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Abstract—In this paper a high-speed vision system for table
tennis robot is designed. The system architecture is designed
firstly. Then a ball detection algorithm is proposed to improve
the image processing speed up to 200 frames per second. Besides,
a novel ball trajectory reconstruction algorithm is established,
in which the cameras in the stereo vision system needn’t be
synchronized. Experimental results verify the effectiveness and
accuracy of the proposed method.

Index Terms—High-speed stereovision, table tennis robot, target
recognition, visual measurement, visual tracking.

I. INTRODUCTION

Table tennis robot has been attracting many researchers’
attentions. It is a complex system which involves high speed
vision procession, model identification and motion control.
Since 1980s, many research groups have focus on this question
and quite a lot of works have been done[1–7]. However, in
the vision systems of the table tennis robots mentioned above,
the image processing speed is limited below 100 frames per
second (FPS), which is far from dealing with the practical
human-playing situation. When playing with a human, the ball
can fly as fast as 20m/s. Since the length of the table is only
2m, the robot has only less than 0.1s to react to the coming
ball. A more specific condition is that when dealing with
coming ball with rotation, more data is needed to improve the
robustness and accurateness of the measuring system. Thus,
the vision system with higher speed is required to improve
the performance of the existing table tennis robot.

In order to increase the vision processing speed and get data
more efficiently, some problems need to be solved. Firstly, the
image processing algorithm needs to be improved in order to
reduce its time complexity. Secondly, the short processing time
for each image requires short shutter time, which will lead to
poor image quality. The reason is that when the shutter time
is short, little light would get into the lens, then the signal to
noise ratio would decrease.

Unfortunately, the commonly used moving object detec-
tion and tracking algorithms can not overcome the obsta-
cles listed above. For example, given that the images are
severely unstable, we can not get the accurate ball positions
through the simple algorithms like adjacent frame difference.
Meanwhile, though we can get relatively accurate and robust
results through complex algorithms like Gaussian Mixture

Model (GMM), we can not afford the considerable time
complexity[8].

Another point that can be improved is the algorithm for
three dimensional (3-D) ball trajectory reconstruction. In tra-
ditional 3-D trajectory reconstruction algorithm, it’s critical to
ensure that two cameras are synchronized, which means that
only when each camera detects the ball at exactly the same
time can we get the 3-D position of the ball. This restriction
would weaken the vision system both in real-time performance
and in validity of the trajectory prediction.

In this paper, we will present a vision system in which the
problems mentioned above are solved. In section II, the vision
system structure is described from hardware and software
aspects. In section III, the ball detection algorithms would be
proposed. Then a new 3-D trajectory reconstruction algorithm
would be introduced in section IV. Experiments are given to
verify the effectiveness of the algorithms in section V. Finally,
this paper is concluded in section VI.

II. SYSTEM ARCHITECTURE

A. Hardware Architecture

The proposed stereovision system is improved from [1],
which contains two smart cameras and a personal computer
(PC). The communication between each part of the system is
based on TCP/IP protocol. The scheme diagram is shown in
Fig. 1.

Fig. 1. System hardware architecture [1]
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Fig. 2. The flow chart of the software

B. Software Architecture

As described in Section I, the 3-D reconstruction algorithm
proposed in this paper does not ask for synchronization. The
hand-shaking between two cameras is no longer needed. So
the software architecture is greatly simplified from [1]. The
cameras process the images and detect the positions of the ball
independently. Given that the smart camera has two kernels,
the capturing of new image and processing of last image can
be handled in parallel, which would improve the real-time
performance of the system. The results from both cameras are
sent to the PC for reconstruction the 3-D trail of the ball.
The flowchart of the software is shown in Fig. 2. Before the
running of robot, the connection between PC and cameras
would be established first. During the system running, the PC
would keep asking for new ball coordinates from the cameras.
Meanwhile, once the cameras receive the asking from PC,
they would try to find out the ball coordinate in the captured
frame, and send the results back to the PC. Then the PC would
reconstruct the 3-D trajectory with received data.

III. BALL DETECTION ALGORITHM

To achieve the processing speed as high as 200 FPS, a set
of algorithms for ball recognition and tracking is proposed.
The algorithms are improved from the Single Gaussian model
[9], so they share the same assumption that

I (x, y, k) ∼ N
(
u (x, y) , δ2 (x, y)

)
(1)

Fig. 3. background model. (a) is Iu and (b) is ID

where I (x, y, k) is the gray value of the pixel at (x, y) in
the k− th image, and u (x, y), δ2 (x, y) are the corresponding
expectation and variance. Based on this assumption, the details
of the algorithms are described as follows.

A. Initialization of the background model

At the initialization stage, 15 pictures of clean scene without
balls and players are taken. Then the initial u (x, y) and
δ2 (x, y) are estimated through the mean and second moment
of each pixel. Image Iu and ID are created with u (x, y) and
δ2 (x, y) as their pixel brightness at (x, y). An example is
presented in Fig. 3.

B. Rough locating the ball

In order to detect the areas with moving objects effectually,
adjacent frame difference is used for rough locating the ball.

According to (1), we have{
I (x, y, k) ∼ N

(
u (x, y) , δ2 (x, y)

)
I (x, y, k − 1) ∼ N

(
u (x, y) , δ2 (x, y)

) (2)

So the adjacent frame difference can be given as

dI(x, y, k) = I(x, y, k)− I(x, y, k − n) (3)

As we can see, dI(x, y, k) is a random variable whose variance
can be written as
D(dI(k)) = D(I(k)− I(k − n))

= D(I(k)) +D(I(k − n))− 2cov(I(k), I(k − n))

= 2δ2 − 2cov(I(k), I(k − n)) < 2δ2

(4)

Though it cannot been ensured that dI(x, y, k) obeys nor-
mal distribution, it is verified by experiments that the rough
position of moving objects can be labeled by binarizing the
image dI with a threshold 3

√
D(dI) , i.e.,

Ib(x, y) =

{
1, |dI(x, y, k)| > 3

√
2δ(x, y)

0, |dI(x, y, k)| ≤ 3
√

2δ(x, y)
(5)

where Ib is the possible zone of moving objects.
Fig. 4 is an example of Ib , from which it can be observed

that besides the ball, other moving objects such as moving
human body are also detected. Since most of the moving
objects would not move as fast as the ball, the disturbance
trace would be much narrower compared to the trace of the
ball. Hence such distribution can be ruled out simply by
morphological processing:



Fig. 4. Results of the ball rough locating . (a) Adjacent frame difference
result . (b) Possible zone of the ball . (c) Rough position of the ball

Ir = (Ib ⊕B)	 C (6)

where B is a pixel while C is a square with the size of 3× 3
in pixel, and binary image Ir indicates the rough position of
the ball in the image.

C. Accurate locating the ball

In section III-B we get the rough position of the ball, which
is denoted as Pr . Then the accurate position of the ball is
searched in a square window around Pr with the size of Rw×
Rw in pixel.

We define dIb as the difference of the current image I and
the background expectation Iu. Then we binaries dIbkg with
threshold 3

√
ID as follows:

dIbin(x, y) =

{
1, |dIb(x, y)| − 3

√
ID(x, y) > 0)

0, others
(7)

In the image dIbin , the ball is supposed to be a continuous
block with circular contour and with area in a certain range.
Based on this, it can be judged that whether we get the exact
window which contains the ball through some verification.

We define a set W as

W = (x, y)|dIbin(x, y) = 1 (8)

then we have


x̄ = 1

N

∑
(x,y)∈W

x

ȳ = 1
N

∑
(x,y)∈W

y
(9)


Dx = 1

N

∑
(x,y)∈W

(x− x̄)2

Dy = 1
N

∑
(x,y)∈W

(y − ȳ)2
(10)

where N is the size of W , (x̄, ȳ) is the mean position of W ,
Dx and Dy are the distribution variances of W . The accurate
position of the ball is (x̄, ȳ) if the following inequations are
satisfied. {

Tl < N < Th
Dx < Tx, Dy < Ty

(11)

D. Dynamic tracking and background update

To further improve the real-time performance of the image
processing, the dynamic window technique described in [1] is
used to track the ball.

To ensure the robustness of the algorithm, the background
needs to be updated as described in [9]. However, updating the
model in every frame costs too much computation. To solve
this problem, the model is updated only when the following
two conditions are satisfied:

a) The system fails to detect the ball for successive N
frames.

b) The time gap between two updated frames is more than
1 s.

E. Ball detecting algorithm scheme

The scheme of ball detecting algorithm is presented in Fig.
5. Firstly the searching window would be chosen, then a list
of doubtable rough ball coordinates in the window would be
established with the method proposed in section III-B. For
each element in the list the algorithm proposed in section III-C
would be applied to get the accurate ball location.

IV. SPACE RECONSTRUCTION OF BALL TRAJECTORY

A new 3-D trajectory reconstruction algorithm is proposed
in this paper, which does not need to ensure the synchro-
nization of the two cameras. In this section the geometry
explanation of the theory is introduced first, then the math-
ematic deduce about the algorithm is presented. At last, some
improvements for applying this algorithm to the table tennis
robot system is discussed.

A. Geometry explanation of the algorithm

In Fig. 5, the green line is the trace of a flying ball, O1

and O2 are the optic center of the two cameras. P1 ∼ P6

are the ball positions in the different time, P ′
1 ∼ P ′

6 are at the
corresponding image coordinates detected by the two cameras.
Given the parameters of the cameras and detected P ′

1 ∼ P ′
6,

we can get the 3D straight lines l1 ∼ l6. Suppose that in a
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Fig. 5. The scheme of Image processing algorithm

Fig. 6. Schematic plot of a ball cross the view filed of the cameras

short time period, the trace of the ball, can be approximated
as a n-order curve as follows:

P (t) =

 Px(t)
Py(t)
Pz(t)

 =

 a0 + a1t+ · · ·+ ant
n

b0 + b1t+ · · ·+ bnt
n

c0 + c1t+ · · ·+ cnt
n



=

 a0 a1 · · · an
b0 b1 · · · bn
c0 c1 · · · cn




1
t
...
tn


= F · T (t)

(12)

where t denotes time, F is the coefficient matrix. Given the
fact that the trace of the ball must intersects l1 ∼ l6 at
points P1 ∼ P6, the reconstruction of the ball trace can be
transformed as

Fo = arg min
F

∑
Di

where Di is the distance between P (t) and li at the moment
ti.

B. Mathematic deduce

According to Section IV-A, its theoretically possible to re-
construct the ball trace without synchronizing the two cameras.
Suppose the parameters of the two cameras are given as

M1 =

 m11

m12

m13

 ,M2 =

 m21

m22

m23

 (13)

where mij are 1× 3 vectors.
We can get the 3-D position of the object by the least square

method (LSM) based on the following equations:
u1 =

A11

A13
, v1 =

A12

A13

u2 =
A21

A23
, v2 =

A22

A23

(14)

where Aij = mijP , P is the 3-D position of the object,
(u1, v1) and (u2, v2) are the detected image positions by the
two cameras, respectively [10].

Now consider the situation that Camera A detects the ball
and gets its image position (u1(t1), v1(t1)) at the moment t1.
By combining the (12) and (14), we have

u1 =
m11FT (t1)

m13FT (t1)

v1 =
m12FT (t1)

m13FT (t1)

(15)

Similarly, if Camera B detects the ball at different moment
t2, we would have 

u2 =
m21FT (t2)

m23FT (t2)

v2 =
m22FT (t2)

m23FT (t2)

(16)



From (15) and (16), it can be seen that as long as one of the
two cameras detects the ball, we can get one more equation
like (15) or (16).

Since our goal is to figure out F which has 3(n + 1)
variables, we need 3(n + 1) independent equations at least.
This can be satisfied if the two cameras detect the ball for more
than 3(n+1)/2 times in a period short enough. F is computed
via LSM after enough sampling points are captured.

C. Applying the algorithm to the table tennis robot

1) Choice of n and using of data : Though bigger n means
more accuracy, more sampling points need to be captured,
which would cost much time. However, the algorithms pro-
posed above are all based on (12), which is only valid when
the sampling points are gathered in a relatively short time.
Considering this, n is chosen to be 1, and F is calculated by
the newest image coordinates detected in the past 100ms.

2) Image coordinates preprocessing: The image coordi-
nates of the ball may contain errors caused by image process-
ing and disturbance. So the data from smart cameras needs to
be preprocessed.

Since n is chosen to be 1, T (t) in (12) can be written as
T (t) = [1 t]T . Apply this to (15), we have

u1(t) =
k11 + k12t

k31 + k32t
, v1(t) =

k21 + k22t

k31 + k32t
(17)

where  [k11 k12] = m11F
[k21 k22] = m12F
[k31 k32] = m13F

(18)

Equation (17) can be transformed as a homogeneous equa-
tion as

[
u1 u1t − t − 1
v1 v1t − t − 1

]
k31 k31
k32 k32
k12 k22
k11 k21

 = [0 0] (19)

When the trajectory of the ball can be approximated as (12),
its corresponding image coordinates in one camera should be
roughly subject to (19).

For each camera an image coordinates queue is created
whose length is fixed. Once a new ball coordinate is detected,
the queue is updated and verified using (19) in RANSAC
method. Only when the deviation is acceptable would the
data in the queue be used for the algorithm proposed in IV-B,
otherwise it would be given up and a new data is waited for.

V. EXPERIMENTS AND RESULTS

To validate the performance of proposed methods, a robot
vision system is built. In the system the ball detection is
realized in two smart camera, while the 3-D trajectory recon-
struction is

Fig. 7. Ball detection results using two methods, (a) the method proposed in
[1] (b) the method proposed in this paper

A. Ball detection in real time

To do the comparison experiments using two methods
proposed in [1] and this paper, similar ball trajectories were
generated by a ball serve machine. Successive ball image
coordinates were computed when it flied from one court of the
table to the other using the algorithm proposed in this paper
and that proposed in [1], respectively. The result is presented
in Fig. 7. It can be observed that for similar trajectories ,the
number of coordinates in our algorithm is about 1.5 times
that in the algorithm proposed in [1] got, which means better
real-time performance.

In the experiments, the image processing time for global
search was about 10ms and that for local search with dynamic
window was reduced to about 5ms as expected. Meanwhile
the accuracy is well guaranteed. The real time performance
and the image processing accuracy can meet the requirements
of the table tennis robot.

B. 3-D trajectory reconstruction

To verify the trajectory reconstruction algorithm, a complete
trajectory was recorded.

The output of the trajectory reconstruction algorithm is a
series of trajectory coefficients, i.e., a series of F . To make the
results more intuitive, we figured out the spatial coordinates
and velocities of the ball according to the obtained F and the
corresponding t with (12). The results are presented in Fig. 8.
From Fig. 8 it can be seen that in most situations the measured
coordinates were smooth and the velocities well matched with
the future trajectory.

Near the rebounding point the deviation clearly increased.
This is because the real trajectory suddenly changed in the
rebounding point, leading to failure of (12). This defect can
be avoided by abounding the coordinates near the table.

VI. CONCLUSION

In this paper, a high-speed vision system for table tennis
robot has been built. To enhance its performance, a new ball
detection algorithm is proposed, which improves the image-
processing speed up to 200FPS. Meanwhile, a new algorithm
for ball trajectory reconstruction is proposed, by which we
can obtain the spatial trajectory of the flying ball without
synchronization of the two cameras. Experiments show that
the ball detection algorithm is efficient and robust, and the
trajectory reconstruction algorithm achieves satisfied accuracy.



Fig. 8. Trajectory reconstruction results. (a) t-X curve, (b) t-Z curve, (c)
spatial coordinates of the ball trajectory, (d) spatial velocities of the ball
trajectory
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