynamic model
of the HRI are linear, and hence can be identified by the
traditional identification method. Since the joint angles and
torques of iLeg can be measured directly by the associated
sensors, the dynamic model of iLeg is identified first. Then,
the HLDM defined by (3) is identified, where the joint angles
and torques of the human leg should be obtained before the
parameter estimation.

The joint angles of the human leg can be derived from
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those of iLeg as follows:

θ2,h =arccos

(
l21,r + l22,r + 2l1,rl2,r cos(θ2,r)− l21,h − l22,h

2l1,hl2,h

)
,

θ1,h =

{
− arctan(b/a) + arcsin(c), if a > 0

π − arctan(b/a) + arcsin(c), if a ≤ 0
,

(9)

where

a =l1,h + l2,h cos(θ2,h),

b =l2,h sin(θ2,h),

c =
l1,r sin(θ1,r) + l2,r sin(θ1,r + θ2,r)√

l21,h + l22,h + 2l1,hl2,h cos(θ2,h)
.

When the human leg is in the quiescent condition, the
torque measured by the associated torque sensor is a com-
bination of the torques contributed by the dynamics of the
human leg and iLeg. Therefore, the joint torque contributed
by the human leg dynamics can be obtained by the following
equation:

τh
hri = τm

hri − τ r
hri, (10)

where τm
hri is a joint torque vector which is measured

at the joints of iLeg; τh
hri and τ r

hri represent the joint
torques contributed by the dynamics of human leg and iLeg,
respectively; τ r

hri can be calculated by using the dynamic
model of iLeg defined by (6). Then, τh

hri is mapped into the
joint space of the human leg by the following equation:

JT
h J−T

r τh
hri = τh. (11)

Since Φh and τh can be obtained by (4) and (8) -
(11), the undetermined parameters in (3) can be identified
by using the traditional method for identifying the robotic
dynamics. The exciting trajectory for identifying the HLDM
is parameterized by the FFS method [11] and optimized by
using the condition number criterion [12] and the particle
swarm optimization (PSO) algorithm [13]. Then the designed
optimal exciting trajectory (OET) is implemented on iLeg
when the human leg is bound to it near the ankle joint and
maintaining in the quiescent condition, and the torques and
joint angles are measured and recorded at the same time.
The obtained torques are then preprocessed by the moving
average filter, which is carried out by the smooth function
in the Matlab environment. The result data are mapped into
the joint space of the human leg. The joint angular velocities
and accelerations of the human leg can be obtained from the
associated joint angles by using the numerical differential
method. Finally, the undetermined parameters in (3) can be
estimated by using the ordinary or weighted least square
estimation (LSE) method [14].

III. EXPERIMENTS AND RESULTS

The experiment setup is given in Fig. 4, where the human
leg is bound on iLeg near the ankle joint and the human hip
and ankle joints well match the corresponding joints of iLeg.
The lengths of the human thigh and crus and those of the

Fig. 4. Experiment setup for identification and validation of the HRI
dynamic model.
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Fig. 5. The trajectory of the foot pedal for the OET.

corresponding parts of iLeg are given respectively by: l1,h =
390 mm, l2,h = 500 mm, l1,r = 370 mm, and l2,r = 530
mm. Two experiments have been carried out: 1) identification
of the HLDM; 2) validation of the HRI dynamic model.

A. Experiment for Identification of the HLDM

The OET for identifying the HLDM is given in Figs. 5 and
6. The condition number of the associated regressor matrix
is 28.38, which is small enough for parameter estimation.
The OET was implemented on iLeg repeatedly, and the
hip and knee joint angles and torques were recorded at
the same time. Twelve periods of data were recorded and
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Fig. 6. The joint angles for the OET.
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TABLE I
PARAMETERS ESTIMATED BY THE LSE METHOD FOR THE HLDM.

parameter unit value parameter unit value
ph1 kg·m2 0.4952 ph5 kg·m2 0.1444
ph2 Nm 24.4210 ph6 Nm 11.7963
ph3 kg·m2 0.6161 ph7 Nm·s 14.6621
ph4 kg·m2 0.5140 ph8 Nm·s -1.3876

the data of the first and last periods were neglected. The
measured torques were preprocessed by the smooth function
in the Matlab environment firstly, where the span of the
function was 9. Then the torques contributed by iLeg were
eliminated and the remainders were mapped into the joint
space of the human leg; the human joint angles were obtained
from the joint angles of iLeg and used to calculate joint
velocities and accelerations subsequently by using the nu-
merical differential method. Since the joint angles measured
by using the position sensors were relatively stable and the
variation was relatively small, the effect of the noise on
the joint velocities was neglected. Meanwhile, the obtained
accelerations were filtered by using the smooth function.
Finally, the undetermined parameters of the HLDM defined
by (3) were estimated by the LSE method. The results are
given in Table I. The dynamic model of the HRI were
obtained by combining the HLDM and the dynamic model
of iLeg.

B. Experiment for Validation of the HRI Dynamic Model

In the validation experiment, a trajectory different from
the OET, was designed and implemented on iLeg under
the condition the same as the identification experiment. The
torques and joint angles were recorded and preprocessed.
Then, the joint angular velocities and accelerations were
derived from the recorded joint angles and used to estimate
the joint torques by using the dynamic model of the HRI
identified in the above subsection. Finally, the estimated
torques were compared with the torques measured by the
torque sensors.

The trajectory for validation of the HRI dynamic model is
given in Figs. 7 and 8. The measured and estimated torques
are given in Fig. 9. The estimated torque errors are given in
Table II, where τrmse is the root-mean-square error of the
estimated torques defined by the following equation:

τrmse =

√√√√ 1

Kc

Kc∑
k=1

(τe,k − τm,k)2, (12)

where Kc is the number of the sampled points used in the
calculation; τe,k and τm,k are respectively the kth estimated
and measured torques for the hip or knee joints. βare is the
average relative error of the estimated joint torques, which
is defined by:

βare =

√√√√ 1

2Kc

2Kc∑
k=1

(
τe,k − τm,k

τm,k

)2

, (13)
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Fig. 7. The trajectory for validation of the HRI dynamic model.
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Fig. 8. The joint angles for the validation trajectory.

where βare is calculated for the trajectories of the hip and
knee joints together.

It can be seen that, the estimation error is small for both
the hip and knee joints, which denotes that the proposed
dynamic model of the HRI is suitable for torque estimation.
Meanwhile, the estimation error for the hip joint is relatively
big, such that further investigation needs to be carried out if
a more accurate estimation is required.

IV. CONCLUSION

A method based on the joint torque estimation is pro-
posed to recognize the human motion intention for active
rehabilitation exercises, which have been proven effective
for neurorehabilitation and motor recovery for the patients
with lower limb dysfunctions. In order to estimate the joint
torques, the dynamics of the HRI need to be identified. In
this paper, the dynamic model of the HRI are divided into

TABLE II
THE ESTIMATED TORQUE ERRORS FOR THE VALIDATION TRAJECTORY.

τrmse(Nm)
hip knee βare

1.3288 0.3450 0.0139
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Fig. 9. Joint torques for the validation trajectory. (a) The measured and (b) estimated joint torques. (c) The estimated torque errors.

two components: the HLDM and the dynamic model of iLeg,
where the HLDM is mainly concerned.

Since the motions of the human leg are restricted in the
sagittal plane during the rehabilitation exercises provided by
iLeg, and the ankle joint has little effect on the HLDM, the
human leg is taken as a 2 DOFs planar robot. Therefore, the
methods for modeling and identifying the dynamics of series
robot can be used. An 8-parameter HLDM is designed by
using the Lagrangian method; meanwhile, a method using
the position and torque sensors mounted on the joints of
iLeg is designed to indirectly measure the joint angles and
torques of the human leg. Then an OET parameterized by the
FFS method and optimized by the PSO algorithm is designed
and implemented on iLeg when the human leg is bound on it.
The undetermined parameters of the HLDM are estimated by
using the LSE method and the data measured from the OET
trajectory. Finally, the dynamic model of the HRI is obtained
by combining the dynamic model of iLeg and the HLDM,
and validated by the experiment. Future work will focus on
the application of the dynamic model of the HRI obtained
in this paper and further improvement of the performance.
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