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Abstract This paper investigates velocity and input
constrained integrated game and control (IGC) prob-
lems for integrator-type multi-agent systems via event-
triggered communication mechanism. To be specific, a
distributed event-triggered scheme is firstly developed
to seek the Nash equilibrium (NE) for single-integrator
without considering the boundedness of control inputs,
followed bywhich an adaptive NE seeking algorithm is
also provided with no need of the smallest eigenvalue
of the graph’s Laplacianmatrix aswell as the number of
agents. Then, by adapting the hyperbolic tangent func-
tion into the event-triggered NE seeking controller, the
IGC problem of double-integrator is addressed while
guaranteeing the velocity and input constraints. The
convergence results are given through Lyapunov sta-
bility analyses, and the Zeno behavior is proven to be
excluded by the MASs. Finally, numerical simulations
are included to verify the effectiveness of the proposed
method.
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1 Introduction

With the penetration of game theory into more and
more engineering applications, including wireless net-
works [1], sensor networks [2], electric vehicle charg-
ing [3–5], optical networks [6] and competition among
energy resources [7], noncooperative games of multi-
agent systems (MASs) on graphs have been of consid-
erable interest in recent years. The goal is to design
distributed learning algorithms via local information
exchange based onwhich each agent optimizes its indi-
vidual but coupled cost function to reach the corre-
sponding Nash equilibrium (NE). Great progress has
been made in this field recently; however, most NE
seeking schemes are emphasized with attention being
given to MASs without explicit dynamics (see [8–12]
and references therein).
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From the practical perspective, agents are com-
monly governed by inherent dynamics. With this in
mind, researchers have shown an increased interest
in the problem of integrated game and control (IGC)
for MASs with various dynamics, where controllers
were developed in the literature to steer the agents
to seek the NE in a distributed way. In [13] and
[14], distributedNE seeking algorithmswere presented
for single-integrator systems under fixed or switching
communication topologies, where leader-follower con-
sensus protocols were integrated for information shar-
ing. Along with this line, the authors of [15] further
extended the results in [13] to accommodate hybrid
games, played by both continuous-time players and
discrete-time players, and an extended state observer-
based distributed NE seeking scheme was developed
in [16] to achieve the IGC design for MASs sub-
ject to unmodeled and disturbance terms. Addition-
ally, aggregative games were also considered in [17]
and [18] for disturbed linear and uncertain perturbed
nonlinear systems, respectively.Besides first-order sys-
tems concerned above, more recent attentions have
focused on the IGC problem for second- or high-order
MASs. The motivation behind this focus is that many
force-actuated systems are with second-order dynam-
ics and some underactuated systems can be trans-
formed into high-order fully-actuated ones [19–23]. In
[24], saturated gradient-based schemes were given to
accommodate games played by double-integrator with
bounded control input. The authors in [25] investi-
gated the aggregative game for heterogeneous Euler-
Lagrange systems. Distributed NE seeking strategies,
augmented with a dynamic internal-model based com-
ponent, were developed in [26] formulti-integrator sys-
tems subject to external disturbances. Moreover, our
previous works mainly focused on robust NE seeking
for high-order MASs with the consideration of input
delay, communication delay, nonlinear dynamics or
unmeasured inherent states [27–29].

The aforementioned works contribute to the field
of multi-agent IGC problems by designing distributed
NE seeking algorithms with continuous communica-
tion between neighbors. Nevertheless, from the practi-
cal perspective, each agent usually equipswith onboard

communication modules with limited energy resources
[30]. With this context in mind, the event-triggered
mechanism has been considered as an effective option
to design energy-saving controllers to reduce the com-
munication burden. Along with this line, much effort
has been made to design event-triggered protocols
for multi-agent consensus with integral-type [31,32]
or general linear [33,34] or nonlinear [35–37] sys-
tems, and more recent works on event-triggered con-
trol of MASs have been included in the review articles
[38,39]. Despite the recent progress on event-triggered
consensus, there have been relatively few works on
event-triggered NE seeking for multi-agent IGC prob-
lems yet. This lies in the primary goal of this research.

When applying the controllers on practical dis-
tributed MASs, the ubiquity of constraints on the
agents’ dynamics should be considered. One of the
most commonly encountered constraints is input sat-
uration, caused by the finite actuation power of phys-
ical plants, and recent advances have been made on
input constrained distributed coordination of MASs
with integrator-type [40,41] or general linear [42–44]
dynamics. Apart from the input saturation, velocity
constraint is another commonly existing restriction in
practical engineering systems and has motivated the
study of MASs with bounded velocity in the literature
[45,46]. Examples are fixed-wing UAVs, whose mini-
mum speed should be maintained to provide necessary
lift, or ground vehicles, whose maximum speed needs
to be limited for safety concerns. On these aspects,
a few recent attempts have been made on distributed
coordination of MASs with both input and velocity
constraints. In [47,48], distributed consensus proto-
cols were presented for second-order discrete- and
continuous-time MASs, respectively, with bounded
velocity and input. Further studies for containment con-
trol and formation control of double-integrator were
given in [49,50], respectively, under the challenging
situation where the velocity and acceleration of each
agent are both restricted within their desired ranges.
Although the aforementioned results are effective to
follow, very little attention has been paid to distributed
NE seeking of multi-agent IGC problems under the
case where the input and velocity constraints coexist.
This lies the second goal of this research.

Motivated by the above observations, the objective
of this study is to design distributed NE seeking algo-
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rithms based on event-triggered neighboring commu-
nication for the IGC problems played byMASs, where
the agents’ dynamics are subject to velocity and input
constraints. The considered problems are challenging
as the velocity constraint and the input saturationwould
introduce high nonlinearity into the closed-loop sys-
tem and the event-triggered communication mecha-
nismwould render the closed-loop systemnon-smooth.
These raise difficulties on the algorithm design as well
as the establishment of the convergence analyses and
render the existing algorithms not applicable to tackle
our problems. In comparison with the existing works
concerning with distributed NE seeking problems [13–
18,24–29], themain contributions of this study is three-
fold:

(1) Adistributed event-triggered algorithmwith static
triggering condition and a distributed adaptive
event-triggered scheme with dynamic triggering
condition are developed to achieveNE seeking for
single-integrator while excluding the unexpected
Zeno behavior. With these proposed algorithms,
continuous communication encountered in the
existing literature are successfully excluded.

(2) Considering the velocity and input constraints
commonly coexist in practical physical systems,
the results concerning with single-integrator are
further extended to accommodate the IGC prob-
lems for constrained double-integrator MASs by
adapting the hyperbolic tangent function into the
controllers. This renders the proposed NE seek-
ing algorithms more suitable for practical appli-
cations than the existing ones.

(3) Benefiting from the adaptive strategy, the global
information on the communication graph and the
number of agents are also excluded from the pro-
posed controllers. Therefore, the algorithms given
in this study are designed in a more distributed
way and can be used in the situation where there
exist agents that leave or join the networked game.

The rest of the paper is organized as follows. Prelimi-
nary results and problem formulation are presented in
Sect. 2. The main results, showing the proposed NE
seeking strategies as well as the corresponding conver-
gence analyses, are, respectively, given for single- and
double-integrator MASs in Sects. 3 and 4. Numerical
simulations are presented in Sect. 5. Conclusions are
drawn in Sect. 6.

2 Preliminaries and problem formulation

2.1 Notations

Throughout the paper, R and R
+ stand for the set of

real and positive real numbers, respectively. 1N (0N )

denotes the all ones (zeros) column vector. Given
scalars (matrices) A1, . . . , AN , diag {A1, . . . , AN } is
the diagonal matrix with Ai on the diagonal. Nota-
tions ‖·‖ and ⊗ denote the Euclidean norm and the
Kronecker product. Moreover, the smallest (largest)
eigenvalue of a symmetric matrix H is denoted as
λmin (H) (λmax (H)).

2.2 Graph theory

This paper considers the NE seeking of multi-agent
IGC problems with sharing information with each
other though networks. The corresponding communi-
cation topology is commonly described by an undi-
rected graph G = (V, E), where V = {1, . . . , N } is
the node set and E ⊂ V × V denotes the edge set. In
the undirected graph G, the communication between
any two agents are bidirectional, and thereby we have
(i, j) ∈ E ⇔ ( j, i) ∈ E . The associated adjacency
matrix A = [

ai, j
] ∈ R

N×N of the graph G is defined
such that ai, j = 1 if ( j, i) ∈ E and ai, j = 0 otherwise.
It should be noted that self-loop is prohibitive in this
paper, that is ai,i = 0,∀i ∈ V . Furthermore, the Lapla-
cian matrix L = [

li, j
] ∈ R

N×N is commonly defined
as li,i = ∑

j �=i ai, j = |Ni | with Ni ⊆ V being the
set of agent i’s neighbors and li, j = −ai, j , i �= j . An
undirected graph is said to be connected if there exists
a path connecting any two agents. Notably, the Lapla-
cian matrix L of an undirected and connected graph is
symmetric positive semidefinite and has a simple zero
eigenvalue [51,52].

2.3 Problem formulation

Consider the NE seeking problem for a noncooperative
game played by a class of MASs with N agents (play-
ers) sharing information over a graph G. Each agent
i ∈ V = {1, . . . , N } intends to solve the following
IGC problem:

min
xi

Ji (xi , x−i )

s.t. x (n)
i = ui

(1)
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where xi ∈ R and ui ∈ R are the action and the control
input of agent i , respectively, the stacked vector x−i =[
x1, . . . , xi−1, xi+1, . . . , xN

]T ∈ R
N−1 represents the

actions of the MASs except agent i , and Ji : RN →
R is agent i’s individual cost function. Moreover, the
variable n stands for the system order, and n = 1 and
n = 2 are, respectively, considered in this study. For
simplicity of notation, let x = [x1, . . . , xN ]T ∈ R

N

and Ji (xi , x−i ) can be rewritten as Ji (x). According
to [53], an interesting solution to problem (1) is the NE,
defined as:

Definition 1 [53] Consider the game problem (1), an
action profile x∗ = [

x∗
i , x∗−i

] ∈ R
N is an NE if

Ji
(
x∗

i , x∗−i

) ≤ Ji
(
xi , x∗−i

)
,∀i ∈ V (2)

The objective of this paper is to design the con-
trol input ui for each agent i via event-triggered com-
munication mechanism such that the action profile x
asymptotically converge to the NE x∗. Specifically, we
will firstly present distributed NE seeking strategies in
Sect. 3 for single-integrator MASs with ideal input to
provide better insight on the event-triggered commu-
nication mechanism, and then, the IGC problem will
be further considered in Sect. 4 for double-integrator
MASs subject to velocity and input constraints.

For notational convenience, let gi (a) = ∂ Ji (x)
∂xi

∣∣
∣
x=a∈ R be the partial gradient, g (a) = [g1 (a) , . . . , gN

(a)]T ∈ R
N denote the pseudogradient, and G (b) =

[g1 (b1) , . . . , gN (bN )]T ∈ R
N represent the extended

pseudogradient, where a, bi ∈ R
N , i = 1, . . . , N and

b = [
bT
1 , . . . , bT

N

]T ∈ R
N2
. It is easy to obtain that

G (b) = G (1N ⊗ a) = g (a) if bi = a for all i =
1, . . . , N . In addition, some commonly used assump-
tions are made in preparation for our main results [13–
18,24–29].

Assumption 1 The undirected graph G considered in
this paper is connected.

Assumption 2 The cost function Ji (x) is continu-
ously differentiable in x and convex in xi for all i ∈ V .
Assumption 3 The map g : R

N → R
N is strongly

monotone as well as Lipschitz continuous and the map
G : RN2 → R

N is Lipschitz continuous, that is there
exist two constantsγ1, γ2 ∈ R

+ such that for any x, y ∈
R

N and a, b ∈ R
N2
, we have

⎧
⎨

⎩

(x − y)T (g (x) − g (y)) ≥ γ1‖x − y‖2
‖g (x) − g (y)‖ ≤ γ2 ‖x − y‖
‖G (a) − G (b)‖ ≤ γ2 ‖a − b‖

(3)

Remark 1 As the agents’ actions are coupled in the
cost functions, information sharing is required for the
MASs such that the IGC problem can be solved. With
this in line, assuming that the communication graph
in Assumption 1 is connected is reasonable. Assump-
tions 2 and 3 have been commonly used in the literature
concerning the IGC problems ofMASs.With Assump-
tion 2, the IGC problem can be addressed though the
gradient descent approach. Moreover, under Assump-
tions 2 and 3, the considered game admit a unique NE
and g (x) = G (1N ⊗ x) = 0N is a sufficient and nec-
essary condition for x = x∗ [54]. This contributes to
obtaining a global convergence result in this study.

3 NE seeking for single integrator

To provide better insight on the event-triggered com-
munication mechanism, this section considers the IGC
problem for single-integrator MASs without input sat-
uration:

min
xi

Ji (xi , x−i )

s.t. ẋi = ui

(4)

where the considered MASs can be viewed as in the
example of networked velocity-actuated robots, and
each agent can only access local information over graph
G. For such an IGCproblem, variousNE seeking strate-
gies have been made from multiple perspectives in the
literature, intensively for continuous communication
cases [13–18]. Differently, we aim to make a further
step on developing distributed NE seeking algorithms
via event-triggered communication mechanism herein.

3.1 Event-triggered NE seeking

To seek the NE solution via event-triggered communi-
cation, the following distributed algorithm is designed
for each agent i ∈ V:
ui = −θgi (yi )

ẏi = −δ

⎛

⎝
∑

j∈Ni

(
yi
(
tc
i

) − y j
(
tc
i

)) + Ai
(
yi
(
tc
i

)

−x
(
tc
i

)))
(5)

where θ, δ ∈ R
+ denote the controller parameters,

yi ∈ R
N and y j ∈ R

N are the estimates on the
agents’ action profile x for agents i and j , respectively,
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Ai = diag
{
ai,1, . . . , ai,N

}
, and tc

i represents the most
recent triggering time.

Remark 2 yi in (5) can be viewed as an observer
on the action profile x . It should be noted that
although x is the global information, the observer
is designed in a distributed way. To be specific, let
yi = [

yi,1, . . . , yi,N
]T , where yi,k, k ∈ V denotes

the estimate on xk , and from (5) we have ẏi,k =
−δ

(∑
j∈Ni

(
yi,k

(
tc
i

) − y j,k
(
tc
i

)) + ai,k
(
yi,k

(
tc
i

) − xk
(
tc
i

)))
with ai,k being the element of the adjacency

matrix of the communication graph. Therefore, only
local information exchange is required for the proposed
algorithm.Moreover, if agent k can be directly accessed
by agent i , then the update of yi,k can be excluded from
the observer; however, we keep it for notational conve-
nience.

For notational convenience, let αi = ∑
j∈Ni(

yi − y j
)
and βi = Ai (yi − x). Then, the mea-

surement errors can be defined as ᾱi = αi
(
tc
i

) −
αi and β̄i = βi

(
tc
i

) − βi . Under these circum-
stances, the triggering condition is designed as t i

c+1 =
inf

{
t |t > t i

c, fi
(
αi

(
tc
i

)
, βi

(
tc
i

)
, ᾱi , β̄i

) ≥ 0
}
with the

corresponding static triggering function given by

fi
(
αi , βi , ᾱi , β̄i

) = ‖ᾱi ‖ + ∥
∥β̄i

∥
∥ − μe−νt

− 
i

2
√
2
(
1 + 
2

i

)
(∥∥αi

(
tc
i

)∥∥ + ∥∥βi
(
tc
i

)∥∥)

(6)

where 
i ∈ R
+ will be determined later andμ, ν ∈ R

+
are design parameters.

Define the error variables ex,i = xi − x∗
i and ỹi =

yi − x for agent i ∈ V . Then, the error dynamics can
be obtained from (5) that

ėx,i = −θgi (yi )

˙̃yi = −δ (αi + βi ) − δ
(
ᾱi + β̄i

) − ẋ
(7)

Let α = [
αT
1 , . . . , αT

N

]T ∈ R
N2
, β = [

βT
1 , . . . ,

βT
N

]T ∈ R
N2
, ᾱ = [

ᾱT
1 , . . . , ᾱT

N

]T ∈ R
N2
, β̄ =

[
β̄T
1 , . . . , β̄T

N

]T ∈ R
N2
, ex = x − x∗ = [e1, . . . , eN ]T

∈ R
N and ỹ = y − 1N ⊗ x = [

ỹT
1 , . . . , ỹT

N

]T ∈ R
N2

with y = [
yT
1 , . . . , yT

N

]T ∈ R
N2
, and then the aug-

mented systems of (7) can be expressed as:

ėx = −θG (y)

˙̃y = −δ (α + β) − δ
(
ᾱ + β̄

) − 1N ⊗ ẋ

= −δH ỹ − δ
(
ᾱ + β̄

) + θ (1N ⊗ G (y))

(8)

where H = L ⊗ IN + diag {A1, . . . , AN } is positive
definite if Assumption 1 holds. The following theorem
demonstrates the convergence to the NE.

Theorem 1 Consider the IGC problem (4) of MASs
with controller (5) and triggering function (6). Under
Assumptions 1–3, selecting θ > 0, δ >

θγ2

(
γ2

(
1+√

N‖H‖
)2+4γ1

√
N‖H‖

)

2(1−σ)γ1λ
2 and 
2

i = σλ2

2
(
4|Ni |2+1

)

with 0 < σ < 1 and λ = λmin (H), yields that (1)
the unique NE x∗ is globally asymptotically stable for
the considered MAS; (2) the Zeno behavior can be
excluded.

Proof Proof of Theorem 1, Part (1) Consider the fol-
lowing Lyapunov function:

V1 = eT
x ex + ỹT H ỹ (9)

Taking the time derivative of V1 along the trajectory
(8), we have

V̇1 = − 2θeT
x G (y) − 2δ ỹT H2 ỹ

+ 2θ ỹT H (1N ⊗ G (y))

− 2δ ỹT H
(
ᾱ + β̄

)

= − 2θeT
x

(
g (x) − g

(
x∗))

− 2θeT
x (G (y) − G (1N ⊗ x))

+ 2θ ỹT H (1N ⊗ (G (y) − G (1N ⊗ x)))

+ 2θ ỹT H
(
1N ⊗ (

g (x) − g
(
x∗)))

− 2δ ỹT H2 ỹ − 2δ ỹT H
(
ᾱ + β̄

)

≤ − 2γ1θ ‖ex‖2 −
(
λ2δ − 2γ2θ

√
N ‖H‖

)
‖ỹ‖2

+ 2γ2θ
(
1 + ‖H‖ √

N
)

‖ex‖ ‖ỹ‖
+ 2δ

(
‖ᾱ‖2 + ∥∥β̄

∥∥2
)

(10)

where Assumption 3 and the Young’s inequality are
used to obtain the above equations.
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Considering the triggering function (6), we have

‖ᾱi‖2 + ∥
∥β̄i

∥
∥2 ≤ (‖ᾱi‖ + ∥

∥β̄i
∥
∥)2

≤ 
2
i

4
(
1 + 
2

i

)
(∥∥αi

(
tc
i

)∥∥ + ∥
∥βi

(
tc
i

)∥∥)2 + 2μ2e−2νt

≤ 
2
i

4
(
1 + 
2

i

)
(‖αi‖ + ‖βi‖ + ‖ᾱi‖ + ∥

∥β̄i
∥
∥)2

+ 2μ2e−2νt

≤ 
2
i

1 + 
2
i

(
‖αi‖2 + ‖βi‖2 + ‖ᾱi‖2 + ∥

∥β̄i
∥
∥2
)

+ 2μ2e−2νt

(11)

which yields that

‖ᾱi‖2 + ∥∥β̄i
∥∥2 ≤ 
2

i

(
‖αi‖2 + ‖βi‖2

)

+2μ2
(
1 + 
2

i

)
e−2νt (12)

With the condition given in Theorem 1 and Eq. (12),
the last term in (10) can be determined by

2δ
(
‖ᾱ‖2 + ∥∥β̄

∥∥2
)

= 2δ
N∑

i=1

(
‖ᾱi ‖2 + ∥∥β̄i

∥∥2
)

≤ 2δ
N∑

i=1

(

2

i

(‖αi ‖2 + ‖βi ‖2
) + 2μ2 (1 + 
2

i

)
e−2νt )

= 2δ
N∑

i=1


2
i

⎛

⎜
⎝

∥
∥∥∥∥∥

∑

j∈Ni

(
yi − y j

)
∥
∥∥∥∥∥

2

+ ‖Ai (yi − x)‖2
⎞

⎟
⎠

+4δμ2
N∑

i=1

(
1 + 
2

i

)
e−2νt

≤ 2δ
N∑

i=1


2
i

⎛

⎜
⎝

∥∥∥∥∥
∥

∑

j∈Ni

(
ỹi − ỹ j

)
∥∥∥∥∥
∥

2

+ ‖ỹi ‖2
⎞

⎟
⎠

+4δμ2
N∑

i=1

(
1 + 
2

i

)
e−2νt

≤ 2δ
N∑

i=1


2
i

⎛

⎝|Ni |
∑

j∈Ni

∥∥ỹi − ỹ j
∥∥2 + ‖ỹi ‖2

⎞

⎠

+4δμ2
N∑

i=1

(
1 + 
2

i

)
e−2νt

≤ 2δ
N∑

i=1


2
i

(
4 |Ni |2 + 1

)
‖ỹi ‖2 + 4δμ2

N∑

i=1

(
1 + 
2

i

)
e−2νt

= σλ2δ ‖ỹ‖2 + 2δNμ2
(
10 + σλ2

)

5
e−2νt (13)

Submitting (13) into (10) yields that

V̇1 ≤ − 2γ1θ ‖ex‖2 + 2θγ2

(
1 + ‖H‖√

N
)

‖ex‖ ‖ỹ‖
−
(
(1 − σ) λ2δ − 2θγ2

√
N ‖H‖

)
‖ỹ‖2

+ 2δNμ2
(
10 + σλ2

)

5
e−2νt

= − [‖ex‖ , ‖ỹ‖] P1
[‖ex‖ , ‖ỹ‖]T

+ 2δNμ2
(
10 + σλ2

)

5
e−2νt

(14)

with

P1 =
⎡

⎣
2γ1θ −θγ2

(
1 + ‖H‖ √

N
)

−θγ2

(
1 + ‖H‖ √

N
)

(1 − σ) λ2δ − 2θγ2
√

N ‖H‖

⎤

⎦

(15)

To achieve convergence to the NE, the matrix P1

should be positive definite, which is equivalent to θ > 0

and δ >
θγ2

(
γ2

(
1+√

N‖H‖
)2+4γ1

√
N‖H‖

)

2(1−σ)γ1λ
2 . This holds as

the conditions given in Theorem1, and therebywe have

V̇1 ≤ −λmin (P1)
(
‖ex‖2 + ‖ỹ‖2

)

+ 2δNμ2
(
10 + σλ2

)

5
e−2νt

≤ −κ1V1 + κ2e−2νt

(16)

with κ1 = λmin (P1)min{1, 1/λ̄}, κ2 = 2δNμ2
(
10 + σλ2

)
/5 and λ̄ = λmax (H).

Solving (16) yields that

V1 (t) ≤ e−κ1t V1 (0) + κ2ψ (t) (17)

where ψ (t) = te−2νt if κ1 = 2ν, and ψ (t) =
e−2νt/ (κ1 − 2ν) otherwise. Since limt→+∞ ψ (t) =
0, it follows from (17) that limt→+∞ V1 (t) = 0, which
demonstrates the globally asymptotic convergence to
the NE of the considered MASs governed by (5). This
completes the proof of Theorem 1, Part (1). ��
Proof of Theorem 1, Part (2) The time derivative of

‖ᾱi‖ during t ∈
[
tc
i , tc+1

i

)
can be calculated as

d ‖ᾱi‖
dt

= ᾱT
i

˙̄αi

‖ᾱi‖ ≤ ∥∥ ˙̄αi
∥∥ = ‖α̇i‖ =

∥
∥∥∥∥∥

∑

j∈Ni

(
ẏi − ẏ j

)
∥
∥∥∥∥∥

= δ

∥∥
∥∥∥∥

∑

j∈Ni

(
αi

(
tc
i

) + βi
(
tc
i

)

−α j

(
tc

j

)
− β j

(
tc

j

))∥∥∥

(18)
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The time derivative of
∥∥β̄i

∥∥ during t ∈
[
tc
i , tc+1

i

)

can be calculated as

d
∥∥β̄i

∥∥

dt
≤ ∥∥β̇i

∥∥ = ‖ẏi − ẋ‖ ≤ ‖ẏi‖ + ‖ẋ‖
= θ ‖G (y) − G (1N ⊗ x)‖

+θ
∥∥g (x) − g

(
x∗)∥∥

+δ
∥
∥αi

(
tc
i

) + βi
(
tc
i

)∥∥

≤ θγ2 (‖ỹ‖ + ‖ex‖) + δ
∥∥αi

(
tc
i

) + βi
(
tc
i

)∥∥

≤ θγ2
√
2
√

‖ỹ‖2 + ‖ex‖2
+δ

∥∥αi
(
tc
i

) + βi
(
tc
i

)∥∥

≤ θκγ2
√
2V1 (0) + δ

∥∥αi
(
tc
i

) + βi
(
tc
i

)∥∥

(19)

with κ = max
{
1, 1/λ

}
.

With the results shown in (18) and (19), we have

d

dt

(‖ᾱi‖ + ∥∥β̄i
∥∥)

≤θκγ2
√
2V1 (0) + δ

∥∥αi
(
tc
i

) + βi
(
tc
i

)∥∥

+ δ

∥∥∥
∥∥∥

∑

j∈Ni

(
αi

(
tc
i

) + βi
(
tc
i

)

−α j

(
tc

j

)
− β j

(
tc

j

))∥∥∥

≤
(
θκγ2

√
2 + (|Ni | + 1) δ

√
λ̄
)√

V1 (0)

(20)

Since
∥∥ᾱi

(
tc
i

)∥∥ + ∥∥β̄i
(
tc
i

)∥∥ = 0, by leveraging
Newton-Leibniz formula and (20) we have for all

t ∈
[
tc
i , tc+1

i

)

‖ᾱi (t)‖ + ∥∥β̄i (t)
∥∥

=
∫ t

tc
i

d

dt

(‖ᾱi (τ )‖ + ∥∥β̄i (τ )
∥∥) dτ

+ (∥∥ᾱi
(
tc
i

)∥∥ + ∥
∥β̄i

(
tc
i

)∥∥)

=
∫ t

tc
i

d

dt

(‖ᾱi (τ )‖ + ∥∥β̄i (τ )
∥∥) dτ

≤ (
t − tc

i

) (
θκγ2

√
2 + (|Ni | + 1) δ

√
λ̄
)√

V1 (0)

(21)

As thenext eventwill not be triggeredbefore fi (αi , βi ,

ᾱi , β̄i
) = 0, and thereby the next triggering time

satisfies
∥∥
∥ᾱi

(
tc+1
i

)∥∥
∥ +

∥∥
∥β̄i

(
tc+1
i

)∥∥
∥ = 
i

2
√
2
(
1+
2i

)

(∥∥αi
(
tc
i

)∥∥ + ∥∥βi
(
tc
i

)∥∥)+μe−νtc+1
i . Consequently, from

(21), we have

tc+1
i − tc

i

≥

i
(∥∥αi

(
tc
i

)∥∥ + ∥∥βi
(
tc
i

)∥∥) + 2μ
√
2
(
1 + 
2

i

)
e−νtc+1

i

2
(
θκγ2

√
2 + (|Ni | + 1) δ

√
λ̄
)√

2
(
1 + 
2

i

)
V1 (0)

> 0 (22)

which demonstrates the exclusion of theZeno behavior.
This completes the proof of Theorem 1, Part 2).

It should be noting that the triggering condition
(6) still requires continuous communication between
neighboring agents. To accommodate this issue, we
propose a scheme to monitor the triggering condition
(6). With (20), the monitoring condition is designed as

Ei =
(
θκγ2

√
2V1 (0) + (1 + |Ni |) δ

∥
∥αi

(
tc
i

)

+βi
(
tc
i

)∥∥) (t − tc
i

)

+
∫ t

tc
i

∥∥∥∥
∥∥

∑

j∈Ni

(
α j

(
tc

j

)
+ β j

(
tc

j

))
∥∥∥∥
∥∥
dτ − μe−νt

− 
i

2
√
2
(
1 + 
2

i

)
(∥∥αi

(
tc
i

)∥∥ + ∥∥βi
(
tc
i

)∥∥) (23)

Notably, Eq. (23) is a sufficient condition of the orig-
inal triggering condition (6), and with (23), the next
triggering time tc+1

i can be determined without contin-
uous communication.This completes the overall design
of the event-triggered NE seeking algorithm.

3.2 Adaptive event-triggered NE seeking

As indicated in Theorem1, theNE seeking scheme pre-
sented in Sect. 3.1 depends on the smallest eigenvalue
λ of matrix H and the agents’ number N . However,
the matrix H is determined by the entire communica-
tion graph G, which is global information. Moreover,
the number of agents can hardly be obtained under
distributed communication networks especially when
there exist agents that join or leave the game.

An alternative and effective way to accommodate
the aforementioned issues is to adjust the controller
parameters adaptively. Alongwith this line, an adaptive
event-triggered NE seeking algorithm is designed in
this section as follows:

123



2788 Z. Pu et al.

ui = −θgi (yi )

ẏi = −�i

⎛

⎝
∑

j∈Ni

(
yi
(
tc
i

) − y j
(
tc
i

)) + Ai
(
yi
(
tc
i

)

−x
(
tc
i

)))

�̇i = ρi

∥∥∥∥
∥∥

∑

j∈Ni

(
yi
(
tc
i

) − y j
(
tc
i

)) + Ai
(
yi
(
tc
i

)

−x
(
tc
i

))∥∥2

(24)

where ρi ∈ R
+ is a design parameter and �i denotes

the dynamic gain with its initial condition satisfying
�i (0) ∈ R

+.
The triggering function is designed as follows:

fi
(
αi , βi , ᾱi , β̄i

) = ‖ᾱi ‖ + ∥∥β̄i
∥∥ − μe−νt

√
1 + 
�i

− 1
√
2(1 + 
�i )

∥∥αi
(
tc
i

) + βi
(
tc
i

)∥∥

(25)

where 
 ∈ R
+. It is worth noting that �i (t) is mono-

tone increasing with (24) and thereby �i (t) > 0 holds
as long as�i (0) > 0. Along with this line, the trigger-
ing function (25) is valid.

Similar to (8), the closed-loop system can be deter-
mined by

ėx = −θG (y)

˙̃y = −�H ỹ − �
(
ᾱ + β̄

) + θ (1N ⊗ G (y))

�̇i = ρi
∥∥αi

(
tc
i

) + βi
(
tc
i

)∥∥2
(26)

with � = diag {�1, . . . ,�N }. The following theorem
demonstrates the convergence to the NE.

Theorem 2 Consider the IGC problem (4) of MASs
with controller (24)and triggering function (25). Under
Assumptions 1–3, selecting δ > 0 and ρi > 0 yields
that (1) the unique NE x∗ is globally asymptotically
stable for the considered MAS; (2) the Zeno behavior
can be excluded.

Proof Proof of Theorem 2, Part (1) Consider the fol-
lowing Lyapunov function:

V2 = V1 +
N∑

i=1

1

2ρi

(
�i − �̄

)2
(27)

with �̄ ∈ R
+.

Similar to the proof of Theorem 1, the time derivate
of V2 along the trajectory (26) is given by

V̇2 = − 2θeT
x G (y) + 2θ ỹT H (1N ⊗ G (y))

− 2
N∑

i=1

�i (αi + βi )
T (

αi
(
tc
i

) + βi
(
tc
i

))

+
N∑

i=1

(
�i − �̄

) ∥∥αi
(
tc
i

) + βi
(
tc
i

)∥∥2

≤ − 2γ1θ ‖ex‖2 + 2γ2θ
√

N ‖H‖ ‖ỹ‖2

+ 2γ2θ
(
1 + ‖H‖ √

N
)

‖ex‖ ‖ỹ‖

− 2
N∑

i=1

�i (αi + βi )
T (

αi
(
tc
i

) + βi
(
tc
i

))

+
N∑

i=1

(
�i − �̄

) ∥∥αi
(
tc
i

) + βi
(
tc
i

)∥∥2

(28)

By leveraging the Young’s inequality, we have

− 2
N∑

i=1

�i (αi + βi )
T (

αi
(
tc
i

) + βi
(
tc
i

))

= 2
N∑

i=1

�i
(
ᾱi + β̄i

) (
αi

(
tc
i

) + βi
(
tc
i

))

− 2
N∑

i=1

�i
∥∥αi

(
tc
i

) + βi
(
tc
i

)∥∥2

≤ −
N∑

i=1

�i
∥∥αi

(
tc
i

) + βi
(
tc
i

)∥∥2 +
N∑

i=1

�i
∥∥ᾱi + β̄i

∥∥2

(29)

and

−�̄

N∑

i=1

∥∥αi
(
tc
i

) + βi
(
tc
i

)∥∥2

= − �̄

2

N∑

i=1

∥∥αi
(
tc
i

) + βi
(
tc
i

)∥∥2 − �̄

2

N∑

i=1

‖αi + βi‖2

− �̄

2

N∑

i=1

∥∥ᾱi + β̄i
∥∥2 − �̄

N∑

i=1

(αi + βi )
T (

ᾱi + β̄i
)

≤ − �̄

2

N∑

i=1

∥∥αi
(
tc
i

) + βi
(
tc
i

)∥∥2 − �̄

4

N∑

i=1

‖αi + βi‖2

+ �̄

2

N∑

i=1

∥∥ᾱi + β̄i
∥∥2 (30)
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Submitting (29) and (30) into (28) yields that

V̇2 ≤ �̄

2

N∑

i=1

((
1 + 2

�̄

· 
�i

)∥
∥ᾱi + β̄i

∥
∥2 − ∥

∥αi
(
tc
i

)

+βi
(
tc
i

)∥∥2
)

−2γ1θ ‖ex‖2 −
(

�̄λ2

4
− 2γ2θ

√
N ‖H‖

)
‖ỹ‖2

+2γ2θ
(
1 + ‖H‖ √

N
)

‖ex‖ ‖ỹ‖

= �̄

2

N∑

i=1

((
1 + 2

�̄

· 
�i

)∥
∥ᾱi + β̄i

∥
∥2 − ∥

∥αi
(
tc
i

)

+βi
(
tc
i

)∥∥2
)

− [‖ex‖ , ‖ỹ‖] P2
[‖ex‖ , ‖ỹ‖]T (31)

where

P2 =
⎡

⎣
2γ1θ −θγ2

(
1 + ‖H‖√

N
)

−θγ2

(
1 + ‖H‖√

N
)

λ2�̄

4 − 2θγ2
√

N ‖H‖

⎤

⎦ (32)

It is easy to verify that the matrix P2 is positive definite

if δ > 0 and �̄ >
2θγ2

(
γ2

(
1+√

N‖H‖
)2+4γ1

√
N‖H‖

)

γ1λ
2 .

Choosing �̄ large enough such that �̄ > max⎧
⎨

⎩

2θγ2

(
γ2

(
1+√

N‖H‖
)2+4γ1

√
N‖H‖

)

γ1λ
2 , 2




⎫
⎬

⎭
and consider-

ing the triggering condition (25), it follows from (31)
that

V̇2 ≤ �̄

2

N∑

i=1

(
(1 + 
�i )

(‖ᾱi‖ + ∥∥β̄i
∥∥)2 − ∥∥αi

(
tc
i

)

+βi
(
tc
i

)∥∥2
)

−λmin (P2)
(
‖ex‖2 + ‖ỹ‖2

)

≤ �̄

2

N∑

i=1

(
(1 + 
�i )

(
μe−νt

√
1 + 
�i

+ 1
√
2(1 + 
�i )

∥∥αi
(
tc
i

) + βi
(
tc
i

)∥∥
)2

− ∥
∥αi

(
tc
i

) + βi
(
tc
i

)∥∥2
)

−λmin (P2)
(
‖ex‖2 + ‖ỹ‖2

)

≤ �̄

2

N∑

i=1

(
(1 + 
�i )

(
2μ2e−2νt

1 + 
�i

+ 1

1 + 
�i

∥∥αi
(
tc
i

) + βi
(
tc
i

)∥∥2
)

− ∥∥αi
(
tc
i

) + βi
(
tc
i

)∥∥2
)

−λmin (P2)
(
‖ex‖2 + ‖ỹ‖2

)

≤ −λmin (P2)
(
‖ex‖2 + ‖ỹ‖2

)
+ μ2�̄Ne−2νt

(33)

which demonstrates the globally asymptotic conver-
gence to the NE for the considered MASs governed by
(24). This completes the proof of Theorem 2, Part (1).

��
Proof of Theorem 2, Part 2) The proof is similar to
that of Theorem 1, Part 2), and thereby is omitted here.

��
To exclude the requirement of continuous communi-
cation, the following condition can be used to monitor
the triggering function (25):

Ei =
(
θκγ2

√
2V1 (0) + (1 + |Ni |) δ

∥
∥αi

(
tc
i

)

+βi
(
tc
i

)∥∥) (t − tc
i

)

+
∫ t

tc
i

∥∥
∥∥∥∥

∑

j∈Ni

(
α j

(
tc

j

)
+ β j

(
tc

j

))
∥∥
∥∥∥∥
dτ

− μe−νt

√
1 + 
�i

− 1
√
2(1 + 
�i )

∥∥αi
(
tc
i

) + βi
(
tc
i

)∥∥

(34)

Notably, Eq. (34) is a sufficient condition of the ori-
gin triggering condition (25) and continuous communi-
cation is successfully excluded herein. This completes
the overall design of the event-triggered NE seeking
algorithm.

Remark 3 From Theorem 2, it is clear that the con-
troller gains are determined with no need of the global
information on the communication graph and the num-
ber of agents, and thereby compared with (5) the algo-
rithm in (24) is designed in a fully distributed manner.
In addition, compared with the static triggering func-
tion (6) the dynamic triggering condition (25) provides
more freedom to regulate the triggering frequency by
introducing the dynamic gain �i , which contributes to
further reducing the communication cost.

Remark 4 Despite of the superiorities of the adap-
tive event-triggered algorithm (24) compared with the
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event-triggered one (5) as mentioned in Remark 3, it
should be noted that the NE seeking algorithm (24) is
more complicated than (5) and the transient-state per-
formance of (24)will not be as good as that of (5) owing
to the introduction of the adaptation law. Therefore,
one can choose the appropriate algorithm depending on
whether the communication network and the number
of players will change or not in a game. To be specific,
if there exist agents that leave or join the networked
game, the fully distributed algorithm (24) is the prior-
ity, otherwise it prefers (5).

Remark 5 The adaptiveNE seeking algorithmherein is
partlymotivated by our previous work [29], where sim-
ilar schemewas presented to seek theNE for high-order
nonlinear MASs. Differently, the algorithm developed
in [29] still requires the number of agents as well as
continuous communication between neighbors while
this study overcomes these drawbacks.

4 NE seeking for double-integrator with
constrained velocity and input

This section considers the event-triggered IGCproblem
for double-integrator MASs with the consideration of
velocity constraint and input saturation. The motiva-
tion is twofold: (1) many real agents are acceleration-
actuated systems that can be described by double-
integrator; (2) velocity constraint and input saturation
are commonly encountered constraints on the agents’
dynamics in practice and might lead to serious perfor-
mance degradation if not properly handled.

Consider the IGC problem for double-integrator as
follows:
min

xi
Ji (xi , x−i )

s.t.

{
ẋi = vi

v̇i = ui

(35)

where vi ∈ R is the velocity of agent i . In addition, we
have the velocity constraint |vi (t)| ≤ v̄ and the input
constraint |ui (t)| ≤ ū here where v̄ ∈ R

+ and ū ∈ R
+

are known upper bounds.

4.1 Useful definitions and lemmas

Before moving on, some useful definitions and lemmas
are introduced here. Consider the following system

ẋ = f (x, u) (36)

Definition 2 [55] System (36) is input-to-state stable
(ISS) if there exist functions ϒ1 ∈ KL and ϒ2 ∈ K
such that for any initial condition x (0) and anybounded
input u (t), the solution x (t) satisfies

‖x (t)‖ ≤ ϒ1 (‖x (0)‖ , t) + ϒ2

(

sup
0≤τ≤t

‖u (τ )‖
)

(37)

Lemma 1 [55] If there exists a continuously differen-
tiable function V (x) such that

ϒ3 (‖x‖) ≤ V (x) ≤ ϒ4 (‖x‖) (38)

∂V

∂x
f (x, u) ≤ −ϒ5 (x) ,∀ ‖x‖ ≥ ϒ6 (‖u‖) > 0 (39)

hold, where ϒ6 ∈ K, ϒ3, ϒ4 ∈ K∞ and ϒ5 (x) is
positive definite, then system (36) is ISS.

Lemma 2 [55] Consider the following cascade sys-
tem:

ẋ1 = f1 (x1, x2) (40)

ẋ2 = f2 (x2) (41)

where x1 ∈ R
n and x2 ∈ R

m denote the states and
f1 : Rn × R

m → R
n and f2 : Rm → R

m are locally
Lipschitz functions. If (40) is ISS with x2 as an input and
the origin of system (41) is globally uniformly asymp-
totically stable, then the origin of the cascade system
(40)–(41) is globally uniformly asymptotically stable.

Lemma 3 [45] Consider the following system:

v̇i = −K
(
vi − vr

i

)
(42)

with vi , v
r
i ∈ R and K ∈ R

+. If |vi (0)| ≤ v̄ and∣∣vr
i (t)

∣∣ ≤ v̄ are always satisfied, then the velocity vi (t)
is always bounded by |vi (t)| ≤ v̄, where v̄ ∈ R

+ is the
upper bound.

4.2 Adaptive event-triggered NE seeking for
double-integrator

The following NE seeking scheme is proposed for each
agent i ∈ V:
żi = −θgi (yi )

ẏi = −�i

⎛

⎝
∑

j∈Ni

(
yi
(
tc
i
) − y j

(
tc
i
)) + Ai

(
yi
(
tc
i
) − z

(
tc
i
))
⎞

⎠

�̇i = ρi

∥∥∥
∥∥∥

∑

j∈Ni

(
yi
(
tc
i
) − y j

(
tc
i
)) + Ai

(
yi
(
tc
i
) − z

(
tc
i
))
∥∥∥
∥∥∥

2

ui = −k1vi − k2 tanh (xi + vi /k1 − zi )

(43)
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where zi ∈ R is considered as a auxiliary system, yi ∈
R

N denotes the estimate on z = [z1, . . . , zN ]T ∈ R
N ,

and k1, k2 ∈ R
+ stand for design parameters.

Similar to (25), the triggering function can be
designed as

fi
(
αi , βi , ᾱi , β̄i

) = ‖ᾱi ‖ + ∥∥β̄i
∥∥ − μe−νt

√
1 + 
�i

− 1
√
2(1 + 
�i )

∥∥αi
(
tc
i

) + βi
(
tc
i

)∥∥
(44)

where βi = Ai
(
yi
(
tc
i

) − z
(
tc
i

))
.

Let ez = z − x∗, ỹ = y − 1N ⊗ z, ξ =
[ξ1 . . . , ξN ]T = x +v/k1 − z and v = [v1 . . . , vN ]T ∈
R

N . Theoverall closed-loop systems canbedetermined
as

ėz = −θG (y)

˙̃y = −�H ỹ − �
(
ᾱ + β̄

) + θ (1N ⊗ G (y))

�̇i = ρi
∥∥αi

(
tc
i

) + βi
(
tc
i

)∥∥2

ξ̇ = −k2 tanh (ξ) + θG (y)

v̇ = −k1v − k2 tanh (ξ)

(45)

where tanh (ξ) = [tanh (ξ1) , . . . , tanh (ξN )]T . The
following theorem demonstrates the convergence to the
NE.

Theorem 3 Consider the IGC problem (35) of MASs
with controller (43) and triggering function (44).
Under Assumptions 1–3, if the initial velocity satisfies
|vi (0)| ≤ v̄,∀i ∈ V , then selecting δ > 0, ρi > 0,
0 < k1 < ū/ (2v̄) and 0 < k2 < k1 min {v̄, 4} yields
that (1) the unique NE x∗ is globally asymptotically
stable for the considered MAS; (2) the Zeno behavior
can be excluded; (3) the velocity and input constraints
are always satisfied, that is |vi (t)| ≤ v̄ and |ui (t)| ≤ ū
hold for all i ∈ V .

Proof Proof of Theorem 3, Part (1) Note that thewhole
system (45) is in cascade form with subsystem (ez, ỹ)

generating external input for subsystem (ξ, v). There-
fore, the idea of the proof is to use the ISS arguments
to show the convergence to the NE.

Consider the following Lyapunov function for sub-
system (ez, ỹ):

V3 = eT
z ez + ỹT H ỹ +

N∑

i=1

1

2ρi

(
�i − �̄

)2
(46)

with V̄3 = eT
z ez + ỹT H ỹ.

Similar to the proof of Theorem 2, Part (1), the time
derivate of V3 can be obtained by

V̇3 ≤ −λmin (P2)
(
‖ez‖2 + ‖ỹ‖2

)
+ μ2�̄Ne−2νt (47)

It is easy to obtain that limt→+∞ ‖ez‖ = 0 and
limt→+∞ ‖ỹ‖ = 0 hold, which demonstrate that sub-
system (ez, ỹ) is globally asymptotically stable.

Next, we will show subsystem (ξ, v) is ISS with
respect to (ez, ỹ). Consider the following Lyapunov
function:

V4 = log (cosh ξ) + 1

2
vT v (48)

whose time derivate can be obtained by

V̇4 = tanh (ξ) ξ̇ + vT v̇

= − k2 ‖tanh (ξ)‖2 − k1 ‖v‖2 + θ tanh (ξ)T G (y)

− k2v
T tanh (ξ)

≤ − k2 ‖tanh (ξ)‖2 − k1 ‖v‖2 + k2 ‖v‖ ‖tanh (ξ)‖
+ θ ‖tanh (ξ)‖ ‖(G (y) − G (1N ⊗ z))‖
+ θ ‖tanh (ξ)‖ ∥∥(g (z) − g

(
x∗))∥∥

≤ − [‖tanh (ξ)‖ , ‖v‖]
[

k2 −k2/2
−k2/2 k1

]

[‖tanh (ξ)‖ , ‖v‖]T + γ2θ ‖tanh (ξ)‖ (‖ez‖ + ‖ỹ‖)

≤ −
k1 + k2 −

√
(k1 − k2)2 + k22
2

(‖tanh (ξ)‖2

+ ‖v‖2)

+ γ2θ

√

2
(‖tanh (ξ)‖2 + ‖v‖2)

(
‖ez‖2 + ‖ỹ‖2

)

(49)

From (49), if 0 < k2 < 4k1 we have ς =
k1 + k2 −

√
(k1 − k2)2 + k22 > 0. Let χ1 =

[
tanh (ξ)T , vT

]T
and χ2 = [

eT
z , ỹT

]T
, it follows from

(49) that

V̇4 ≤ −ς

2
‖χ1‖2 + γ2θ

√
2 ‖χ1‖ ‖χ2‖

= −ς (1 − ε)

2
‖χ1‖2 − ‖χ1‖

(ςε

2
‖χ1‖ − γ2θ

√
2 ‖χ2‖

)(50)

Therefore, for any 0 < ε < 1, we have

V̇4 ≤ −ς (1 − ε)

2
‖χ1‖2 ≤ 0, ∀ ‖χ1‖ ≥ 2

√
2γ2θ

ες
‖χ2‖ (51)

This indicates that subsystem (ξ, v) is ISS with (ez, ỹ)

as the input by Lemma 1, followed bywhich subsystem
(ξ, v) is asymptotically stable by Lemma 2.

Consequently, from the aforementioned analyses,
we have limt→+∞ ‖ez‖ = limt→+∞ ‖z − x∗‖ =
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Fig. 1 Communication graph

0, limt→+∞ ‖ξ‖ = limt→+∞ ‖x + v/k1 − z‖ =
0 and limt→+∞ ‖v‖ = 0, which indicates that
limt→+∞ ‖x − x∗‖ = 0. This demonstrates the con-
vergence to the NE and completes the proof. ��

Proof of Theorem 3, Part (2) The proof is similar to
that of Theorem 2, Part 2), and thereby is omitted here.

Proof Proof of Theorem 3, Part (3) From (43),
the velocity subsystem vi can be rewritten as

v̇i = ui = −k1

(
vi + k2

k1
tanh (zi − xi − vi/k1)

)

(52)

By leveragingLemma3, if selecting k1 and k2 appro-
priately such that 0 < k2 ≤ k1v̄ holds, then the veloc-
ity vi (t) is always bounded by |vi (t)| ≤ v̄. Moreover,
from (52), we have the control input is bounded by
|ui (t)| ≤ 2k1v̄. Therefore, if k1 is chosen such that
0 < k1 ≤ ū/ (2v̄), then |ui (t)| ≤ ū holds for all i ∈ V .
This completes the proof of Theorem 3, Part 3). ��

Similar to (34), the following condition can be used
to monitor the triggering function to exclude continu-
ous communication (44):

Ei =
(

θκγ2

√
2V̄3 (0) + (1 + |Ni |) δ

∥∥αi
(
tc
i

)

+βi
(
tc
i

)∥∥) (t − tc
i

)

+
∫ t

tc
i

∥∥∥∥∥
∥

∑

j∈Ni

(
α j

(
tc

j

)
+ β j

(
tc

j

))
∥∥∥∥∥
∥
dτ

− μe−νt

√
1 + 
�i

− 1
√
2(1 + 
�i )

∥∥αi
(
tc
i

) + βi
(
tc
i

)∥∥

(53)

This completes the overall design of the event-triggered
NE seeking algorithm.

Remark 6 As mentioned in Remark 2, yi in (43)
denotes an observer on the auxiliary state profile z.
Therefore, it is suggested that the design parameters ρi

and θ should be appropriately adjusted (e.g.ρi > θ ) such

that the observer can achieve more faster convergence
rate than the controller. This contributes to improving
the performance of the closed-loop systems.

Remark 7 The results presented in this section is
related to [24], where input constrained NE seek-
ing problem was accommodated for double-integrator
via saturated gradient-based algorithms. In contrary to
[24], both input and velocity constraints are considered
in the proposed NE seeking algorithm (43) by adapting
the hyperbolic tangent function. Moreover, the devel-
oped scheme can exclude continuous communication
and global information on the communication graph as
well as the number of agents.

5 Simulation results

In this section, we consider the connectivity control
problem for N = 3 two-dimensional mobile sensors,
each of which is carried by a velocity- or acceleration-
actuated vehicle. Let px = [px,1, px,2, px,3]T and
py = [py,1, py,2, py,3]T denote the sensors’ positions
along px -axis and py-axis, respectively, and thereby
the dynamics of sensors can be divided into two subsys-
tems: px -subsystem and py-subsystem. The objective
function of each sensor i can be specified as [2]

Ji (px , py) =
3∑

j=1, j �=i

((
px,i − px, j

)2 + (
py,i − py, j

)2)

+ p2x,i + p2y,i + [
px,i , py,i

]
r1,i + r2,i

(54)

where r1,i ∈ R
2 and r2,i ∈ R are fixed in the simu-

lations as r1,1 = [2,−2]T , r1,2 = [−2,−2]T , r1,3 =
[−4, 2]T , r2,1 = r2,2 = 3 and r2,3 = 6. The first line
of (54) can be considered as a global objective (e.g.
connectivity preserving) while the second line of (54)
can be viewed as a local objection (e.g. source seeking)
[2]. Therefore, solving the game problem (54) intends
to find a tradeoff between the local objective and the
global objective for the MASs.

By directly calculation, the considered game admits

a unique NE at

[(
p∗

x

)T
,
(

p∗
y

)T
]

= [0.25, 0.75, 1.0,

0.5, 0.5, 0.0]m. Notably, we can apply the proposed
algorithms to solve the gameproblem for px -subsystem
and py-subsystem separately. Moreover, we assume
that the seeking algorithms are synchronously updated
for px -subsystem and py-subsystem as long as there
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Fig. 2 Simulation results generated by event-triggered algorithm (5)

exists any triggering condition for the two subsys-
tems that are satisfied. The communication graph of
the considered sensor network is described by Fig. 1.
The initial positions of the sensors are fixed as px =
[10, 0, 7]T m and py = [0, 5, 3]T m. In the fol-
lowing, simulations are carried out for velocity- and
acceleration-actuated vehicles successively.

5.1 Velocity-actuated MASs

The velocity-actuated MASs can be described as

px−subsystem : ṗx = ux

py−subsystem : ṗy = uy
(55)

The simulation results generated by the event-
triggered algorithm (5) and the adaptive scheme (24)
are given in Figs. 2 and 3, respectively, illustrating the
sensors’ trajectories, the time histories of the observer
errors and the time histories of the adaptive gains. As
illustrated in these figures, the sensors’ positions are
steered to converge to the NE with the observer errors
being stabilized at the origin, which explicitly verify
Theorems 1 and 2. It can be also seen from these fig-
ures that the observer achieves faster convergence rate
than the controller. This contributes to obtaining better
systems performance. The triggering instances of each
sensor are shown in Figs. 2b and 3b, which show that
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Fig. 3 Simulation results generated by adaptive event-triggered algorithm (24)
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the Zeno behavior as well as continuous communica-
tion are successfully excluded, which helps to reduc-
ing the communication costs. Moreover, from Table 1,
we can see that the triggering numbers are reduced by
introducing the adaptive gains. This is due to that the
triggering condition in (25) is adjusted by the adap-
tive gains. Finally, Fig. 3f–g gives the time histories of
the adaptive gains for px -subsystemand py-subsystem,
respectively, which implies that the adaptive gains con-
verge to finite steady-state values.

5.2 Acceleration-actuated MASs

The acceleration-actuated MASs can be described as

px−subsystem :
{

ṗx,i = vx,i

v̇x,i = ux,i

py−subsystem :
{

ṗy,i = vy,i

v̇y,i = uy,i

(56)

where the velocities and the accelerations are bounded
by

∣∣vx,i
∣∣ ≤ v̄,

∣∣vy,i
∣∣ ≤ v̄,

∣∣ux,i
∣∣ ≤ ū and

∣∣uy,i
∣∣ ≤ ū

with v̄ = 2m/s and ū = 4m/s2. From Theorem 3, we
can select that k1 = 0.95 and k2 = 1.8.

To provide better insight on the effectiveness of the
constrained algorithm (43), we compare it with the
following unconstrained algorithm by excluding the
hyperbolic tangent function:

ui = −k1vi − k2 (xi + vi/k1 − zi ) (57)

The simulation results generated by the constrained
algorithm (43) and the unconstrained one (57) are pre-
sented in Fig. 4 including the sensors’ trajectories,
velocities and accelerations. As illustrated in the fig-
ure, the sensors’ positions are steered to converge to
the NE with the velocities and the accelerations being
stabilized at the origin for both the two algorithms.
However, the velocities and the accelerations generated
by the proposed algorithm (43) are constrained within
the given bounds while those generated by the uncon-
strained one (57) violate the constraints. Consequently,
Theorem 3 is verified. Additionally, as illustrated in

Table 1 Triggering numbers under algorithms (5) and (24)

Agent 1 Agent 2 Agent 3

Algorithm (5) 133 148 130

Algorithm (24) 107 92 101

Fig. 4e, the accelerations given by the constrained algo-
rithm (43) is much less than the given bounds, which
lies in the conservatism of the proposed approach. How
to design more feasible NE seeking algorithm under
which the upper bounds of the inputs can be sufficiently
exploited deserves future research.

6 Conclusion

The IGC problems of integrator-type MASs were
studied in this paper, where the agents share infor-
mation over communication networks. Specifically, a
distributed NE seeking algorithm with static trigger-
ing condition and an adaptive distributed NE seek-
ing scheme with dynamic triggering condition were
developed for single-integrator to provide better insight
on the event-triggered communication mechanism. It
should be noted that with the adaptive seeking scheme,
the agents can update their actions without knowing
the entire communication graph as well as the num-
ber of agents. Thereafter, the proposed adaptive event-
triggering algorithmwas extended to accommodate the
IGC problem of double-integrator, where the agents
were subject to velocity constraint and input satura-
tion, by integrating the hyperbolic tangent function
into the controller. Based on the convergence analy-
ses and numerical experiments, it is shown that the
proposed algorithms would steer the agents’ actions
to reach the NE under certain given conditions. Future
work will focus on the distributed finite-time NE seek-
ing for multi-agent IGC problems with more general
dynamics especially when the communication topol-
ogy is directed and occasionally connected.
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Fig. 4 Simulation results generated by the constrained algorithm (43) and the unconstrained algorithm (57)
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