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   Abstract—Along  with  the  development  of  information  techno-
logies such as mobile Internet, information acquisition technology,
cloud  computing  and  big  data  technology,  the  traditional  know-
ledge  engineering  and  knowledge-based  software  engineering
have  undergone  fundamental  changes  where  the  network  plays
an increasingly important role. Within this context, it is required
to  develop  new  methodologies  as  well  as  technical  tools  for
network-based knowledge representation, knowledge services and
knowledge engineering. Obviously, the term “network” has differ-
ent  meanings  in  different  scenarios.  Meanwhile,  some  breakthr-
oughs  in  several  bottleneck  problems  of  complex  networks
promote the developments of the new methodologies and techni-
cal tools for network-based knowledge representation, knowledge
services  and  knowledge  engineering.  This  paper  first  reviews
some  recent  advances  on  complex  networks,  and  then,  in
conjunction  with  knowledge  graph,  proposes  a  framework  of
networked  knowledge  which  models  knowledge  and  its  relation-
ships  with  the  perspective  of  complex  networks.  For  the  unique
advantages  of  deep  learning  in  acquiring  and  processing  know-
ledge, this paper reviews its development and emphasizes the role
that  it  played  in  the  development  of  knowledge  engineering.
Finally, some challenges and further trends are discussed.
    Index Terms— Complex  network,  knowledge  graph,  networked
knowledge, neural network.
  

I.  Introduction

MANY  practical  systems  consist  of  a  number  of
individuals interacting with each other where the typical

examples  include smart  grids,  WWW, and the  Internet.  Such
systems  can  be  generally  portrayed  as  complex  networks  by
modeling  each  individual  to  a  node,  and  interactions  among
individuals to edges [1]. Benefiting from its highly abstract re-
presentation, the complex network has been widely applied in

numerous fields as an effective tool for characterizing natural
and  artificial  systems  [2]–[5].  For  exploring  the  information
hidden  in  the  network  structure  and  connectivity  that  can  be
used to solve real-world problems, numerous approaches have
been  proposed  to  model  and  analyze  the  structure  of  real
networks, obtaining a series of insightful results. For example,
finding the most influential individuals in the group to predict
the  spread  of  infectious  diseases  and  rumors  [6],  and
determining  the  smallest  set  of  nodes  in  the  network  so  that
control  of  the  entire  network  can  be  achieved  with  small
control cost [7].

Intelligent  upgrading  and  transformation  have  become  a
common  occurrence  in  all  walks  of  life.  Intellectualization
requires  machine  intelligence,  especially  cognitive  intelli-
gence. The knowledge graph is a key technology for achieving
cognitive  intelligence  as  well  as  an  enabler  for  achieving
machine  cognitive  intelligence.  The  concept  of  knowledge
graph  was  formally  proposed  by  Google  in  2012  [8],  and  its
essence  is  a  graph  connecting  entities  through  relationships
among them. Further, it has attracted more and more attention
to applications such as education [9],  medical treatment [10],
e-commerce [11],  artificial  intelligence [12],  cognitive manu-
facturing  network  [13],  etc.  The  realization  of  various
knowledge  graphs  is  based  on  complex  networks.  Also,  the
management  and  operation  of  knowledge  graphs  mainly
depend on the graph and complex network-related algorithms.
Integrated  with  complex  network  technology,  the  knowledge
graph  can  improve  the  efficiency  of  knowledge  management
and analysis. Meanwhile, it enriches the concept of networked
knowledge  and  provides  the  possibility  to  discover  new
knowledge.

With the development of computer science, more and more
information  can  be  stored  and  leveraged.  As  a  result,
traditional  methods  are  difficult  in  undertaking  the  modeling
of a large amount of data. Deep learning (DL) [14], including
various  data-driven  models,  are  popular  in  networked  know-
ledge exploration under big data.  The neural networks (NNs)
are  the  basic  structure  of  DL  [15].  And  backpropagation
algorithm  [16]  provides  the  training  capability  for  the  DL
models.  Facing  the  data  with  different  structures,  different
networks of DL models can be used to learn the knowledge in
the  data.  For  instance,  the  convolutional  neural  networks
(CNNs)  are  applied  to  the  image  task  [17],  [18],  and  the
recurrent  neural  networks  (RNNs)  perform  well  at  modeling
the  sequence  data  [19],  [20].  Meanwhile,  graph  neural  net-
works  can  model  the  unstructured  data  in  complex  networks
[21]–[23], and generating adversarial networks are effective in
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generating  new  samples  from  old  data  [24].  Hence,  rational
use  of  different  DL  methods  can  make  the  process  of  net-
worked knowledge discovery more intelligent and efficient.

Abundant  technical  methods  bring  us  the  ability  to  access
information  and  knowledge  from  text,  images,  audio,  and
video.  However,  traditional  knowledge  engineering  is  no
longer adapted to the explosive growth of data. To cope with
the  new  challenges  posed  by  big  data,  the  concept  of  big
knowledge has  been proposed.  The result  in  [25]  defines  big
knowledge  and  presents  its  ten  massive  characteristics.
Network science has unique advantages in mining information
and  discovering  patterns  from  a  large  number  of  intercon-
nected individuals, and has been successfully applied in many
fields.  Combining  the  techniques  of  network  science,  this
paper  proposes  a  framework  for  networked  knowledge,
expecting  to  discover  new  knowledge  that  emerges  from  the
interaction  of  knowledge  assets  that  is  significantly  different
from individual knowledge. The idea of networked knowledge
has been reflected in some studies [25], [26]. In addition, the
applications of networked knowledge in various fields are also
a  hot  issue  discussed and concerned by researchers.  In  terms
of biological networks, networked knowledge not only shows
the structure and function of proteins and genes at the micro-
level  [27],  [28],  but  also  explores  the  interaction  of  drugs,
disease discovery and the construction of medical knowledge
graph at the macro level [29]–[32]. As for semantic networks,
one can obtain the information of the text itself, can also catch
the  networked  knowledge  between  different  texts  [26],  [33],
[34]. In the social networks, networked knowledge can play a
key  role  in  criminal  investigation  [35],  privacy  protection
[36], [37], information recommendation [38], [39], etc. Regar-
ding  power  networks,  researchers  use  networked  knowledge
for power information visualization, information retrieval and
dispatching  of  power  networks  [40]–[43],  which  helps  to
improve the efficiency and optimal management of the smart
grid.

With  the  rise  of  information  technologies  such  as  mobile
Internet,  social  networks,  traditional  knowledge  engineering
and  knowledge-based  software  engineering  are  not  adapting,
leading  to  the  requirement  of  network-based  knowledge
representation. Therefore, this paper aims to provide a survey
of  networked  knowledge  and  complex  networks  from  an
engineering  view.  To  achieve  these  goals,  this  paper  begins
with a description of the framework for conducting a literature
review and then moves on to a descriptive analysis of existing
studies in Section II.  The research progresses of the complex
network,  knowledge  graph,  and  DL  are  presented,  respec-
tively.  Networked  knowledge  sparks  some  fresh  and  intere-
sting  thinking,  which  may  potentially  lead  to  more  applic-
ations  in  various  fields,  and  this  is  discussed  in  Section  III.
Then,  research  challenges  and  future  trends  are  presented  in
Section IV. Finally, the conclusion is presented in Section V.  

II.  Networked Knowledge in the Context of Complex
Network

  

A.  Complex Networks
Numerous natural  and artificial  systems are composed of  a

large  number  of  individuals  that  interact  with  each  other  in
various  ways,  and  then  perform  surprising  functions.  Exam-
ples  include  gene  regulation  networks,  protein  interaction
networks,  power  grids,  infection  and  disease  propagation
networks, social networks, and brain networks [1], [44], [45].
An excellent approach to capture the distinct group properties
exhibited  by  large  systems  that  different  from  individual
dynamics  is  representing  them  as  networks  (mathematically,
in  terms of  graphs),  where nodes represent  individuals  in  the
system  and  edges  represent  information  exchanges  or
interactions  among  individuals.  Although  some  properties  of
the  individuals  are  ignored  in  this  representation,  a  deeper
exploration  of  the  influence  of  the  network  topology  on  the
properties  of  the  total  system  is  possible.  With  the  rapid
development  of  several  disciplines,  complex  networks,  as  an
interdisciplinary  discipline,  become  a  hot  topic  in  several
fields increasingly.

G(N,L)
G(N, p)

1)  Network  Models: In  the  beginning,  the  research  on
complex networks was limited to the field of graph theory and
focused  more  on  regular  networks.  However,  for  extremely
large and growing real networks such as the World Wide Web
and  the  Internet,  it  was  impractical  to  obtain  their  exact
topologies due to the limited technology available at that time.
For  large  networks  without  obvious  connection  rules,  the
Hungarian  mathematicians  Erdös  and  Rényi  argued  that  the
connections  among  individuals  are  completely  random,  and
proposed the random graph theory, namely ER random graphs
or  networks,  which  occupied  the  research  on  complex
networks for four decades [46]. There are two ways to define
a  random  network:  One  is ,  where L edges  are
randomly placed among N nodes [46], and another is ,
where a pair of nodes are connected with probability p [47]. In
fact,  these  two  definitions  are  equivalent.  A  natural  question
follows that are really large networks completely random?

Researches  have  shown  that  many  real  networks  are  not
random  but  possessed  small-world  properties  [2],  [48],  i.e.,
networks  with  large  clustering  coefficients  and  small  mean
path  lengths.  The  social  experiments  performed  by  the
American social psychologist Milgram found the phenomenon
of  six  degrees  of  separation  and  got  the  conclusion  that  the
average distance between any two persons in the world is six
[48].  Later,  a  study  of  Facebook  social  networks  found  that
the average distance between people is four, i.e., four degrees
of separation [49]. To characterize the small-world properties
in  real  networks,  the  WS  small-world  network  model  was
proposed in [2] by creatively randomly reconnecting edges in
a  regular  network.  The  proposed  small-world  networks  pro-
vide a new perspective on synchronization, failures cascading,
and the propagation of epidemics and rumors in interpersonal
networks.

A common property of ER random networks and WS small-
world networks is  that  the degree distribution of  the network
approximates  a  Poisson  distribution,  while  some  results
showed that there exist a large number of real networks whose
degree  distribution  exhibits  a  power-law  characteristic  [3].
The later are called scale-free networks. In order to understand
the  potential  mechanism  for  the  generation  of  the  scale-free
networks,  Barabási  and  Albert  proposed  the  BA  scale-free
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network  model  based  on  the  growth  and  preferential
attachment mechanisms. Also, what can be found is that scale-
free  networks  also  have  the  small-world  property  [50].  The
existence of power-law distributions has been found in many
real  datasets,  such  as  earthquakes  [51],  terrorist  attacks  [52],
web networks [53],  etc.  Since existing data  analysis  methods
have  difficulty  in  discerning  power-law  phenomena,  a
statistical  framework  was  proposed  to  identify  power-law
behavior in empirical data [54]. Despite the fact that scale-free
properties  have  been  observed  in  many  real  networks,
skepticism  about  scale-free  property  persists  in  the  scientific
community. A highly representative result is presented in [55],
where  the  authors  studied  nearly  a  thousand  empirical
networks  and  concluded  that “scale-free  properties  are  rare”.
The  author  of  [56]  suggested  that  the  current  controversy
about  scale-free  networks  stems  from  whether  the  degree
distribution sequence is completely consistent with or close to
the power law. By presenting a strict definition of power-law
distribution, they argued that “scale-free networks well done”.

2)  Multi-Layer  Networks  and  Higher-Order  Networks: In
recent years,  there has been a rise in the study of multi-layer
networks,  which  consist  of  many  layers,  each  of  which  is  a
separate  network.  For  example,  in  social  networks,  people
often participate in multiple social platforms at the same time,
such  as  Facebook,  Twitter,  WeChat,  LinkedIn,  etc.,  and
people  have  different  relationships  in  different  platforms.
Multi-layer  network  frameworks  have  been  widely  used  in
various domains. The tensor algebra was shown to be a good
method  to  describe  a  multi-layer  network  [57].  And  then  the
network  properties  such  as  degree  centrality,  eigenvector
centrality,  and clustering coefficients  of  multi-layer  networks
were well defined. An alternative mathematical representation
of  multi-layer  networks  is  the  supra-Laplacian  matrix  which
generalizes  the  Laplacian  matrices  of  single-layer  networks
[58],  [59].  The  structure  of  the  eigenvalues  and  eigenvectors
of  the  supra-Laplacian  is  analyzed  in  [58]  using  the
perturbative analysis. The approximation of the eigenvalues of
the  supra-Laplacian  matrix  was  estimated  in  [59]  and further
used to analyze the diffusion and synchronization phenomena.
Then, synchronization of multi-layer networks in the presence
of coupling delays was studied in [60].

The successful presentation of the mathematical description
of multi-layer networks in the above-mentioned literature has
greatly  contributed  to  the  study  of  multi-layer  networks
[61]–[63]. The concept of symmetry on single-layer networks
was  extended  to  multi-layer  networks,  and  the  clustering
synchronization  problem  of  multi-layer  networks  was
addressed by decoupling the dynamics and transforming them
into  master  stability  equations  [61].  The  master  stability
function approach was extended to multi-layer networks [64],
and  three  master  stability  functions  were  obtained  to  study
synchronization  domains  with  complete  synchronization,
intra-layer  synchronization,  and  inter-layer  synchronization,
respectively. The robustness of networks is an important topic
in  complex  networks,  and  the  effect  of  multi-layer  structures
on  network  robustness  is  also  a  hot  topic.  The  optimal
percolation  problem  on  a  multi-layer  network  is  studied  in
[62]  and  the  results  showed  that  ignoring  the  multi-layer

structure  of  the  network  leads  to  incorrect  estimation  of  the
network  robustness.  In  [63],  the  authors  constructed  a
biological  multi-layer  network  containing  a  gene  regulatory
network,  a  protein  interaction  network,  and  a  molecular
network and found that the network with coupled multi-layer
structure  has  better  robustness  compared  to  the  uncoupled
single-layer network.

d+1

The existence  of  higher-order  interactions  in  the  biological
and physical worlds has attracted the attention of researchers.
A  method  of  modeling  higher-order  interactions  is  the
simplicial complex, which generalizes the edges and nodes in
simple  networks  [65]–[69].  A d-simplex  consists  of 
nodes.  In  this  way,  a  0-simplex  is  a  node,  a  1-simplex  is  an
edge,  a  2-simplex is  a  two-dimensional  object  made by three
nodes, usually called a (full) triangle, a 3-simplex is a tetrahe-
dron,  i.e.,  a  three-dimensional  object  and  so  on.  A  network
consisting  of  simplexes  is  called  a  simplex  complex.  An
additional  requirement  is  that  a  subset  of  any  simplex  in  a
simplicial  complex  is  also  a  simplex  of  the  simplicial
complex.  The  presence  of  higher-order  interactions  has  been
found performing a great impact on the stability of networked
systems.  It  is  found in  [65]  that  the  presence  of  higher-order
interactions  among  organisms  exhibits  completely  different
stability,  and  therefore  may be  responsible  for  the  ecological
network  remaining  stable.  The  influence  of  higher-order
interactions  on  social  networks  was  deeply  studied  in  [66],
where  higher-order  interactions  were  modeled  as  simplicial
complexes, and new homeostasis was found in which healthy
and  endemic  states  coexist.  Higher-order  interactions  (three-
body interactions herein, i.e., 2-simplex) may cause Kuramoto
oscillators  networks  with  all-to-all  coupling  to  acquire
multistable  synchronized  states  at  critical  coupling  strengths
[67].  Replacing  the  all-to-all  pairwise  actions  with  2-simpl-
exes,  a  new phenomenon of  abrupt  desynchronization  transi-
tion  was  found,  which  cannot  be  observed  in  the  classical
Kuramoto  model  [68].  For  the  synchronization  of  general
simplical  complexes,  the  results  in  [69]  generalized  the
adjacency matrix and Laplacian matrix under simple networks
to simplical complexes, and then defined the adjacency tensor
and  the  generalized  Laplacian  matrix.  The  master  stability
functions were obtained in the case where further the network
topology is all-to-all and generalized diffusion interactions are
naturally coupling functions, respectively.  

B.  Knowledge Graph
With  the  advent  of  the  era  of  big  data,  knowledge

engineering  has  attracted  extensive  attention.  How  to  extract
useful  knowledge  from  massive  data  is  the  key  to  big  data
analysis. As is known to all, the knowledge graph technology
provides  an  effective  way  to  extract  structured  knowledge
from  a  large  number  of  texts  and  images,  and  is  widely
applied. In the following part, the history of knowledge graph
is  briefly  reviewed  first.  Then,  several  important  research
topics of the knowledge graph are introduced, which contains
the related research contents and progresses.

1) Brief History: The origin of the knowledge graph can be
traced  back  to  the  birth  of  the  semantic  network  in  the  late
1950s and early 1960s. The semantic network can be regarded
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as  a  graph-based  data  structure.  Inspired  by  the  semantic
network,  the  concept  of  knowledge  graph  was  formally
proposed  by  Google  in  2012  [8].  The  essence  of  the  know-
ledge  graph  is  a  graph  denoting  the  relationships  among
entities, that is, a semantic network revealing the relationships
among entities. Its purpose is to improve the intelligent ability
of  search  engines  and  enhance  the  quality  and  experience  of
users’ search. Moreover, this concept has been widely used in
education  [9],  medical  treatment  [10],  e-commerce  [11]  and
other  industries.  Up  to  now,  a  large  number  of  knowledge
graphs  such  as  YAGO  [70],  Probase  [71],  Zhishi.me  [72],
CN-DBpedia  [73]  have  emerged.  An  example  of  knowledge
graphs  was  shown  in Fig. 1,  and  some  related  products  are
presented in Table I.
 

Knowledge 
graph

Complex network

Dynamic

Flocking

Chaos

Cascade

Resilience

Congestion

Robustness

Information

Epidemic

Fault

Propagation

Random network

Small-world network
WS network

NW network

BA network
Scale-free network

Boolean network
Control

Controllability

Synchronization

Neural network

Network model

 
Fig. 1.     An example of knowledge graph on research topics of the complex
network, where edges represent inclusion relationships.
 
 

TABLE I 

Knowledge Graphs and Their Products

Knowledge graph Product Data source
Google knowledge

graph Google search engine Wikipedia, Freebase

Knowledge vault Google now Web open data

Wolfram alpha Apple Siri Mathematica

DBpedia KB DBpedia Wikipedia

YAGO KB YAGO Wikipedia, WordNet,
etc.,

NELL KB NELL Web open data

Facebook KB Shopyact Social network data

Zhilifang KB Sougou search
engine Web open data

Zhishi.me KB Zhishi.me Chinese encyclopedia
 
 

Compared with the early semantic network,  the knowledge
graph has its own characteristics. Firstly, the knowledge graph
emphasizes  the  relationships  among  entities  and  the  attribute
value of entities. Secondly, an important source of knowledge
graph is the encyclopedia. Knowledge of high quality as seed
knowledge  is  obtained  through  the  encyclopedia.  And  then
large-scale and high-quality knowledge graphs can be quickly
constructed  with  knowledge  mining  technology.  This  is
different  from  the  early  semantic  networks  that  were  mainly
constructed  artificially.  Finally,  the  construction  of  the
knowledge  graph  emphasizes  the  integration  of  knowledge

from  different  sources  and  the  cleaning  technology  of
knowledge.

In  recent  years,  the  knowledge  graph  attracted  more  and
more  attention  to  applications  such  as  artificial  intelligence
[12],  cognitive  manufacturing  network  [13],  recommender
systems  [74],  etc.  In  addition  to  the  explosive  growth  of
technical articles about knowledge graphs, there are more and
more  review  articles.  In  [75],  a  systematic  review  of
knowledge  graph  embedding  was  provided,  including  the
state-of-the-art and the latest trends. In [76], authors reviewed
the  basic  concept  of  knowledge  computing  and  the  methods
for  computing over  knowledge graphs.  The computing meth-
ods are dissected into three categories: rule-based computing,
distributed  representation-based  computing  and  neural  net-
work-based computing. To reveal the development context of
the  knowledge  graph,  the  following  parts  focus  on  the  latest
progress  of  several  important  technologies  of  the  knowledge
graph.  The  technical  framework  of  knowledge  graphs  is
shown in Fig. 2.

2)  Knowledge  Extraction: A  key  problem  in  knowledge
graphs is how to extract useful information from massive data,
and  knowledge  extraction  technology  concentrates  on  this
problem.  According  to  the  different  types  of  information,
knowledge  extraction  can  be  divided  into  entity  extraction,
relationship extraction and attribute extraction.

The  main  purpose  of  entity  extraction  is  to  identify  the
named entities from sample sources. The first kind of method
is  based  on  rules  and  dictionaries.  For  example,  an  entity
extraction  method  was  proposed  in  line  with  the  dictionary,
and  has  been  applied  to  electronic  health  records  [77].  The
second kind of method is using machine learning technologies
to identify entities. The results in [78] tried to combine the K-
nearest  neighbor  algorithm  and  conditional  random  fields  to
identify entities. The third kind of method is an open domain-
oriented  extraction  approach.  An  unsupervised  open  domain
clustering  algorithm  for  entity  clustering  is  proposed  to  deal
with the massive network data in [79].

In general, the entities obtained by entity extraction methods
are discrete and unrelated.  Semantic links among entities can
be  established  with  relationship  extraction.  Three  main  rela-
tion  extraction  technologies  are  introduced  in  the  following.
1)  The  relation  extraction  is  based  on  the  template.  This
method has high accuracy and pertinence, but it is not suitable
for  large-scale  data  sets  and  is  difficult  to  uphold.  2)  The
relation extraction is with supervised learning method, such as
joint  extraction  model  [80],  end-to-end  relation  extraction
with  LSTMs  [81].  However,  model  training  needs  a  large
number of corpora in these methods. Then, it is not suitable to
build a large-scale knowledge base. 3) The relation extraction
is with semisupervised or unsupervised learning. According to
a  small  amount  of  manually  labeled  data  or  unlabeled  data,
relationships  are  extracted  by  using  maximum  expectation
algorithms.

The  attribute  extraction  is  another  important  technique  in
knowledge  graphs.  The  purpose  of  attribute  extraction  is  to
complete the entity information, and to obtain entity attribute
information  or  values  from  sample  sources.  Entity  attribute
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can  be  further  regarded  as  a  relationship  between  attribute
value  and  entities,  so  it  can  be  obtained  by  the  relationship
extraction  method.  And  some  useful  approaches  were
proposed  such  as  the  relation  extraction  method  with  tensor
decomposition [82], which uses the domain knowledge of the
entity type to obtain the attribute value that the entity lacks.

3)  Knowledge  Fusion: The  formal  knowledge  is  obtained
utilizing  the  extraction  methods.  However,  the  quality  of
knowledge  is  uneven  because  of  the  different  sources.  There
may  be  conflicts  or  overlaps  in  the  extracted  knowledge.
Thus, it is necessary to apply fusion technologies to deal with
multi-source  knowledge.  Then  the  knowledge  graph  can  be
effectively  improved  and  enriched.  With  the  development  of
knowledge  graphs,  some  special  knowledge  fusion  methods
were  proposed  [83].  The  main  fusion  approaches  are
introduced in the following.

The  entity  disambiguation  is  used  to  distinguish  entities
with  the  same  name  and  ensures  that  each  entity  has  a  clear
meaning.  The  topic  model  uses  the  text  information  in  the
knowledge base to learn the common entity group and realize
the entity collective disambiguation [84]. Another disambigu-
ation approach is based on the context and semantic similarity
of  entity  information  words  in  knowledge  graphs  [85].  In
addition,  some  effective  disambiguation  methods  include  the
integrated  learning  in  line  with  the  Support  Vector  Machine
[86] and random forest models with similarity feature [87].

The knowledge combination is the integration of knowledge
from  the  overall  level,  which  is  different  from  entity
disambiguation  and  alignment.  An  important  problem  that
needs  to  be  solved  is  merging  data  layers  and  schema layers
[88].  Moreover,  knowledge  conflicts  often  occur  in  the
process of fusion, and one may use the conflict detection and
resolution  technology  and  the  truth  discovery  technology  to
eliminate  the  phenomenon.  Recently,  the  main  approach  is

utilizing the characteristics of the graph to resolve knowledge
conflicts [89].

4) Knowledge Computing: This technology can improve the
integrity  and  accuracy  of  knowledge  graphs.  However,
traditional knowledge computing methods are not appropriate
for  large-scale  knowledge  graphs.  To  overcome  this  defect,
the knowledge computing strategies for large-scale knowledge
graphs are introduced in the following.

(h, s, t)
cr

⟨·⟩ ◦
⊗

tanh

The  first  kind  of  method  is  computing  with  knowledge
graph representation learning which represents the entities and
relationships  in  the  knowledge  graph  in  the  form  of  vectors,
matrices,  or  tensors.  Then,  the  knowledge  computing  goal  is
completed  with  calculation.  This  method  developed  quickly
because  of  the  advantage  of  being  simple  and  efficient.
Further,  there  are  two  main  computing  models.  One  is  the
computing  model  according  to  distance,  the  another  is  the
semantic matching model. They are compared in Table II. The
triplet  denotes the generic input to the scoring function,

 represents a relation specific variable, and b is a global bias
vector. The inner product is defined by . The symbols  and

 represent the element-wise multiplication and the Hamilton
product,  respectively. σ and  stand  for  sigmoid  and  tanh
functions,  respectively.  For  more  details,  see  the  references
[90]–[96].

The  second  kind  of  method  is  computing  according  to  the
graph  structure  and  computing  of  statistical  rule  mining,
which  were  proposed  with  the  inspiration  of  the  traditional
computing  method.  Some  effective  methods  are  presented
such  as  the  path  ranking  algorithm  [97],  the  reinforcement
learning  method  [98],  and  depth  graph  propagation  models
[99].

The  third  kind  of  method  is  computing  with  NNs,  which
continuously improves the actual tuple score by training NNs,
and selecting  the  candidate  entity  to  complete  the  computing
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Fig. 2.     The technical framework of knowledge graph.
 

 

TABLE II 

Some Knowledge Computing Models Based on Representation Learning

Type Method Scoring function Entity representation Relation representation

Distance TransE [90] −∥h+ t− r∥1/2 h, t ∈ Rd r ∈ Rd

Distance SimplE [91] 1
2 (⟨hei ,vr , te j ⟩+ ⟨hei ,vr−1, te j ⟩) he, te ∈ Rd vr ∈ Rd

Distance RotatE [92] ∥h◦ r− t∥ h, t ∈ Cd r ∈ Cd

Distance QutatE [93] h⊗ r
|r| · t h, t ∈ Hd r ∈ Hd

Semantic matching RESCAL [94] hT Mrt h, t ∈ Rd Mr ∈ Rd×d

Semantic matching ComplEx [95] Re(hT diag(r)t) h, t ∈ Cd r ∈ Cd

Semantic matching CrossE [96] σ(tanh(cr ◦h+ cr ◦h◦ r+b)tT ) h, t ∈ Rd r ∈ Rd
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with  the  output  score.  For  example,  the  RNN  was  used  to
model  distributed  semantics  in  knowledge  graph  [100].  A
differentiable  neural  model  was  established  combining  NNs
with  memory  systems,  which  achieves  fast  knowledge
computing [101].

The  fourth  kind  of  method  is  computing  with  hybrid
methods.  This  method  combines  the  advantages  of  various
strategies  to  improve  the  computing  effect.  Some  novel
efficient  models  and  algorithms  have  been  proposed  such  as
rule-enhanced  relational  learning  [102],  iteratively  learning
embedding and rules  framework [103]  and so  on.  The above
methods  provide  an  effective  way  for  knowledge  computing
of the large-scale knowledge graph.

5)  Quality  Evaluation: Screening  new  knowledge  with  the
quality  evaluation  technology  is  an  essential  link  in
constructing  knowledge  graphs.  There  are  various  possible
ways  to  evaluate  the  quality  of  knowledge  graphs.  In  [104],
Sieve  was  proposed  to  simplify  the  task  of  generating  high-
quality data, which includes a quality evaluation model and a
data fusion model, and the quality score was generated by the
score function. In Google’s knowledge vault project [105], the
frequency  of  data  from  the  global  network  was  used  as
evidence for evaluating the reliability of the information. And
the  credibility  was  further  modified  according  to  the
knowledge  in  the  existing  knowledge  base.  This  strategy
reduces the uncertainty of the evaluation data results, so as to
improve the quality level of knowledge. In addition, the other
evaluation  methodologies  were  proposed  to  check  the
effectiveness of various refinement methods [106].

6)  Knowledge  Graph  and  Networked  Knowledge: Since
Google  put  forward  the  concept  of  knowledge  graphs,  this
technology is widely concerned. With the development of DL,
natural  language  processing  (NLP)  and  other  related  fields,
the  research  progress  of  knowledge  graph  is  increasing.  At
present, the research on knowledge graph is still in its infancy,
and  the  relevant  theoretical  research  needs  further  develop-
ment.  The construction of  knowledge graphs is  the  combina-
tion of  multiple  disciplines,  which requires  the  integration of
multiple  fields  such  as  data  mining,  complex  networks  and
machine learning.

Specifically, the realization of various knowledge graphs is
based  on  complex  networks.  Also,  the  management  and
operation  of  knowledge  graphs  mainly  depend  on  the  graph
and  complex  network-related  algorithms  such  as  subgraph
search,  subgraph matching,  the  shortest  path,  link  prediction,
etc. At the same time, to satisfy the demands of multi-source
heterogeneous  information  processing,  the  knowledge  graph
with  the  complex  network  needs  to  solve  some  difficulties.
For example, a knowledge graph is often sparse, which leads
to  the  retrieval  effect  undesired  with  the  complex  network-
related algorithm. A knowledge graph contains a large number
of  entities  and  relationships,  so  it  is  a  large-scale  directed
heterogeneous  network.  Naturally,  a  problem  of  how  to
achieve efficient and fast clustering, matching and retrieval on
large scale networks is formed.

To  solve  the  problem,  the  concepts  of  network  representa-
tion  learning  and  knowledge  representation  learning  have
been  proposed  one  after  another  in  recent  years  [107].  The

basic  idea  is  comprehensively  considering  the  network
structure  information  of  knowledge  graph  and  the  attribute
information  of  nodes  and  relationships.  The  entities  and
relationships  in  the  knowledge  graph  are  mapped  to  a  low
dimensional  vector  space.  Then  the  entities  and  relationships
are computable, and the operation and modeling of knowledge
graphs  are  simplified.  Integrated  with  complex  network
technologies, the knowledge graph improves the efficiency of
knowledge  management  and  analysis.  At  the  same  time,  it
enriches  the  concept  of  networked  knowledge  and  provides
the  possibility  to  discover  new  knowledge.  More  details  are
stated in Section III.  

C.  Deep Learning Technologies for Networked Knowledge
Numerous engineering problems are involved in networked

knowledge,  including  anomaly  detection  in  semantic
networks, dispatching in power networks, etc. However, with
the  increase  of  network  scale  and  knowledge  types,  the
complexity  of  engineering  problems  also  increases.  As  a
result,  DL  technologies  could  be  applied  to  solve  complex
engineering  problems  effectively.  In  order  to  better  illustrate
this  point  of  view,  DL  technologies  are  first  introduced  in
detail.

With  the  rapid  development  of  computers,  sensors,  and
storage  technology,  the  trend  of  data  expansion  has  been
increasing. If human learning is the process of gaining a skill
via  observation,  machine  learning  is  the  act  of  reproducing
this  process  using  computers  [108].  Machine  learning  occu-
pies  an  important  position  in  the  early  stages  of  artificial
intelligence  (AI)  development,  which  is  considered  as  a
fundamental way for computers to have intelligence [109]. As
one of the machine learning research topics, DL aims to study
how  to  automatically  extract  multi-layer  feature  represent-
ations from data. And the core idea of DL is using a series of
non-linear  transformations  through  a  data-driven  approach  to
extract  features  from raw data  [14].  NNs  are  the  cornerstone
of DL and have gone through three significant ups and downs
in their evolution.

In  the  following,  the  history  is  briefly  reviewed,  and
classical  models  of  DL  are  presented.  Also,  the  basic
principles  of  the  models  and  the  corresponding  variants  are
introduced.

1) Brief History: In 1943, inspired by the working mode of
biological  neurons,  McCulloch  and  Pitts  proposed  the
mathematical  model  of  neurons  [110].  In  1949,  Hebb  intro-
duced  the  idea  that  the  strength  of  connections  on  neurons
could  be  adjusted  by  training  [111].  Then,  a  seminar  at
Dartmouth  in  the  summer  of  1956  initiated  research  into  AI,
which  focused  on  symbolism  and  intellectual  computing.  In
the  following  period,  classical  AI  was  developing  rapidly
[112].  However,  as the ANNs were still  in their  early stages,
the perceptron model at that time had only one layer. In 1969,
Minsky  and  Papert  pointed  out  that  single-layer  perceptrons
could  not  handle  linearly  inseparable  problems,  and  it  could
not  map  models  directly  to  the  real  world  according  to  the
“black  box” principle  [113].  Up  to  that  point,  researches  on
ANNs  had  entered  its  first  lull.  However,  this  attempt  has
opened  the  way  for  researchers  to  explore  machine  learning
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based on symbolic induction and integrated machine learning.
The term ANNs came into widespread use in the 1980s and

soon  became  known  simply  as  the  NN.  In  1982,  Hopfield
proposed a NN model with a complete theoretical foundation
[15].  In  1986,  the  back  propagation  (BP)  algorithm  was
applied  to  train  NNs,  which  addressed  the  problem  that  the
multilayer perceptron (MLP) could not solve [16].  Then, NN
had a non-linear representation, and the MLP that trained with
the  BP  algorithm  became  the  most  successful  NN  model.  In
the same period, Kohonen developed the self-organizing map
competition  learning  NN  model  [114].  Meanwhile,
unsupervised learning models such as the restrictive Boltzman
machine  (RBM)  were  also  introduced  during  that  period
[115].  These  approaches  work  effectively  for  many  pattern
recognition  applications,  resulting  in  a  significant  increase  in
NN research.

However,  there  are  many problems with  the  NN approach.
For  example,  although  MLPs  have  a  very  strong  non-linear
representation, they also have a large number of local extrema
in  the  parameter  solution  space.  That  is  to  say,  the  training
with  gradient  descent  can  easily  produce  a  poor  local
minimum,  resulting  in  poor  generalization  of  MLPs  to  many
problems. In addition, NNs have many layers, which make the
model  is  trained  slowly  because  of  the  hardware  limitations
and the problem of gradient dissipation, resulting in very slow
corrections  to  the  weights  of  the  deeper  layers,  so  that  only
two- or three-layer NNs are used.

In  2006,  Hinton  and  Salakhutdinov  proposed  a  deep  belief
network  and  RBM  training  algorithm  [116],  which  were
applied to the recognition of handwritten characters with good
results.  Meanwhile,  Hinton  introduced  a  twofold  method  to
effectively solve the problem of deep neural networks (DNNs)
learning:  1)  The  unsupervised  learning  method  is  used  to
initialize  the  parameters  layer  by  layer;  2)  The  supervised
learning method is used to fine-tune the training method of the
whole  network.  From  then  on,  the  research  on  DNNs
flourished  and  was  generalized  to  DL.  Many  training
techniques  of  DL  have  been  proposed,  such  as  initialization
methods for parameters, new activation functions, and dropout
training  methods  [117]–[119],  which  address  the  issues  of
overfitting and training challenges.

In  the  2012  ImageNet  competition,  Krizhevsky et  al. used
CNNs to improve accuracy by 10% [120], which significantly
outperformed hand-designed features and shallow models for
the first time. In 2015, Google’s DeepMind AlphaGo used DL

to  defeat  the  European  Go  champion  in  a  Go  tournament
[121],  making  DL increasingly  influential.  The  current  surge
in DL has been described as the third boom in AI. Since then,
machine  learning  has  entered  a  period  of  rapid  development.
During  this  phase,  excellent  algorithms  continue  to  emerge
[122],  driving  advances  in  speech  recognition,  image
processing, and NLP.

2)  Convolutional  Neural  Networks: In  1962,  Hubel  and
Wiesel found that neurons with local sensitivity and direction
selection had a unique network structure through the study of
cat visual cortex cells [123]. Thus, they proposed the concept
of the receptive field, that is, cells in the visual cortex have a
complex structure. These cells are very sensitive to subregions
of  the  visual  input  space.  In  1983,  Japanese  scholar
Fukushima proposed the recognition based on the concept  of
the receptive field [124], which was the first application of the
concept in the field of ANNs. In 1998, LeCun et al. designed
a  CNN  for  processing  images  and  used  it  for  image
recognition  with  good  results  [17].  Consequently,  CNNs  are
frequently the primary option for computer vision. In addition
to  discriminative  models  such  as  image  recognition,  CNNs
can  also  be  used  for  generative  models  such  as  image
deconvolution  to  make blurred  images  clearer.  And,  they are
also  used  in  other  fields  like  NLP  and  drug  discovery  [18].
CNNs usually  consist  of  convolutional  layers,  pooling  layers
and fully connected layers with output layers. In this structure,
the  convolutional  layers  are  used  to  extract  features,  and  the
convolutional  and  downsampling  layers  can  be  set  up  in  the
model  with  multiple  layers.  For  an  image  as  input,  a
convolutional  layer  contains  multiple  convolutional  kernels,
each  of  which  can  be  calculated  with  the  input  image  to
produce a new image.  And each pixel  on the new image is  a
feature  of  the  image  in  a  small  area  covered  by  the
convolutional kernels.  In this way, different kinds of features
can  be  extracted  by  calculating  the  image  with  multiple
convolutional kernels. The structure of the basic CNN can be
seen in Fig. 3. Unlike other NNs, the neurons in each feature
extraction layer of a CNN are not connected to all the neurons
in  the  adjacent  layers.  Instead,  they  are  only  connected  to  a
fixed  size.  Meanwhile,  the  convolution  kernel  is  scanned
sequentially  over  the  input  image,  and  the  area  where  it
overlaps the image is called the local receptive field.

The most important idea behind convolutional layer design
is  local  connectivity  and  weight  sharing.  Local  connectivity
means that each pixel of the output feature map is associated
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Fig. 3.     The basic structure of CNNs.
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with only a small  region of the previous layer’s feature map.
And weight sharing means that the same convolutional kernel
is used each time to traverse the entire input image, which can
greatly  reduce  the  number  of  parameters.  Compared  to  the
MLP, the reduction in the number of connections reduces the
training  time  and  the  possibility  of  overfitting.  Also,  all
neurons  in  a  filter  are  connected  to  the  same  number  of
neurons  in  the  previous  input  layer,  and they are  constrained
to  have  the  same  sequence  of  weights  and  biases.  These
factors speed up the learning process and reduce the memory
requirements  for  the  model.  Since  the  subsampling  layer  can
reduce  the  size  of  the  network,  Deep  CNNs  can  be
implemented by sharing convolutional layers and subsampling
layers.  Although  local  architectures  of  CNNs  are  quite
effective,  applying them to high-resolution images at  scale is
still extremely expensive. AlexNet is constructed to propose a
highly optimized 2D convolutional  GPU implementation that
improves the performance of the NN and reduces the training
time  [120].  Meanwhile,  ResNet,  developed  by  Microsoft
[125], is a very deep residual network which takes first place
in  the  2015  ILSVRC  ImageNet  dataset  competition.  Then,
VGG is introduced as a very deep CNN developed for large-
scale  image  recognition  [126].  Those  improved  models  have
promoted the application of NNs in the field of images to an
unprecedented speed and accuracy.

3)  Long  Short-Term  Memory  Neural  Network: RNNs  not
only consider the previous input,  but  also give the network a
memory  function  for  the  previous  content,  which  means  the
current  output  of  a  sequence  is  also  related  to  the  previous
output.  Specifically,  the  network  can  remember  the  previous
information  and  apply  it  to  the  calculation  of  the  current
output. In another word, the nodes between the hidden layers
are  no  longer  separated  but  connected,  and  the  input  of  the
hidden  layers  not  only  includes  the  input  layer  but  also
includes  the  output  of  the  hidden  layer  at  the  previous
moment.  RNNs  are  widely  used  to  analyze  sequential  data,
such  as  speech  recognition,  language  translation,  natural
language understanding, music synthesis, etc.

f (t) i(t) g(t) o(t)
h(t) s(t)

After  years  of  development,  a  large  number  of  improved
models  based  on  RNNs  have  been  proposed  by  researchers.
The  long  short-term  memory  (LSTM)  neural  network  is  an
implementation  of  RNNs,  which  is  first  proposed  by
Hochreiter  and Schmidhuber [127].  It  is  still  one of the most
popular forms of RNNs and its important elements consist of
four  basic  computing  units , , , ,  hidden  state

 and  cell  state .  The  specific  expressions  are  shown
below:
 

f (t) = σ[Wx f x(t)+Wh f h(t−1)+B f ] (1a)
 

i(t) = σ[Wxix(t)+Whih(t−1)+Bi] (1b)
 

g(t) = tanh[Wxgx(t)+Whgh(t−1)+Bg] (1c)
 

o(t) = σ[Wxox(t)+Whoh(t−1)+Bo] (1d)
 

h(t) = tanh[s(t)]◦o(t) (1e)
 

s(t) = f (t)◦ s(t−1)+ i(t)◦g(t) (1f)
Wx f Wh f Wxi Whi Wxg Whgwhere  the  parameters , , , , , ,

Wxo Who
B f Bi Bg Bo

◦
tanh

h(t)

 and  are  weight  matrices  for  the  NN.  Parameters
, ,  and  are called basics, which are decimals. They

are also the important parameters of the NN. The NN with the
basics has more complex parameter structure and better fitting
abilities.  All  of  parameters  are  updated  by  BP.  Symbol 
represents  the  element-wise  multiplication. σ and  stand
for  sigmoid and tanh activation function.  can be  used as
the input to next layer of NN.

When the gradients are passed on the network, the values of
gradients  should  be  kept  within  a  reasonable  interval.  Too
large or small gradient results in a bigger training difficulty. If
the gradient is less than 1, the weight on the tail of the model
is close to 0, which is called gradient descent. On the contrary,
while the gradient is greater than 1, the weight can be a very
large  number  by  constant  accumulation,  called  gradient
explosion.  This  is  the  reason  why  ordinary  RNNs  cannot
recall  the  long-time  memory.  Compared  with  RNNs,  the
gradient  dissipation  phenomenon  in  LSTM  is  mitigated,  and
improvements  are  made  in  both  unit  structure  and
optimization.  To  solve  those  problems  of  RNNs,  three  more
controllers  are  set  in  LSTM,  which  are  called  input  control,
output control and forget control. Those controllers are also be
called  gates.  And  there  is  one  more  control  for  global
memory.  In  terms  of  the  unit  structure,  LSTM  consists  of
memory  cell  status  blocks,  and  signals  flow  through  those
blocks,  which  can  be  regulated  by  input,  forget,  and  output
gates. These gates control what is stored, read and written on
the cell. LSTM adds additional implicit states to remember the
information of the sequence. Meanwhile, three gates are used
to  control  the  effect  of  the  current  moment’s  input  on  the
memory. The structure of a unit in LSTM is shown in Fig. 4.
With  this  modification,  the  memory  can  pass  more  smoothly
through  the  time  series  and  remember  the  information  from
long  ago.  Recently,  a  kind  of  distributed  LSTM  has  been
provided and deployed on the Internet of Things environment
in  [128]  to  handle  the  large-scale  spatiotemporal  correlation
regression tasks.

4)  Generative  Adversarial  Networks  (GANs): In  2014,
Goodfellow et al. proposed a game-theoretic-based generative
model,  the  GANs  [24].  It  uses  two  NNs  for  adversarial
 

s(t)

h(t)

s(t−1)

x(t)

tanh

tanh

h(t−1)

h(t)

σ σ σ

 
Fig. 4.     The structure of a unit in LSTM.
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training and updates the network weights by backpropagation.
This  model  has  attracted  the  attention  of  researchers  in  the
field  of  NNs and  has  been  studied  and  improved extensively
since  its  introduction.  GANs  consist  of  Generators  (G)  and
Discriminators  (D).  The  generation  model  is  a  NN  model
whose  input  is  a  set  of  random  numbers Z and  output  is  an
image,  which  is  mainly  responsible  for  faking.  By  inputting
random  variables,  realistic  pseudo-samples  are  generated  to
deceive  the  discriminant  model.  The  discriminant  model  is
also a simple NN. It is used to judge the authenticity of input
samples.  When  the  data  is  recognized  as  coming  from  real
data,  the  network’s  output  is  close  to  1,  and  when  it  comes
from the original generated data, the network’s output is close
to  0.  The  purpose  of  generating  models  and  adversarial
models  is  adversarial.  The  generation  model  to  fake  aims  to
make  the  discriminant  model  can  not  distinguish  their  own
data  while  the  purpose  of  the  discriminant  model  is  to
distinguish the fake data. The main idea of the basic model of
GANs is to make the two NNs continuously playing games, in
which the model gradually learns the real sample distribution.
In  general,  the  training  is  considered  complete  when the  two
networks  reach  Nash  equilibrium. Fig. 5 shows  the  basic
model of GANs.
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Fig. 5.     The basic structure of GANs.
 

5)  Relationship  between  DL  and  Networked  Konwledge:
The  goal  of  networked  knowledge  is  the  creation  of  new
knowledge  through  the  interaction  and  complementation  of
network  systems  as  its  components.  In  addition,  networked
knowledge is generated by the cross-fusion of network science
and  knowledge  science.  Therefore,  the  field  of  networked
knowledge encompasses not only the basic theory of complex
networks,  but  also  the  process  of  knowledge  representation,
computation, acquisition and service.

DL  can  deal  with  the  process  of  knowledge  extraction,
analysis and prediction in networked knowledge. Specifically,

DL  can  solve  complex  engineering  problems  in  networked
knowledge,  such  as  image  classification,  target  detection,
scenario markup, NLP, and sample generation. Naturally, DL
has  made  outstanding  achievements  in  these  fields.  For
example,  the  AlexNet  network  proposed  by  Krizhevsky
achieved  excellent  results  in  image  classification  with  its
strong feature learning abilities, and it won the championship
in  the  ImageNet  large  scale  visual  recognition  challenge
(ILSVRC) competition in 2012 [120]. R-CNNs could be used
for  target  detection  [129].  In  essence,  it  is  a  kind  of  detector
based on region. First, it fixed the size of the region, and then
the features are extracted with trained CNNs, and finally, the
multi-value classifier is used for detection. Farabet et al. [130]
applied  a  multi-scale  ConvNet  network to  the  scene  marking
task,  which  reduced  the  time  of  training  parameters  and
improved the system performance. LSTM neural network is a
kind  of  NN  specialized  in  processing  time  series,  which  can
effectively  solve  the  problems  of  gradient  extinction  and
gradient  explosion,  and  has  been  widely  used  in  NLP  [131].
The  align-DRAW  model  [132]  is  composed  of  two  RNN,
proposed by Mansimov, which automatically generates image
samples by generating antagonism.  

D.  Networked Knowledge in Form of Networked Software
Networked  software  can  be  regarded  as  the  concentration

and crystallization of  networked knowledge.  In  this  regard,  a
brief summary of networked software research, which is given
as a subset of networked knowledge in this paper, is provided.
Historically,  it  was  Valverde et  al. who  have  introduced
complex  network  methodology  in  the  study  of  networked
software  topology  [133].  According  to  Valverde’s  observ-
ation,  the  power  exponent  of  the  network  formed  by  JDK
(Java development kit 1.2)’s 9257 classes is 2.59. The average
node-node  path  length  of  its  largest  subnet  is  6.2.  The
networked software’s complex network phenomena of “scale-
free” and “small world” have been also discussed in [134]. It
was  also  pointed  out  by  He et  al.,  that  software  systems,
especially  those  in  large  scale,  are  kinds  of  artificially
designed  complex  systems,  and  the  structure  of  software  can
be seen as a kind of complex network topology [135].

People  have  also  discussed  the  reason  why  networked
software  functions  display  complex  network  properties.  A
common answer to this question relates to the way software is
traditionally compiled and applied. As a result, the more often
reused  software  becomes  favored  network  hub  nodes.
Moreover,  due  to  the  same  reason,  people  detected  that  in
software  networks  the  in-degree  of  such  software  is  usually
higher than its out-degree [134]. Another reason leading to the
complex  network  topology  of  software  is  its  development
methodology.  This  is  in  particular  obvious  in  the  use  of
software  design  methodology,  where  the  software  design
patterns  play  a  significant  role.  In  the  object  oriented  case,
usually, the classes form the nodes and the call relations form
the  edges  of  networks  with  scale-free  and  small-world
properties  [136].  On  the  other  hand,  Valverde  and  Sole
considered  both  classes  and  methods  as  nodes  of  complex
networks and obtained similar results [137].

GitHub  is  the  best-known  platform  for  (open-source  or
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private)  software  projects  social  coding  [138].  Starting  from
2008,  GitHub  supports  now  more  than  3  million  users.  It
provides a  good opportunity for  testing the complex network
property of networked software. Reference [139] investigated
the network consisting of  100 000 randomly selected GitHub
software projects with 1 161 522 edges and 30 000 developers
denoting  project-project  connections,  where  two  projects  are
connected if they share at least one developer, and found that
the average shortest path length between two arbitrary projects
is 3.7.

Another  framework  of  networked  software,  the  concept  of
internetware, was proposed at the beginning of this century as
a new paradigm of Web-based software development [140]. It
has  attracted  researchers’ attention  for  roughly  20  years.
Different  from  the  traditional  paradigm  of  top-down  style
software  development  such  as  the  waterfall  paradigm,  the
internetware  paradigm  is  bottom-up.  While  traditionally  the
software  is  built  by  a  team,  the  internetware  is  built  and
maintained  by  all  programmers  working  on  the  Web.  All
previously developed software are kept for later new software
development.  They  are  dissolved  in  small  parts  called
software  entities.  All  these  entities  together  with  necessary
specifications are called software assets and stored on a Web
reservoir.  Given  these  software  assets,  new  software  is  built
either  upon  request  or  automatically.  This  process  is  called
software  emergence.  Recently  a  special  forum  for  interne-
tware has been held to present the recent results [141]. Fig. 6
shows  the  principle  of  internetware,  where  the  emergence
model  is  compared  against  the  traditional  waterfall  model  of
software  development.  All  software  assets  in  the  Web
reservoir form a huge network which is the internetware. The
emergence process absorbs software assets from this network,
generates new software, and stores new software assets in the
same  network.  Note  that  this  process  is  very  similar  to  the
process  of  paper  publication  and  referencing.  It  is  highly
plausible that the internetware forms a complex network. The
authors  of  [142]  mentioned  this  idea  but  without  providing

experiments data.
For  more  information  on  early  research  about  networked

software see [135].  

III.  Networked Knowledge and Potential Applications

The information explosion has  brought  about  big data,  and
the  concept  of “big  knowledge” has  been  proposed  in
response  to  the  challenges  of  big  data.  In  [25],  the  authors
proposed a definition of big knowledge as a large collection of
structured knowledge elements and introduced its ten massive
characteristics.  Further,  big  knowledge  systems  and  big
knowledge engineering were discussed. The weights of five of
the ten massive features of big knowledge are investigated in
[143].  MC2  in  [25],  that  is  the  Massive  connectedness,
considers the degree of interconnectedness of knowledge. The
two  measures  proposed  therein  coincide  with  the  degree  and
average  degree  in  network  science  well.  The  topology  of
interconnected  knowledge  has  been  noted  in  [25]  to  play  an
extremely  important  role  in  characterizing  big  knowledge
more  comprehensively.  The  results  in  [26]  found  that  the
shortest  distance  between  semantics  can  well  portray  the
similarity  between  semantics,  revealing  that  the  topology  of
semantic  networks  has  an  important  role  in  portraying  the
relationships  between  knowledge.  But,  the  important  role  of
the network structure of knowledge linkage is still not directly
proposed.

Here,  a  framework,  called  networked  knowledge,  is
proposed,  which  is  expected  to  study  the  new  knowledge
emerges from the aggregation of individual knowledge that is
significantly  different  from  individual  knowledge.  Taking
knowledge as a component (node) and network as a coupling
carrier,  networked knowledge focuses on the new knowledge
emerging through the interaction and complementarity among
knowledge.  The  words  networked  knowledge  is  not
completely  new,  which  has  been  mentioned  in  [144]–[146].
By modeling students’ thematically associated knowledge as a
knowledge  network,  the  structural  features  of  this  network,
such  as  degree,  eigenvectors  and  mediator  centrality  were
investigated  from  network  science  perspectives  [144].  The
importance  of  realizing  networked  knowledge  was  found  in
[145], which presents a forward-looking view that networking
knowledge  can  create  a  new  kind  of  knowledge  that  will  be
much  more  valuable  than  the  synthesis  of  individual
knowledge.  Here,  networked knowledge was defined as Web
+  Semantics,  which  uses  the  Web  as  a  bearer  medium  to
facilitate the dissemination of information globally. Similar to
the  idea  of  [145],  a  form  of  networked  knowledge  was
discussed  in  [146],  that  is  digital  library.  Its  main  idea  is  to
organize  and  disseminate  knowledge  through  the  Web.
However,  the  definitions  of  networked  knowledge  in  the
above literature have limitations, while the networked knowl-
edge defined in this paper is fundamentally different from the
one proposed in previous literature.

In our framework, the meaning of knowledge is broad in the
sense  that  it  can  be  any  information  elements  such  as  con-
cepts,  entities,  data,  and  even software  that  can  be  processed
by  computers.  The  network  structure  (rather  than  Web)
represents the abstract relationship between knowledge, which

 

Internetware

Waterfall model

Software planning

Requirement analysis

System specification

Software coding

Software testing

Software maintenance Software assets

Component forming

Structure building

Function coordinate

Trustworthiness assurance

Software delivering

Emergence model

 
Fig. 6.     The emergence of networked software.
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can  be  reciprocal  or  antagonistic.  The  emergence  of  networ-
ked  knowledge  is  based  on  the  development  of  complex
networks  and  knowledge  engineering,  where  AI  is  the  main
tool  for  processing  data  (as  shown  in Fig. 7).  There  are
already  solid  theories  and  technologies  for  the  study  of  net-
worked  knowledge,  for  example,  node  correlation  analysis,
community  discovery,  self-organized  evolution,  etc.  Com-
pared  with  traditional  knowledge  engineering,  networked
knowledge  is  based  on  the  rapid  development  of  complex
networks, and with the help of its theories and technologies, it
can  promote  the  further  development  of  knowledge  engin-
eering. Possible research topics will be discussed in Section IV.
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Fig. 7.     The emergence of networked knowledge.
 

In  traditional  knowledge  engineering,  the  focus  is  more  on
the knowledge or attributes themselves, and a large amount of
research  has  focused  on  how  to  design  algorithms  that  can
better  capture  knowledge  (entities  and  relationships)  from
materials  such  as  texts,  images  or  videos.  Networked  know-
ledge does not focus on how to acquire knowledge, rather on
the  unique  knowledge  that  emerges  through  interaction  in
networks,  such  as  the  structural  characteristics  of  the  netw-
orked  knowledge  and  new  characteristics  of  nodes  and
relations  under  the  networked  structure.  At  the  level  of  the
overall nature of the network, it is unknown whether there are
modalities,  community structures,  small-world properties  and
scale-free  properties  of  networked  knowledge.  For  the
relationship between knowledge, the basic problem is how to
define  and  find  the  relation  between  knowledge,  such  as
similarity  and  the  closeness  of  the  relationship  between
knowledge.  The  two  measures  in  MC2  [25]  are  an  example,
which measures the relation between knowledge from the perspe-
ctive of network structure.

Networked knowledge is not a completely new concept, and
some  approaches  from  network  science  have  already  been
applied in existing research on knowledge engineering. In the
following,  we  will  review  the  applications  of  networked
knowledge on biological networks, semantic networks, social
networks, and power networks.  

A.  Applications in Biological Networks
Humans  have  long  suffered  from  diseases,  among  which

congenital given diseases are particularly difficult to treat. The
construction  of  a  gene  knowledge  graph  can  help  medical
professionals  understand  the  genetic-level  causes  of  the
emergence  of  congenital  diseases,  which  can  further  help

reduce  and  treat  congenital  diseases.  The  knowledge  base  of
gene  functions  constructed  in  [28]  is  structured  and  compu-
table, containing a large number of entities and relationships.
Unlike the protein knowledge base provided separately in [27]
and the gene function knowledge graph in [28], the authors of
[63] constructed a multi-layered yet heterogeneous molecular
network  of  gene-protein-metabolites  where  the  robustness  of
the  heterogeneous  network  is  also  analyzed.  In  addition,  the
defined  importance  scores  therein  enable  better  discovery  of
important  genes.  Furthermore,  a  systematic  Gene  Ontology
Annotation  method  was  proposed  in  [147]  for  Regulatory
Elements  by  leveraging  the  powerful  word  embedding  in
NLP, where a framework of assemblying heterogeneous biolo-
gical  networks  and  generating  knowledge  graph  as  resources
for biologist was also suggested.

The side effects of drugs have been a medical challenge and
knowledge engineering is  also helpful  to  identify and predict
the  side  effects  of  drugs  [29],  [30].  In  [148],  knowledge
graphs are used to provide a unified representation of hetero-
geneous  data  and  present  a  machine-readable  interconnected
representation  of  biomedical  knowledge.  Adverse  drug
reaction prediction is  then accomplished by using knowledge
graphs.  In  [29],  [30],  the  problem  of  predicting  multi-drug
side  effects  was  studied using multi-relationship  mapping.  In
particular,  link  prediction  methods  based  on  CNNs  were
shown  to  have  good  accuracy  [29],  [31].  For  example,  the
prediction  of  multidrug  side  effects,  drug  target  proteins  and
drug  interactions  was  performed  using  linkage  prediction
techniques [29].  

B.  Applications in Semantic Networks
A  semantic  network  is  a  structured  way  of  graphically

representing knowledge and can be seen as a typical complex
network [149], [150]. Taking concepts as nodes and semantic
relationships as edges, a semantic network can be represented
intuitively. Due to the huge amount of information in the real
world,  manual  input  of  semantics  and  the  relationships  bet-
ween them is unrealistic. An approach based on domain know-
ledge graph was proposed to annotate semantics automatically
in  [33]  to  quickly  search,  understand  and  analyze  massive
network document resources. For the increasing importance of
enterprise  knowledge  graphs,  the  authors  discussed  two
methods  for  constructing  semantic  networks  in  [151].  The
method  in  [152]  combined  DL  and  knowledge  graph  to
present  the  semantic  centered  method  for  video  anomaly
detection  which  can  detect  anomaly  more  accurately.
Motivated  by  the  demand  of  capturing  richer  text  content,
concept  frame  graphs  were  proposed  to  discover  knowledge
from  text  [153].  By  using  information  content  to  weight  the
shortest path length between concepts, the method proposed in
[26]  can  better  portray  the  similarity  between  semantics
compared  to  other  methods.  The  advantages  of  semantic
networks  in  processing  big  data  are  fully  systemized  when
analyzing the information, which provides a powerful help to
curb  the  COVID-19  [34].  Combining  knowledge  base  and
semantic  web  services,  a  flexible  business  process  manage-
ment  system  was  designed  to  provide  support  for  various
dynamic business processes and their continual improvements
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[154].  The  semantic  network  is  far  from  receiving  enough
attention  as  an  intuitive  representation  of  human  knowledge.
For  example,  how  existing  words  derive  new  meanings  and
how  a  new  word  emerges.  Analyzing  and  studying  the
evolutionary  dynamics  of  the  semantic  network  and  paying
attention  to  the  emergence  of  human  wisdom  is  extremely
important  for  understanding  the  evolution  of  human  civiliza-
tion,  which is  one of  the issues to be studied in the future of
networked knowledge.  

C.  Applications in Social Networks
The social  network is a social  structure composed of many

nodes, which usually refer to individuals or organizations. To
be  specific,  social  networks  represent  a  variety  of  social
relationships,  through  which  various  people  or  organizations
are connected from casual acquaintances to tightly knit family
relationships.  Knowledge  graphs  are  widely  used  in  social
networks  because  various  relationships  and  attributes  can  be
regarded as  knowledge.  For  example,  to  infer  linkages in the
linked  data  of  online  social  networks,  a  knowledge  graph-
based  architecture  was  developed,  which  offers  acceptable
digital  evidence  in  court  and  assists  criminal  investigators  in
their  investigations  [35].  A  real-time  online  streaming  data
learning approach may be generated by embedding relational
fractals  online  social  networks  into  a  knowledge graph.  As  a
result, devices can enhance computational efficiency by using
limited resources [155]. In [36], a knowledge graph was used
to carry out  de-anonymization and inference attacks in social
networks, and legitimate users’ privacy will be more likely to
be  taken by  malevolent  attackers.  To decrease  risks  in  social
networks,  an  assessing  trust  mechanism based  on  knowledge
graphs  was  suggested,  which  detects  honest  and  dishonest
members in social networks [37]. A knowledge graph is built
to improve NLP in social networks, and the proposed method
could be applied to more than 20 products at LinkedIn [156].
A knowledge graphs was used to construct a Hybrid Louvain-
Clustering  model  of  social  networks  in  [157],  then,  user
behaviors  in  a  social  network  can  be  classified  efficiently.  A
system called GeoTeGra is used to generate knowledge graphs
based  on  social  network  data,  which  could  deal  with
geographical  and  temporal  information  effectively.  Further-
more, the system can be effectively compatible with different
machine  learning  algorithms  [158].  In  [38],  a  novel  news
recommendation  model  was  constructed  through  social
networks  and  knowledge  graphs.  Moreover,  a  random  walk
sampling strategy was adopted to improve the effect  of news
recommendations. Similarly, in [39], a novel recommendation
method  is  implemented  by  combining  social  networks  and
knowledge  graphs,  and  the  proposed  method  was  used  to
solve  the  problem  of  recommending  attendees  and  topic-
related  content  at  the  same  time.  A  particular  model  is
obtained by combining a knowledge graph and a CNN, which
is  used  to  extract  serviceable  information  in  the  social  graph
of social networks. As a result, the node classification effect is
improved [159].

Fake news in social platforms has been shown to be able to
cause  global  bad  effects.  Thus,  it  is  urgent  to  identify  fake
news.  Recently,  some studies  have successfully  implemented

knowledge graph-based false news identification [160], [161].
They decompose news into the form of an entity-relationship-
entity triad, embed this triad into the original knowledge graph
by  the  knowledge  graph  embedding  technique,  and  discri-
minate  fake  news  based  on  this  new  knowledge  graph.
However,  how  to  use  networked  knowledge  to  analyze  the
authenticity of information remains to be studied.  

D.  Applications in Power Networks
Power  networks  include  the  process  of  energy  production,

transmission and consumption. Through advanced sensing and
measurement  technologies,  advanced  equipment  technologies
and  advanced  control  methods,  power  networks  are  reliable,
safe,  economical,  efficient  and  environmentally  friendly.  Not
only  because  the  power  networks  contain  multiple  network
nodes, but also the data and equipment in the power networks
can be abstracted as knowledge,  so numerous applications of
knowledge  graphs  can  be  found  in  power  networks.  More
specifically,  a  knowledge  graph-based  approach  was  utilized
to visually evaluate and mine data in a power network in order
to  truly  sense  the  internal  functioning  status  of  the  power
network [83]. By merging knowledge graphs and graph neural
networks  (GNNs),  a  novel  topology  identification  of  power
networks  was  suggested,  which  has  been  tested  in  an  IEEE-
188 system with positive results [40]. A graph search method
based  on  constructed  knowledge  graph  was  proposed,  which
was  applied  to  the  accurate  information  retrieval  of  power
equipment in power networks, so as to improve the efficiency
of power equipment management [41]. In [162], a knowledge
graph was used to the semi-automation effect of equipment in
power  networks,  thus  greatly  improving  the  daily  operation
efficiency  of  equipment  in  power  networks.  Innovative
dispatching  of  power  networks  based  on  knowledge  graphs
was  proposed,  which  is  proved  to  be  effective  through  an
experiment  on  power  grid  [163].  Similarly,  a  power  grid
dispatching  method  based  on  GNNs and  knowledge  graph  is
proposed in [42]. In order to solve the problems of insufficient
cross-service  information  sharing  and  insufficient  utilization
of  power  networks,  an  idea  of  knowledge  graphs  of  power
system  full-service  data  was  proposed,  and  the  effectiveness
of  the  proposed  method  was  demonstrated  by  experimental
simulations  [164].  In  [165],  a  knowledge  graph-based
intelligent  auxiliary  operation  and  maintenance  system  for
power networks was conceived and built,  which significantly
decreases the problem hit percentage and the problem reaction
time.  In  [43],  a  knowledge  graph  was  applied  to  educational
resource  management  in  power  networks,  the  proposed
method was proved to be effective in the search and analysis
of  educational  resource  management  by  experimental  simu-
lation.  

E.  Other Applications
Let  us  first  explore  the  topology  characterizing  of  the

networked  knowledge.  Traditional  researches  on  knowledge
engineering  focuses  more  on  the  knowledge  itself  or  the
relationships  between  knowledge,  while  less  on  the  global
structure  of  knowledge  connections.  Organizing  knowledge
into  networks  leads  to  the  ability  of  obtaining the  interaction
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topology  of  the  networked  knowledge.  Wikipedia  is  a  large
and  valuable  existing  knowledge  base,  and  it  is  a  good
representative  example  to  study  the  networked  knowledge
[166]–[168].  The  results  in  [167]  found  that  networking
knowledge  in  Wikipedia  under  different  languages,  the
constructed  networked  knowledge  was  found  to  have  scale-
free  properties.  Similarly,  the  results  of  the  literature  [168]
showed that the networked knowledge constituted by the four
topics Biology, Medicine, Mathematics and Physics has scale-
free properties.

Knowledge  exploration  in  complex  networks  has  received
some  attention  and  results  [169]–[172].  By  regarding  each
knowledge as a node and the connections between knowledge
as  edges,  the  authors  of  [169]  represented  knowledge and its
connections  as  a  complex  network  on  a  multilayer  topology,
then modeling the knowledge discovery process  as  a  random
wandering  process.  Memory  was  incorporated  into  explora-
tion  dynamics  and  a  self-avoiding  walk  was  implemented  to
avoid passing through already visited nodes by introducing a
random flight [170]. A centralized way to acquire knowledge
throughout  the  network  was  considered  in  [171],  where  the
existence of a center called the network brain could assemble
and store  all  the  acquired knowledge.  The learning curves  of
sequences obtained from four random walk dynamics and four
network  models  with  different  topologies  were  analyzed,
providing  an  in-depth  analysis  of  the  impact  of  network
topology  and  random  walk  dynamics  on  the  knowledge
acquisition process [172].

In  addition,  it  has  been  shown  that  text  knowledge  and
human language can also be represented by complex networks
and  such  representations  could  provide  holistic  information
[173]–[177].  Such  a  modeling  approach  will  facilitate  the
authorship  attribution  where  the  author  of  the  text  can  be
identified  from  distinguishing  the  writing  style  of  a  book
[174].  Within  this  context,  a  generalized  similarity  measure
was  suggested  in  [177]  to  compare  texts  which  accounts  for
both the  network structure  of  texts  and the role  of  individual
words  in  the  networks  and  was  further  employed  to  yield  a
high-accuracy authorship attribution algorithm.  

IV.  Research Challenges and Future Trends

Due to the rise  of  a  large number of  emerging information
technologies,  traditional  knowledge  engineering  and  the
current  form of  knowledge representation has  lagged behind,
and the traditional forms of knowledge representation, storage
and dissemination are no longer adapted to the present time in
the context of big data. Big knowledge was proposed early to
deal with the challenges brought by big data [25], but there is
still  relatively  little  research.  On  the  one  hand,  it  is  because
the  volume  of  data  is  growing  at  an  explosive  rate,  and  the
difficulty of acquiring complete data has risen sharply. On the
other  hand,  traditional  knowledge  engineering  techniques
have lagged behind,  and new theoretical  techniques  have not
yet been developed. Networked knowledge is proposed as an
evolution  of  traditional  knowledge  engineering  to  better  deal
with new problems in the era of big data.

In  biomolecular  networks,  networked  knowledge  techno-
logy  has  a  wide  range  of  potential  applications  [63].  Due  to

the complexity of gene expression, the etiology of congenital
diseases  has  been  a  major  challenge  for  the  medical
community.  The  etiology  of  congenital  diseases  is  closely
related to biomolecular networks,  and biomolecular networks
contains  many  different  layers  and  different  organizational
forms  in  biological  systems,  including  gene  transcription
regulation network, biological metabolism and signal transdu-
ction  network,  protein  interaction  network.  These  networks
are  made  up  of  large  molecules  such  as  genes  and  proteins.
Therefore,  the  systematic  and  comprehensive  study  of
biological  macromolecules  and  their  interactions  has  become
an  important  direction  of  biological  research,  which  has
important  theoretical  significance  and  practical  value  for
disease research, new drug development, the origin of life and
many  other  research  fields.  Based  on  networked  knowledge
technology, knowledge can be extracted according to different
data characteristics of biological macromolecules, and special
network structures can be formed through the data interaction,
so  as  to  predict  biological  signal  transmission,  gene  expres-
sion  regulation,  substance  metabolism  and  cell  cycle  regul-
ation  process.  For  example,  in  the  study  of  virus  invasion  of
the human body, through the network knowledge technology,
the  host  protein  and  the  virus  protein  knowledge  extraction
operation, construct the virus-host protein network, and finally
identify the specific functional groups in some virus infections
from  the  network.  By  using  three  descriptors  of  network
topology,  functional  annotation  and  tissue  expression  profile
to  characterize  proteins,  a  method  to  predict  virus  attack
targets from a human protein-protein interaction network was
established.

Networked  knowledge  technology  can  be  well  applied  in
swarm  intelligence  technology.  With  the  advent  of  the
industry  4.0  era,  swarm  intelligence  technology  has  been
widely applied in the field of industrial production. Compared
to a single agent, swarm intelligence technology’s advantages
is that it can make the overall performance from organization,
coordination,  stability,  flexibility  and  adaptability  to  the
environment through the interaction of individual information,
such as individual detection, cognition, independent decision-
making, etc. Through the application of networked knowledge
technology,  corresponding  network  structure  and  knowledge
interaction could be better  designed to improve the ability  of
swarm intelligence to perform tasks in unknown environment,
communication interference, difficult information acquisition,
insufficient  system  capacity  and  limited  energy  supply.  For
example, when underwater agents carry out cooperative reco-
nnaissance in the ocean, there are some problems such as com-
plicated  ocean  environments,  limited  underwater  communi-
cation  and  limited  energy  supply.  Through  the  networked
knowledge  technology,  the  knowledge  of  each  agent  and  the
unmanned  system  network  could  be  obtained,  so  that  the
swarm  intelligence  has  better  autonomy,  flexibility,
extensibility and robustness.  

V.  Conclusions

The  progress  of  knowledge  engineering  has  reached  a
stumbling  block  and  is  no  longer  fit  for  today’s  high-speed
development.  To  handle  increasing  difficulties  in  knowledge
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engineering,  new  technology  is  necessary.  This  paper  begins
with  reviewing  the  evolution  and  technologies  of  complex
networks,  knowledge  graphs,  and  AI.  Then  a  framework,
networked knowledge, is proposed based on network science,
which  focuses  more  on  the  group  knowledge  that  cannot  be
represented by individuals. It is followed by a discussion of its
applications in biological networks, semantic networks, social
networks,  and  power  networks.  Finally,  the  research
challenges  and  future  trends  of  networked  knowledge  are
presented.

References

 M. Saberi, H. Hamedmoghadam, M. Ashfaq, S. A. Hosseini, Z. Gu, S.
Shafiei,  D.  J.  Nair,  V.  Dixit,  L.  Gardner,  S.  T.  Waller,  and  M.  C.
González, “A simple  contagion  process  describes  spreading  of  traffic
jams in urban networks,” Nat. Commun., vol. 11, no. 1, p. 1616, Apr.
2020.

[1]

 D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’
networks,” Nature, vol. 393, no. 6684, pp. 440–442, Jun. 1998.

[2]

 A.-L.  Barabási  and  R.  Albert, “Emergence  of  scaling  in  random
networks,” Science, vol. 286, no. 5439, pp. 509–512, Oct. 1999.

[3]

 D.  Brockmann  and  D.  Helbing, “The  hidden  geometry  of  complex,
network-driven  contagion  phenomena,” Science,  vol. 342,  no. 6164,
pp. 1337–1342, Dec. 2013.

[4]

 H.  Gu,  J.  H.  Lü,  and  Z.  Lin, “On PID control  for  synchronization  of
complex  dynamical  network  with  delayed  nodes,” Science China:
Technological Sciences, vol. 62, no. 8, pp. 1412–1422, Aug. 2019.

[5]

 D.  Guilbeault  and  D.  Centola, “Topological  measures  for  identifying
and predicting the spread of complex contagions,” Nat. Commun., vol.
12, no. 1, p. 4430, Jul. 2021.

[6]

 Y.-Y.  Liu,  J.-J.  Slotine,  and  A.-L.  Barabási, “Controllability  of  com-
plex networks,” Nature, vol. 473, no. 7346, pp. 167–173, May 2011.

[7]

 A.  Singhal, “Introducing  the  knowledge  graph:  Things,  not  strings,”
May.  2012.  [Online],  Avaiable: https://www.blog.google/products/
search/introducing-knowledge-graph-things-not/

[8]

 Y.  Chi,  Y.  Qin,  R.  Song,  and  H.  Xu, “Knowledge  graph  in  smart
education:  A  case  study  of  entrepreneurship  scientific  publication
management,” Sustainability,  vol.  10,  no.  4,  p.  995,  Mar.  2018.  DOI:
10.3390/su10040995.

[9]

 S. S. Hasan, D. Rivera, X.-C. Wu, E. B. Durbin, J. B. Christian, and G.
Tourassi, “Knowledge  graph-enabled  cancer  data  analytics,” IEEE J.
Biomed. Health Inform., vol. 24, no. 7, pp. 1952–1967, May 2020.

[10]

 D.  Xu,  C.  Ruan,  E.  Korpeoglu,  S.  Kumar,  and  K.  Achan, “Product
knowledge graph embedding for e-commerce,” in Proc. 13th Int. Conf.
Web Search and Data Mining, 2020, pp. 672–680.

[11]

 S. Bhatt, A. Sheth, V. Shalin, and J. Zhao, “Knowledge graph semantic
enhancement of input data for improving AI,” IEEE Internet Comput.,
vol. 24, no. 2, pp. 66–72, Mar. 2020.

[12]

 P. Zheng, L. Xia, C. Li, X. Li, and B. Liu, “Towards Self-X cognitive
manufacturing  network:  An  industrial  knowledge  graph-based  multi-
agent  reinforcement  learning  approach,” J. Manuf. Syst.,  vol. 61,
pp. 16–26, Oct. 2021.

[13]

 Y.  LeCun,  Y.  Bengio,  and  G.  Hinton, “Deep  learning,” Nature,
vol. 521, no. 7553, pp. 436–444, May 2015.

[14]

 J.  Hopfield, “Neural  networks  and  physical  systems  with  emergent
collective  computational  abilities,” Proceed. National Acad. Sci. USA,
vol. 79, no. 8, pp. 2554–2558, Apr. 1982.

[15]

 Y.  LeCun, Learning  Process  in  an  Asymmetric  Threshold  Network,
Berlin Heidelberg, Germany: Springer, 1986.

[16]

 Y.  LeCun,  L.  Bottou,  Y.  Bengio,  and  P.  Haffner, “Gradient-based
learning  applied  to  document  recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, Nov. 1998.

[17]

 A.  Khan,  A.  Sohail,  U.  Zahoora,  and  A.  Qureshi, “A  survey  of  the
recent  architectures  of  deep  convolutional  neural  networks,” Artif.
Intell. Rev., vol. 53, no. 8, pp. 5455–5516, Dec. 2020.

[18]

 M.  Schuster  and  K.  K.  Paliwal, “Bidirectional  recurrent  neural
networks,” IEEE Trans. Signal Proces., vol. 45, no. 11, pp. 2673–2681,
Nov. 1997.

[19]

 R.  Socher,  C.  C.-Y.  Lin,  A.  Y.  Ng,  and  C.  D.  Manning, “Parsing
natural scenes and natural language with recursive neural networks,” in
Proc. 28th Int. Conf. Machine Learning, 2011.

[20]

 J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and
M.  Sun, “Graph  neural  networks:  A  review  of  methods  and
applications,” AI Open, vol. 1, pp. 57–81, 2020.

[21]

 T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv: 1609.02907, 2016.

[22]

 V.  Petar,  C.  Guillem,  C.  Arantxa,  R.  Adriana,  L.  Pietro,  and  B.
Yoshua, “Graph  attention  networks,” arXiv  preprint  arXiv:  1710.
10903, 2017.

[23]

 I.  Goodfellow, J.  Pouget-Abadie,  M. Mirza,  B.  Xu,  D.  Warde-Farley,
S.  Ozair,  A.  Courville,  and Y.  Bengjo,, “Generative  adversarial  nets,”
in Proc. 27th Int. Conf. Neural Information Processing Systems, 2014,
vol. 27, pp. 1630–1644.

[24]

 R.  Lu,  X.  Jin,  S.  Zhang,  M.  Qiu,  and  X.  Wu, “A  study  on  big
knowledge and its engineering issues,” IEEE Trans. Knowl. Data Eng.,
vol. 31, no. 9, pp. 1630–1644, Sep. 2016.

[25]

 G. Zhu and C. A. Iglesias, “Computing semantic similarity of concepts
in  knowledge  graphs,” IEEE Trans. Knowl. Data Eng.,  vol. 29,  no. 1,
pp. 72–85, Jan. 2017.

[26]

 UniProt  Consortium, “UniProt:  The  universal  protein  knowledgebase
in  2021,” Nucleic Acids Res.,  vol. 49,  no. D1,  pp. D480–D489,  Jan.
2021.

[27]

 The  Gene  Ontology  Consortium, “The  gene  ontology  resource:  20
years  and  still  going  strong,” Nucleic Acids Res.,  vol. 47,  no. D1,
pp. D330–D338, Jan. 2019.

[28]

 M.  Zitnik,  M.  Agrawal,  and  J.  Leskovec, “Modeling  polypharmacy
side  effects  with  graph  convolutional  networks,” Bioinformatics,
vol. 34, no. 13, pp. i457–i466, Jul. 2018.

[29]

 B.  Malone,  A.  García-Durán,  and  M.  Niepert. “Knowledge  graph
completion to predict polypharmacy side effects,” in Data Integration
in the Life Sciences, Hannover, Germany: Springer, 2018, vol. 11371,
pp. 144–149. DOI: 10.1007/978-3-030-06016-9_14.

[30]

 S.  Mohamed,  V.  Nováček,  and  A.  Nounu, “Discovering  protein  drug
targets  using  knowledge  graph  embeddings,” Bioinformatics,  vol. 36,
no. 2, pp. 603–610, Jan. 2020.

[31]

 M. Alshahrani, M. Khan, O. Maddouri, A. Kinjo, N. Queralt-Rosinach,
and  R.  Hoehndorf, “Neuro-symbolic  representation  learning  on
biological knowledge graphs,” Bioinformatics, vol. 33, no. 17, pp. 2723–
2730, Sep. 2017.

[32]

 Y.  Wu,  Z.  Wang,  S.  Chen,  G.  Wang  and  C.  Li, “Automatically
semantic annotation of network document based on domain knowledge
graph,” in Proc.  IEEE  Int.  Symposium  on  Parallel  and  Distributed
Processing  with  Applications  and  IEEE  Int.  Conf.  Ubiquitous
Computing and Communications, 2017, pp. 715–721.

[33]

 F.  Al-Obeidat,  O.  Adedugbe,  A.  B.  Hani,  E.  Benkhelifa  and  M.
Majdalawieh, “Cone-KG:  A  semantic  knowledge  graph  with  news
content  and  social  context  for  studying  Covid-19  news  articles  on
social  Media,” in Proc.  Seventh  Int.  Conf.  Social  Networks  Analysis,
Management and Security, 2020, pp. 1–7.

[34]

 O. Elezaj,  S.  Y.  Yayilgan,  E.  Kalemi,  L.  Wendelberg,  M. Abomhara,
and  J.  Ahmed, “Towards  designing  a  knowledge  graph-based
framework  for  investigating  and  preventing  crime  on  online  social
networks,” in Proc. Int. Conf. e-Democracy, 2019, pp. 181–195.

[35]

 J.  Qian,  X.  Y.  Li,  C.  Zhang,  L.  Chen,  T.  Jung,  and  J.  Han, “Social
network  de-anonymization  and  privacy  inference  with  knowledge
graph model,” IEEE Trans. Dependable Secur. Comput., vol. 16, no. 4,
pp. 679–692, Jul. 2006.

[36]

 X. Cheng and X. Li, “Trust evaluation in online social networks based
on knowledge graph,” in Proc. Int.  Conf.  Algorithms, Computing and
Artificial Intelligence, 2018, pp. 1–7.

[37]

 J. Yang, J. Yang, Y. Wang, and Y. Mao, “Social network-based news
recommendation  with  knowledge  graph,” in Proc.  IEEE  Int.  Conf.
Information  Technology,  Big  Data  and  Artificial  Intelligence,  2020,
vol. 1, pp. 1255–1260.

[38]

LÜ et al.: NETWORKED KNOWLEDGE AND COMPLEX NETWORKS: AN ENGINEERING VIEW 1379 

http://dx.doi.org/10.1038/30918
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1126/science.1245200
http://dx.doi.org/10.1007/s11431-018-9379-8
http://dx.doi.org/10.1007/s11431-018-9379-8
http://dx.doi.org/10.1038/nature10011
https://www.blog.google/products/search/introducing-knowledge-graph-things-not/
https://www.blog.google/products/search/introducing-knowledge-graph-things-not/
http://dx.doi.org/10.3390/su10040995
http://dx.doi.org/10.1109/JBHI.2020.2990797
http://dx.doi.org/10.1109/JBHI.2020.2990797
http://dx.doi.org/10.1109/MIC.2020.2979620
http://dx.doi.org/10.1016/j.jmsy.2021.08.002
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1073/pnas.79.8.2554
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1007/s10462-020-09825-6
http://dx.doi.org/10.1007/s10462-020-09825-6
http://dx.doi.org/10.1109/78.650093
http://dx.doi.org/10.1016/j.aiopen.2021.01.001
http://dx.doi.org/10.1109/TKDE.2016.2610428
http://dx.doi.org/10.1093/nar/gkaa1100
http://dx.doi.org/10.1093/nar/gky1055
http://dx.doi.org/10.1093/bioinformatics/bty294
http://dx.doi.org/10.1007/978-3-030-06016-9_14
http://dx.doi.org/10.1093/bioinformatics/btx275
http://dx.doi.org/10.1038/30918
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1126/science.1245200
http://dx.doi.org/10.1007/s11431-018-9379-8
http://dx.doi.org/10.1007/s11431-018-9379-8
http://dx.doi.org/10.1038/nature10011
https://www.blog.google/products/search/introducing-knowledge-graph-things-not/
https://www.blog.google/products/search/introducing-knowledge-graph-things-not/
http://dx.doi.org/10.3390/su10040995
http://dx.doi.org/10.1109/JBHI.2020.2990797
http://dx.doi.org/10.1109/JBHI.2020.2990797
http://dx.doi.org/10.1109/MIC.2020.2979620
http://dx.doi.org/10.1016/j.jmsy.2021.08.002
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1073/pnas.79.8.2554
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1007/s10462-020-09825-6
http://dx.doi.org/10.1007/s10462-020-09825-6
http://dx.doi.org/10.1109/78.650093
http://dx.doi.org/10.1016/j.aiopen.2021.01.001
http://dx.doi.org/10.1109/TKDE.2016.2610428
http://dx.doi.org/10.1093/nar/gkaa1100
http://dx.doi.org/10.1093/nar/gky1055
http://dx.doi.org/10.1093/bioinformatics/bty294
http://dx.doi.org/10.1007/978-3-030-06016-9_14
http://dx.doi.org/10.1093/bioinformatics/btx275


 Y.  W.  Teng,  Y.  Shi,  J.  Y.  Tsai,  H.  H.  Shuai,  C.  H.  Tai,  and  D.  N.
Yang, “Optimizing  social-topic  engagement  on  social  network  and
knowledge  graph,” in Proc.  IEEE  Global  Communications  Conf.,
2019, pp. 1–6.

[39]

 C.  Wang,  J.  An,  and  G.  Mu, “Power  system  network  topology
identification  based  on  knowledge  graph  and  graph  neural  network,”
Front. Energy Res., vol. 8, p. 613331, Feb. 2021. DOI: 10.3389/fenrg.
2020.613331.

[40]

 Y. Tang, T. Liu, G. Liu, J. Li, R. Dai and C. Yuan, “Enhancement of
power equipment management using knowledge graph,” in Proc. IEEE
Innovative Smart Grid Technologies-Asia, 2019, pp. 905–910.

[41]

 F.  Peng,  T.  An,  D.  Li,  H.  Wang,  C.  Tian  and  Z.  Chen, “Knowledge
graph  for  power  grid  dispatching  of  digital  homes  based  on  graph
convolutional  network,” in Proc.  8th  Int.  Conf.  Digital  Home,  2020,
pp. 203–208.

[42]

 Y.  Ma,  D.  Hong,  F.  Dan,  X.  Yang,  and  X.  Li, “Research  on  the
construction  method  of  knowledge  graph  for  power  grid  education
resources,” in Proc.  IEEE  3rd  Int.  Conf.  Computer  Science  and
Educational Informatization, 2021, pp. 99–103.

[43]

 S.  Boccaletti,  V.  Latora,  Y.  Moreno,  M.  Chavez,  and  D.-U.  Hwang,
“Complex  networks:  Structure  and  dynamics,” Phys.  Rep.-Rev.  Sec.
Phys. Lett., vol. 424, no. 4–5, pp. 175–308, Feb. 2006.

[44]

 L. Wu, P. Wang, and J. H. Lü, “Substrate concentration effect on gene
expression  in  genetic  circuits  with  additional  positive  feedback,”
Science China: Technological Sciences,  vol. 61,  no. 8,  pp. 1175–1183,
Aug. 2018.

[45]

 P.  Erdös  and  A.  Rényi, “On  random  graphs,” Publ.  Math.-Debr.,
vol. 6, pp. 290–297, 1959.

[46]

 E. N. Gilbert, “Random graphs,” Ann. Math. Statist., vol. 30, pp. 1141–
1144, 1959.

[47]

 J. Travers and S. Milgram, “An experimental study of the small world
problem,” Sociometry,  vol.  32,  no.  4,  p.  425,  Dec.  1969.  DOI:
10.2307/2786545.

[48]

 L.  Backstrom,  P.  Boldi,  M.  Rosa,  J.  Ugander,  and  S.  Vigna, “Four
degrees of separation,” in Proc. 3rd Annual ACM Web Science Conf.-
WebSci, ACM Press, 2012.

[49]

 L. A. N. Amaral, A. Scala, M. Barthelemy, and H. E. Stanley, “Classes
of  small-world  networks,” Proc. Natl. Acad. Sci. USA,  vol. 97,  no. 21,
pp. 11149–11152, Sep. 2000.

[50]

 S. Abe and N. Suzuki, “Scale-free network of earthquakes,” Europhys.
Lett., vol. 65, no. 4, pp. 581–586, Feb. 2004.

[51]

 A.  Clauset,  M.  Young,  and  K.  S.  Gleditsch, “On  the  frequency  of
severe  terrorist  events,” J. Confl. Resolut.,  vol. 51,  no. 1,  pp. 58–87,
Feb. 2007.

[52]

 A.  Broder,  R.  Kumar,  F.  Maghoul,  P.  Raghavan,  S.  Rajagopalan,  R.
Stata,  A.  Tomkins,  and  J.  Wiener, “Graph  structure  in  the  web,”
Computer Networks, vol. 33, no. 1–6, pp. 309–320, Jun. 2000.

[53]

 A.  Clauset,  C.  R.  Shalizi,  and  M.  E.  J.  Newman, “Power-law
distributions in empirical data,” SIAM Rev., vol. 51, no. 4, pp. 661–703,
Nov. 2009.

[54]

 A.  D.  Broido  and  A.  Clauset, “Scale-free  networks  are  rare,” Nat.
Commun., vol. 10, no. 1, p. 1017, Mar. 2019.

[55]

 I.  Voitalov,  P.  van  der  Hoorn,  R.  van  der  Hofstad,  and  D.  Krioukov,
“Scale-free  networks  well  done,” Phys.  Rev.  Res.,  vol.  1,  no.  3, p.
033034, Oct. 2019. DOI: 10.1103/PhysRevResearch.1.033034.

[56]

 M. D.  Domenico,  A.  Solé-Ribalta,  E.  Cozzo,  M.  Kivelä,  Y.  Moreno,
M. A. Porter, S. Gómez, and A. Arenas, “Mathematical formulation of
multilayer  networks,” Phys.  Rev.  X,  vol.  3,  no.  4,  p.  041022,  Dec.
2013.

[57]

 S.  Gómez,  A.  Díaz-Guilera,  J.  Gómez-Gardeñes,  C.  J.  Pérez-Vicente,
Y.  Moreno,  and  A.  Arenas, “Diffusion  dynamics  on  multiplex
networks,” Phys. Rev. Lett., vol. 110, no. 2, p. 028701, Jan. 2013. DOI:
10.1103/PhysRevLett.110.028701.

[58]

 A. Solé-Ribalta, M. D. Domenico, N. E. Kouvaris, A. Díaz-Guilera, S.
Gómez,  and  A.  Arenas, “Spectral  properties  of  the  laplacian  of
multiplex  networks,” Phys.  Rev.  E,  vol.  88,  no.  3,  p.  032807,  Sep.
2013. DOI: 10.1103/PhysRevE.88.032807.

[59]

 L. Tang, J. Lu, and J. H. Lü, “A threshold effect of coupling delays on[60]

intra-layer  synchronization  in  duplex  networks,” Science China:
Technological Sciences, vol. 61, no. 12, pp. 1907–1914, Dec. 2018.
 F.  D.  Rossa,  L.  Pecora,  K.  Blaha,  A.  Shirin,  I.  Klickstein,  and  F.
Sorrentino, “Symmetries  and  cluster  synchronization  in  multilayer
networks,” Nat. Commun., vol. 11, no. 1, p. 3179, Jun. 2020.

[61]

 S.  Osat,  A.  Faqeeh,  and  F.  Radicchi, “Optimal  percolation  on
multiplex networks,” Nat. Commun., vol. 8, no. 1, p. 1540, Nov. 2017.

[62]

 X. Liu,  E.  Maiorino,  A.  Halu,  K.  Glass,  R.  B.  Prasad,  J.  Loscalzo,  J.
Gao, and A. Sharma, “Robustness and lethality in multilayer biological
molecular  networks,” Nat.  Commun.,  vol.  11,  no.  1,  p.  6043,  Nov.
2020.

[63]

 L. Tang, X. Wu, J. Lü, J. A. Lu, and R. M. D’Souza, “Master stability
functions  for  complete,  intralayer,  and  interlayer  synchronization  in
multiplex  networks  of  coupled  róssler  oscillators,” Phys.  Rev.  E,  vol.
99, no. 1, p. 012304, Jan. 2019.

[64]

 J. Grilli, G. Barabás, M. J. Michalska-Smith, and S. Allesina, “Higher-
order  interactions  stabilize  dynamics  in  competitive  network models,”
Nature, vol. 548, no. 7666, pp. 210–213, Jul. 2017.

[65]

 I.  Iacopini,  G.  Petri,  A.  Barrat,  and  V.  Latora, “Simplicial  models  of
social contagion,” Nat. Commun., vol. 10, no. 1, p. 2485, Jun. 2019.

[66]

 T. Tanaka and T. Aoyagi, “Multistable attractors in a network of phase
oscillators with three-body interactions,” Phys. Rev. Lett., vol. 106, no.
22, p. 224101, May. 2011. DOI: 10.1103/PhysRevLett.106.224101.

[67]

 P. S. Skardal and A. Arenas, “Abrupt desynchronization and extensive
multistability  in  globally  coupled  oscillator  simplexes,” Phys.  Rev.
Lett., vol. 122, no. 24, p. 248301, Jun. 2019. DOI: 10.1103/PhysRevLett.
122.248301.

[68]

 L.  V.  Gambuzza,  F.  D.  Patti,  L.  Gallo,  S.  Lepri,  M.  Romance,  R.
Criado,  M.  Frasca,  V.  Latora,  and  S.  Boccaletti, “Stability  of
synchronization in simplicial complexes,” Nat. Commun.,  vol. 12, no.
1, p. 1255, Feb. 2021.

[69]

 J. Hoffart, F. M. Suchanek, K. Berberich, and G. Weikum, “Yago2: A
spatially  and  temporally  enhanced  knowledge  base  from  Wikipedia,”
Artif. Intell., vol. 194, pp. 28–61, Jan. 2013.

[70]

 W.  Wu,  H.  Li,  H.  Wang,  and  K.  Q.  Zhu, “Probase:  A  probabilistic
taxonomy for text understanding,” in Proc. ACM SIGMOD Int.  Conf.
Management of Data, 2012, pp. 481–492.

[71]

 X.  Niu,  X.  Sun,  H.  Wang,  S.  Rong,  G.  Qi,  and  Y.  Yu, “Zhishi.me-
weaving Chinese linking open data,” in Proc. 10th Int. Semantic Web
Conf., 2011, pp. 205–220.

[72]

 B. Xu, Y. Xu, J. Liang, C. Xie, B. Liang, W. Cui, and Y. Xiao, “CN-
DBpedia:  A  never-ending  chinese  knowledge  extraction  system,” in
Proc.  30th  Int.  Conf.  Industrial,  Engineering  and  Other  Applications
of Applied Intelligent Systems, 2017, pp. 428–438.

[73]

 F. Zhang, N. J. Yuan, D. Lian, X. Xie, and W.-Y. Ma, “Collaborative
knowledge base embedding for recommender systems,” in Proc. 22nd
ACM  SIGKDD  Int.  Conf.  Knowledge  Discovery  and  Data  Mining,
2016, pp. 353–362.

[74]

 Q.  Wang,  Z.  Mao,  B.  Wang,  and  L.  Guo, “Knowledge  graph
embedding:  A  survey  of  approaches  and  applications,” IEEE Trans.
Know. Data Eng., vol. 29, no. 12, pp. 2724–2743, Sep. 2017.

[75]

 X. Chen, S. Jia, and Y. Xiang, “A review: Knowledge reasoning over
knowledge graph,” Expert Syst. Appl., vol. 141, p. 112948, Mar. 2020.
DOI: 10.1016/j.eswa.2019.112948.

[76]

 A. P. Quimbaya, A. S. Múnera, R. A. G. Rivera, J. C. D. Rodríguez, O.
M.  M.  Velandia,  A.  A.  G.  Peña,  and  C.  Labbé, “Named  entity
recognition  over  electronic  health  records  through  a  combined
dictionary-based  approach,” Procedia Comput. Sci.,  vol. 100,  pp. 55–
61, Oct. 2016.

[77]

 X. Liu, S. Zhang, F. Wei, and M. Zhou, “Recognizing named entities
in  tweets,” in Proc.  49th  Annual  Meeting  Association  for
Computational Linguistics: Human Language Technologies, 2011, pp.
359–367.

[78]

 A. Jain and M. Pennacchiotti, “Open entity extraction from web search
query  logs,” in Proc.  of  Int.  Conf.  Computational  Linguistics,  2010,
pp. 510–518.

[79]

 S.  Singh,  S.  Riedel,  B.  Martin,  J.  Zheng,  and  A.  McCallum, “Joint
inference of entities, relations, and coreference,” in Proc. Workshop on
Automated Knowledge Base Construction, 2013, pp. 1–6.

[80]

 1380 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 9, NO. 8, AUGUST 2022

http://dx.doi.org/10.3389/fenrg.2020.613331
http://dx.doi.org/10.3389/fenrg.2020.613331
http://dx.doi.org/10.1007/s11431-018-9301-0
http://dx.doi.org/10.1214/aoms/1177706098
http://dx.doi.org/10.2307/2786545
http://dx.doi.org/10.1073/pnas.200327197
http://dx.doi.org/10.1209/epl/i2003-10108-1
http://dx.doi.org/10.1209/epl/i2003-10108-1
http://dx.doi.org/10.1177/0022002706296157
http://dx.doi.org/10.1016/S1389-1286(00)00083-9
http://dx.doi.org/10.1137/070710111
http://dx.doi.org/10.1103/PhysRevResearch.1.033034
http://dx.doi.org/10.1103/PhysRevLett.110.028701
http://dx.doi.org/10.1103/PhysRevE.88.032807
http://dx.doi.org/10.1007/s11431-017-9285-7
http://dx.doi.org/10.1007/s11431-017-9285-7
http://dx.doi.org/10.1038/nature23273
http://dx.doi.org/10.1103/PhysRevLett.106.224101
http://dx.doi.org/10.1103/PhysRevLett.122.248301
http://dx.doi.org/10.1103/PhysRevLett.122.248301
http://dx.doi.org/10.1016/j.artint.2012.06.001
http://dx.doi.org/10.1109/TKDE.2017.2754499
http://dx.doi.org/10.1109/TKDE.2017.2754499
http://dx.doi.org/10.1016/j.eswa.2019.112948
http://dx.doi.org/10.1016/j.procs.2016.09.123
http://dx.doi.org/10.3389/fenrg.2020.613331
http://dx.doi.org/10.3389/fenrg.2020.613331
http://dx.doi.org/10.1007/s11431-018-9301-0
http://dx.doi.org/10.1214/aoms/1177706098
http://dx.doi.org/10.2307/2786545
http://dx.doi.org/10.1073/pnas.200327197
http://dx.doi.org/10.1209/epl/i2003-10108-1
http://dx.doi.org/10.1209/epl/i2003-10108-1
http://dx.doi.org/10.1177/0022002706296157
http://dx.doi.org/10.1016/S1389-1286(00)00083-9
http://dx.doi.org/10.1137/070710111
http://dx.doi.org/10.1103/PhysRevResearch.1.033034
http://dx.doi.org/10.1103/PhysRevLett.110.028701
http://dx.doi.org/10.1103/PhysRevE.88.032807
http://dx.doi.org/10.1007/s11431-017-9285-7
http://dx.doi.org/10.1007/s11431-017-9285-7
http://dx.doi.org/10.1038/nature23273
http://dx.doi.org/10.1103/PhysRevLett.106.224101
http://dx.doi.org/10.1103/PhysRevLett.122.248301
http://dx.doi.org/10.1103/PhysRevLett.122.248301
http://dx.doi.org/10.1016/j.artint.2012.06.001
http://dx.doi.org/10.1109/TKDE.2017.2754499
http://dx.doi.org/10.1109/TKDE.2017.2754499
http://dx.doi.org/10.1016/j.eswa.2019.112948
http://dx.doi.org/10.1016/j.procs.2016.09.123


 M. Miwa and M. Bansal, “End-to-end relation extraction using LSTMs
on  sequences  and  tree  structures,” in Proc.  54th  Annual  Meeting
Association for Computational Linguistics, 2016, pp. 1105–1116.

[81]

 K.-W.  Chang,  W.  T.  Yih,  B.  Yang,  and  C.  Meek, “Typed  tensor
decomposition  of  knowledge  bases  for  relation  extraction,” in Proc.
Conf.  Empirical  Methods  in  Natural  Language Processing,  2014,  pp.
1568–1579.

[82]

 X.  Zhao,  Y.  Jia,  A.  Li,  R.  Jiang,  and  Y.  Song, “Multi-source
knowledge fusion: A survey,” World Wide Web, vol. 23, no. 4, pp. 2567–
2592, Apr. 2020.

[83]

 P.  Sen, “Collective  context-aware  topic  models  for  entity  disambig-
uation,” in Proc. 21st Int. Conf. World Wide Web, 2012, pp. 729–738.

[84]

 G. Zhu and C.  A.  Iglesias, “Exploiting semantic similarity for  named
entity  disambiguation  in  knowledge  graphs,” Expert Syst. Appl.,
vol. 101, pp. 8–24, Jul. 2018.

[85]

 A.  Alokaili  and  M.  E.  B.  Menai, “SVM  ensembles  for  named  entity
disambiguation,” Computing,  vol. 102,  no. 4,  pp. 1051–1076,  Apr.
2020.

[86]

 X.  L.  Dong, “Challenges  and  innovations  in  building  a  product
knowledge graph,” in Proc. 24th ACM SIGKDD Int. Conf. Knowledge
Discovery & Data Mining, 2018, pp. 2869–2869.

[87]

 O.  Deshpande,  D.  S.  Lamba,  M.  Tourn,  S.  Das,  S.  Subramaniam,  A.
Rajaraman, V. Harinarayan, and A. Doan, “Building, maintaining, and
using  knowledge  bases:  A  report  from  the  trenches,” in Proc.  ACM
SIGMOD Int. Conf. Management of Data, 2013, pp. 1209–1220.

[88]

 B.  D.  Trisedya,  J.  Qi,  and  R.  Zhang, “Entity  alignment  between
knowledge  graphs  using  attribute  embeddings,” in Proc.  AAAI  Conf.
Artificial Intelligence, 2019, pp. 297–304.

[89]

 A.  Bordes,  N.  Usunier,  A.  Garcia-Duran,  J.  Weston,  and  O.
Yakhnenko, “Translating  embeddings  for  modeling  multi-relational
data,” in Proc. 26th Int. Conf. Neural Information Processing Systems,
2013, pp. 2787–2795.

[90]

 S. M. Kazemi and D. Poole, “Simple embedding for link prediction in
knowledge  graphs,” in Proc.  32nd  Int.  Conf.  Neural  Information
Processing Systems, 2018, pp. 4289–4300.

[91]

 Z. Sun, Z.-H. Deng, J.-Y. Nie, and J. Tang, “Rotate: Knowledge graph
embedding  by  relational  rotation  in  complex  space,” arXiv  preprint
arXiv: 1902.10197, 2019.

[92]

 S. Zhang, Y. Tay, L. Yao, and Q. Liu, “Quaternion knowledge graph
embeddings,” in Proc. 33rd Int. Conf. Neural Information Processing
Systems, 2019, pp. 2735–2748.

[93]

 M.  Nickel,  V.  Tresp,  and  H.-P.  Kriegel, “A  three-way  model  for
collective  learning  on  multi-relational  data,” in Proc.  28th  Int.  Conf.
Machine Learning, 2011, pp. 809–816.

[94]

 T.  Trouillon,  J.  Welbl,  and  S.  Riedel,  É.  Gaussier,  and  G.  Bouchard,
“Complex  embeddings  for  simple  link  prediction,” in Proc.  33rd  Int.
Conf. Machine Learning, 2016, pp. 2071–2080.

[95]

 W.  Zhang,  B.  Paudel,  W.  Zhang,  A.  Bernstein,  and  H.  Chen,
“Interaction embeddings for  prediction and explanation in  knowledge
graphs,” in Proc. 12th ACM Int. Conf. Web Search and Data Mining,
2019, pp. 96–104.

[96]

 N. Lao and W. W. Cohen, “Relational retrieval using a combination of
path-constrained  random walks,” Mach. Learn.,  vol. 81,  no. 1,  pp. 53–
67, Jul. 2010.

[97]

 W. Xiong,  T.  Hoang,  and  W.  Y.  Wang, “Deeppath:  A  reinforcement
learning  method  for  knowledge  graph  reasoning,” in Proc.  Conf.
Empirical  Methods  in  Nature  Language  Processing,  2017,  pp.
575–584.

[98]

 M. Kampffmeyer,  Y.  Chen,  X.  Liang,  H.  Wang,  Y.  Zhang,  and E.  P.
Xing, “Rethinking  knowledge  graph  propagation  for  zero-shot
learning,” in Proc.  IEEE/CVF  Conf.  Computer  Vision  and  Pattern
Recognition, 2019, pp. 11479–11488.

[99]

 A.  Neelakantan,  B.  Roth,  and  A.  McCallum, “Compositional  vector
space  models  for  knowledge  base  inference,” in Proc.  AAAI  Spring
Symposium Series, 2015, pp. 31–34.

[100]

 A.  Graves,  G.  Wayne,  M.  Reynolds,  T.  Harley,  I.  Danihelka,  A.
Grabska-Barwińska,  S.  G.  Colmenarejo,  E.  Grefenstette,  T.  Ramalho,
J. Agapiou, Z. Jin, X.-D. Li, G. Huang, H. A. Muller, J. Pang, and L.-J.
Zhang  , “Hybrid  computing  using  a  neural  network  with  dynamic

[101]

external memory,” Nature, vol. 538, no. 7626, pp. 471–476, Oct. 2016.
 S. Guo, B. Ding, Q. Wang, L. Wang, and B. Wang, “Knowledge base
completion  via  rule-enhanced  relational  learning,” in Proc.  China
Conf. Knowledge Graph and Semantic Computing, 2016, pp. 219–227.

[102]

 W.  Zhang,  B.  Paudel,  L.  Wang,  J.  Chen,  H.  Zhu,  W.  Zhang,  A.
Bernstein, and H. Chen, “Iteratively learning embeddings and rules for
knowledge  graph  reasoning,” in Proc.  World  Wide  Web  Conf.,  2019,
pp. 2366–2377.

[103]

 P. N. Mendes, H. Mühleisen, and C. Bizer, “Sieve: Linked data quality
assessment and fusion,” in Proc. Joint EDBT/ICDT Workshops, 2012,
pp. 116–123.

[104]

 X. Dong,  E.  Gabrilovich,  G.  Heitz,  W.  Horn,  N.  Lao,  K.  Murphy,  T.
Strohmann,  S.  Sun,  and  W.  Zhang, “Knowledge  vault:  A  web-scale
approach  to  probabilistic  knowledge  fusion,” in Proc.  20th  ACM
SIGKDD Int. Conf. Knowledge Discovery and Data Mining, 2014, pp.
601–610.

[105]

 H.  Paulheim, “Knowledge  graph  refinement:  A survey  of  approaches
and evaluation methods,” Semant. Web, vol. 8, no. 3, pp. 489–508, Jan.
2017.

[106]

 B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of
social  representations,” in Proc.  20th  ACM  SIGKDD  Int.  Conf.
Knowledge Discovery and Data Mining, 2014, pp. 701–710.

[107]

 Y.  S.  Abumostafa,  M.  Magdonismail,  and  H.  T.  Lin, Learning  from
data: A short course. Chicago: Amlbook, 2012.

[108]

 S.  Sun,  Z.  Cao,  H.  Zhu,  and  J.  Zhao, “A  survey  of  optimization
methods  from  a  machine  learning  perspective,” IEEE Trans.
Cybernetics, vol. 50, no. 8, pp. 3668–3681, Aug. 2020.

[109]

 W.  S.  Mcculloch  and  W.  Pitts, “A  logical  calculus  of  the  ideas
immanent  in  nervous  activity,” Bulletin  Math.  Biol.,  vol. 52,  no. 1−2,
pp. 99–115, Dec. 1943.

[110]

 D.  O.  Hebb, The  Organization  of  Behavior:  A  Neuropsychological
Theory. New York, USA: John Wiley and Sons, 1949.

[111]

 F. Rosenblatt, “The perceptron: A probabilistic model for information
storage  and  organization  in  the  brain,” Psychol. Rev.,  vol. 65,  no. 6,
pp. 386–408, 1958.

[112]

 M.  L.  Minsky  and  S.  A.  Papert, Perceptrons:  An  Introduction  to
Computational Geometry. Cambridge, USA: MIT Press, 1969.

[113]

 T.  Kohonen, Self-Organization  and  Associative  Memory.  Berlin
Heidelberg, Germany: Springer-Verlag, 1984.

[114]

 J.  Mcclelland, Information  Processing  in  Dynamical  Systems:
Foundations of Harmony Theory. Cambridge, USA: MIT Press, 1986.

[115]

 G. E.  Hinton and R.  R.  Salakhutdinov, “Reducing the  dimensionality
of  data  with  neural  networks,” Science,  vol. 313,  no. 5786,  pp. 504–
507, Jul. 2006.

[116]

 N.  Srivastava,  G.  Hinton,  A.  Krizhevsky,  I.  Sutskever,  and  R.
Salakhutdinov, “Dropout:  A  simple  way  to  prevent  neural  networks
from  overfitting,” J.  Mach.  Learn.  Res.,  vol. 15,  pp. 1929–1958,  Jun.
2014.

[117]

 D.  Yarotsky, “Error  bounds  for  approximations  with  deep  relu
networks,” Neural Netw., vol. 94, pp. 103–114, Oct. 2017.

[118]

 P.  Vincent,  H.  Larochelle,  I.  Lajoie,  Y.  Bengio,  and P.-A.  Manzagol,
“Stacked denoising autoencoders: Learning useful representations in a
deep network with a local  denoising criterion,” J.  Mach.  Learn.  Res.,
vol. 11, pp. 3371–3408, Dec. 2010.

[119]

 A.  Krizhevsky,  I.  Sutskever,  and  G.  E.  Hinton, “Imagenet
classification  with  deep  convolutional  neural  networks,” Commun.
ACM, vol. 60, no. 6, pp. 84–90, Jun. 2017.

[120]

 D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre, et al., “Mastering
the  game  of  go  with  deep  neural  networks  and  tree  search,” Nature,
vol. 529, no. 7587, pp. 484–489, Jan. 2016.

[121]

 J.  Schmidhuber, “Deep  learning  in  neural  networks:  An  overview,”
Neural Netw., vol. 61, pp. 85–117, Jan. 2015.

[122]

 D. H. Hubel and T. Wiesel, “Shape and arrangement of columns in cat’s
striate cortex,” J. Physiol., vol. 165, no. 3, pp. 559–568, Mar. 1963.

[123]

 K.  Fukushima,  S.  Miyake,  and  T.  Ito, “Neocognitron:  A  neural
network model  for  a  mechanism of  visual  pattern  recognition,” IEEE
Trans. Syst. Man Cybern., vol. 5, pp. 826–834, Sept. 1983.

[124]

LÜ et al.: NETWORKED KNOWLEDGE AND COMPLEX NETWORKS: AN ENGINEERING VIEW 1381 

http://dx.doi.org/10.1007/s11280-020-00811-0
http://dx.doi.org/10.1016/j.eswa.2018.02.011
http://dx.doi.org/10.1007/s00607-019-00748-x
http://dx.doi.org/10.1007/s10994-010-5205-8
http://dx.doi.org/10.1038/nature20101
http://dx.doi.org/10.1109/TCYB.2019.2950779
http://dx.doi.org/10.1109/TCYB.2019.2950779
http://dx.doi.org/10.1037/h0042519
http://dx.doi.org/10.1126/science.1127647
http://dx.doi.org/10.1016/j.neunet.2017.07.002
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://dx.doi.org/10.1113/jphysiol.1963.sp007079
http://dx.doi.org/10.1007/s11280-020-00811-0
http://dx.doi.org/10.1016/j.eswa.2018.02.011
http://dx.doi.org/10.1007/s00607-019-00748-x
http://dx.doi.org/10.1007/s10994-010-5205-8
http://dx.doi.org/10.1038/nature20101
http://dx.doi.org/10.1109/TCYB.2019.2950779
http://dx.doi.org/10.1109/TCYB.2019.2950779
http://dx.doi.org/10.1037/h0042519
http://dx.doi.org/10.1126/science.1127647
http://dx.doi.org/10.1016/j.neunet.2017.07.002
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://dx.doi.org/10.1113/jphysiol.1963.sp007079


 K.  He,  X.  Zhang,  S.  Ren,  and  J.  Sun, “Deep  residual  learning  for
image recognition,” in Proc. IEEE Conf. Computer Vision and Pattern
Recognition, 2016, pp. 770–778.

[125]

 A. Sengupta,  Y. Ye, R. Wang, C. Liu, and K. Roy, “Going deeper in
spiking  neural  networks:  VGG  and  residual  architectures,” Front.
Neurosci., vol. 13, p. 95, Mar. 2019. DOI: 10.3389/fnins.2019.00095.

[126]

 S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[127]

 G. Wen, J. Qin, X. Fu, and W. Yu, “DLSTM: Distributed long short-
term memory neural networks for the Internet of Things,” IEEE Trans.
Netw. Sci. Eng., vol. 9, no. 1, pp. 111–120, Jan.–Feb. 2022.

[128]

 S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time  object  detection  with  region  proposal  networks,” in Proc.
Advances Neural Infor. Processing Syst., 2015.

[129]

 C.  Farabet,  C.  Couprie,  L.  Najman,  and  Y.  LeCun, “Learning
hierarchical  features  for  scene  labeling,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 35, no. 8, pp. 1915–1929, Aug. 2013.

[130]

 A.  Graves, et  al., “A  novel  connectionist  system  for  unconstrained
handwriting  recognition,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 31, no. 5, pp. 855–868, May 2009.

[131]

 E.  Mansimov,  E.  Parisotto,  J.  L.  Ba,  and  R.  Salakhutdinov,
“Generating images from captions with attention,” in Proc. Int.  Conf.
Learning Representations, 2016.

[132]

 S.  Valverde, et  al., “Scale  free  networks  from  optimal  design,”
Europhysics Letters, vol. 60, pp. 512–517, 2002.

[133]

 C.  R.  Myers, “Software  systems  as  complex  networks:  Structure,
function,  and  evolvability  of  software  collaboration  graphs,” Phys.
Rev.  E,  vol.  68,  no.  4,  p.  046116,  2003.  DOI: 10.1103/PhysRevE.
68.046116.

[134]

 K.  He,  Y.  Ma,  B.  Li,  J.  Liu,  and  R.  Peng, Software  Network (in
Chinese). Beijing, China: Science Press, 2008.

[135]

 G.  Concas,  M.  Marchesi,  S.  Pinna,  and  N.  Serra, “Power-laws  in  a
large  object-oriented  software  system,” IEEE Trans. Softw. Eng.,
vol. 33, no. 10, pp. 687–708, Oct. 2007.

[136]

 S.  Valverde  and  R.  Sole, “Universal  properties  of  bipartite  software
graphs,” in Proc.  9th  IEEE  Int.  Conf.  Engineering  of  Complex
Computer Systems, 2004.

[137]

 A.  Begel,  J.  Bosch,  and  M.-A.  Storey, “Social  networking  meets
software  development:  Perspectives  from  github,  msdn,  stack
exchange, and topcoder,” IEEE Softw., vol. 30, no. 1, pp. 52–66, 2013.

[138]

 F. Thung, T. F. Bissyandé, D. Lo, and L. Jiang, “Network structure of
social  coding  in  GitHub,” in Proc.  17th  European  Conf.  Software
Maintenance and Reengineering, 2013, pp. 323–326.

[139]

 H.  Mei, “Internetware:  Challenges  and  future  direction  of  software
paradigm  for  Internet  as  a  computer,” in Proc.  IEEE  34th  Annual
Computer Software and Applications Conf., 2010, pp. 14–16.

[140]

 T. Xie, et al., “Preface (Special section on software systems 2020),” J.
Comput. Sci. Technol., vol. 35, no. 6, pp. 1231–1233, 2020.

[141]

 H. Mei and X. Z. Liu, “Internetware: An emerging software paradigm
for Internet computing,” J. Comput. Sci. Technol., vol. 26, no. 4, pp. 588–
599, 2011.

[142]

 X.  Zhang  and  X.  Liu, “Research  on  massiveness  characteristics
weights  of  big  knowledge  based  on  the  big  data,” in Proc.  7th  Int.
Conf.  Information  Science  and  Control  Engineering,  2020,  pp.
1178–1183.

[143]

 I.T.  Koponen, “Modelling  students’ thematically  associated  know-
ledge:  Networked  knowledge  from  affinity  statistics,” in Complex
Networks  X.,  Springer  International  Publishing,  Cham,  Switzerland,
2019, pp. 123–134.

[144]

 S.  Decker,  S.  Handschuh,  and  M.  Hauswirth, “Towards  networked
knowledge,” in Foundations for the Web of Information and Services,
Berlin Heidelberg, Germany: Springer, 2011, pp. 155–174.

[145]

 X.  R.  Lopez  and  M.  Larsgaard, “Towards  a  California  geospatial
digital library: A strategy for networked knowledge,” Cartogr. Geogr.
Inf. Sci., vol. 25, no. 3, pp. 133–141, Mar. 2013.

[146]

 Y.  Lu,  Z.  Feng,  S.  Zhang,  and  Y.  Wang, “Annotating  regulatory
elements  by  heterogeneous  network  embedding,” Bioinformatics,
vol. 38, no. 10, pp. 2899–2911, May 2022.

[147]

 E.  Muñoz,  V.  Novácek,  and  P.-Y.  Vandenbussche, “Facilitating
prediction  of  adverse  drug  reactions  by  using  knowledge  graphs  and
multi-label learning models,” Brief. Bioinform., vol. 20, no. 1, pp. 190–
202, Jan. 2019.

[148]

 J. Borge-Holthoefer and A. Arenas, “Semantic networks: Structure and
dynamics,” Entropy, vol. 12, no. 5, pp. 1264–1302, 2010.

[149]

 H.  Liu, “Statistical  properties  of  Chinese  semantic  networks,” Chin.
Sci. Bull., vol. 54, no. 16, pp. 2781–2785, 2009.

[150]

 M. Galkin,  S.  Auer,  H.  Kim and  S.  Scerri, “Integration  strategies  for
enterprise knowledge graphs,” in Proc. IEEE 10th Int. Conf. Semantic
Computing, 2016, pp. 242–245.

[151]

 A.  Nesen  and  B.  Bhargava, “Knowledge  graphs  for  semantic-aware
anomaly  detection  in  video,” in Proc.  IEEE  3rd  Int.  Conf.  Artificial
Intelligence and Knowledge Engineering, 2020, pp. 65–70.

[152]

 K.  Rajaraman  and  A.-H.  Tan, “Mining  semantic  networks  for  know-
ledge discovery,” in Proc. 3rd IEEE Int. Conf. Data Mining, 2003, pp.
633–636.

[153]

 W.-W. Luo and X.-Y. Chen, “A research on flexible business process
management  system  based  on  knowledge  base  and  semantic  web
services,” in Proc.  Int.  Conf.  Electronic  &  Mechanical  Engineering
and Information Technology, 2011, pp. 4289–4292.

[154]

 J.  Zhang,  L.  Tan,  X.  Tao,  D.  Wang,  J.  J.  C.  Ying,  and  X.  Wang,
“Learning relational  fractals  for  deep knowledge graph embedding in
online social  networks,” in Proc.  Int.  Conf.  Web Information Systems
Engineering, 2020, pp. 660–674.

[155]

 Q. He, J. Yang, and B. Shi, “Constructing knowledge graph for social
networks in a deep and holistic way,” in Proc. Companion Web Conf.,
2020, pp. 307–308.

[156]

 H.  V.  Pham and  D.  N.  Tien, “Hybrid  louvain-clustering  model  using
knowledge  graph  for  improvement  of  clustering  user’ behavior  on
social  networks,” in Proc.  Int.  Conf.  Intelligent  Systems  & Networks,
2021, pp. 126–133.

[157]

 H. Patel, P. Paraskevopoulos, and M. Renz, “GeoTeGra: A system for
the  creation  of  knowledge  graph  based  on  social  network  data  with
geographical  and  temporal  information,” in Proc.  IEEE/ACM  Int.
Conf.  Advances  in  Social  Networks  Analysis  and  Mining,  2018,  pp.
617–620.

[158]

 B.  C.  Molokwu  and  Z.  Kobti, “Social  network  analysis  using
RLVECN:  Representation  learning  via  knowledge-graph  embeddings
and  convolutional  neural-network,” in Proc.  29th  Int.  Conf.
International Joint Conf. Artificial Intelligence, 2021, pp. 5198–5199.

[159]

 B.  Koloski,  T.  S.  Perdih,  M.  Robnik-Šikonja,  S.  Pollak,  B.  Škrlj,
“Knowledge  graph  informed  fake  news  classification  via  heterogene-
ous representation ensembles,” Neurocomputing, 2022. DOI: 10.1016/
j.neucom.2022.01.096

[160]

 M.  Mayank,  S.  Sharma,  R.  Sharma, “DEAP-FAKED:  Knowledge
graph based approach for fake news detection,” arXiv preprint arXiv:
2107.10648, 2022.

[161]

 H.  Huang,  Z.  Hong,  H.  Zhou,  J.  Wu,  and  N.  Jin, “Knowledge  graph
construction  and  application  of  power  grid  equipment,” Math.  Probl.
Eng., vol. 2020, p. 8269082, Oct. 2000.

[162]

 G.  Xiao,  R.  Meng,  H.  Xu,  Z.  Hong,  W.  Ping,  R.  Ru,  and  G.  Feng,
“Construction  technology  of  knowledge  graph  and  its  application  in
power grid,” in Proc. E3S Web of Conf., 2021, vol. 256, p. 01039.

[163]

 W. Yuan, K. Zhang, Q. Dai, C. Peng, and K. Zhao, “Construction and
application  of  knowledge  graph  in  full-service  unified  data  center  of
electric  power system,” in Proc.  IOP Conf.  Series:  Materials  Science
and Engineering, 2018, vol. 452, no. 3, p. 032065.

[164]

 W. Miao, H. Wu, P. Chen, and J. Jing, “Intelligent auxiliary operation
and  maintenance  system  of  power  communication  network  based  on
knowledge graph,” in Proc. J. Physics: Conf. Series, 2020, vol. 1684,
no. 1, p. 012105.

[165]

 K. Huang, “Self-organized network of knowledge,” Ph.D. dissertation,
Institute  of  Mathematics  and  System  Science,  Chinese  Academy  of
Sciences, 2022 (in Chinese).

[166]

 A. Capocci, V. D. P. Servedio, F. Colaiori, L. S. Buriol, D. Donato, S.
Leonardi, and G. Caldarelli, “Preferential attachment in the growth of
social  networks:  The internet  encyclopedia Wikipedia,” Phys.  Rev.  E,
vol. 74, p. 036116, 2006. DOI: 10.1103/PhysRevE.74.036116.

[167]

 1382 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 9, NO. 8, AUGUST 2022

http://dx.doi.org/10.3389/fnins.2019.00095
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1109/TNSE.2021.3054244
http://dx.doi.org/10.1109/TNSE.2021.3054244
http://dx.doi.org/10.1109/TPAMI.2012.231
http://dx.doi.org/10.1109/TPAMI.2012.231
http://dx.doi.org/10.1109/TPAMI.2008.137
http://dx.doi.org/10.1209/epl/i2002-00248-2
http://dx.doi.org/10.1103/PhysRevE.68.046116
http://dx.doi.org/10.1103/PhysRevE.68.046116
http://dx.doi.org/10.1109/TSE.2007.1019
http://dx.doi.org/10.1109/MS.2013.13
http://dx.doi.org/10.1007/s11390-020-0006-4
http://dx.doi.org/10.1007/s11390-020-0006-4
http://dx.doi.org/10.1007/s11390-011-1159-y
http://dx.doi.org/10.1093/bioinformatics/btac185
http://dx.doi.org/10.1093/bib/bbx099
http://dx.doi.org/10.3390/e12051264
http://dx.doi.org/10.1016/j.neucom.2022.01.096
https://doi.org/10.1016/j.neucom.2022.01.096
https://doi.org/10.1016/j.neucom.2022.01.096
http://dx.doi.org/10.1103/PhysRevE.74.036116
http://dx.doi.org/10.3389/fnins.2019.00095
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1109/TNSE.2021.3054244
http://dx.doi.org/10.1109/TNSE.2021.3054244
http://dx.doi.org/10.1109/TPAMI.2012.231
http://dx.doi.org/10.1109/TPAMI.2012.231
http://dx.doi.org/10.1109/TPAMI.2008.137
http://dx.doi.org/10.1209/epl/i2002-00248-2
http://dx.doi.org/10.1103/PhysRevE.68.046116
http://dx.doi.org/10.1103/PhysRevE.68.046116
http://dx.doi.org/10.1109/TSE.2007.1019
http://dx.doi.org/10.1109/MS.2013.13
http://dx.doi.org/10.1007/s11390-020-0006-4
http://dx.doi.org/10.1007/s11390-020-0006-4
http://dx.doi.org/10.1007/s11390-011-1159-y
http://dx.doi.org/10.1093/bioinformatics/btac185
http://dx.doi.org/10.1093/bib/bbx099
http://dx.doi.org/10.3390/e12051264
http://dx.doi.org/10.1016/j.neucom.2022.01.096
https://doi.org/10.1016/j.neucom.2022.01.096
https://doi.org/10.1016/j.neucom.2022.01.096
http://dx.doi.org/10.1103/PhysRevE.74.036116


 F.  N.  Silva,  M.  P.  Viana,  B.  A.  N.  Travençolo,  and  L.  da  F.  Costa,
“Investigating  relationships  within  and  between  category  networks  in
Wikipedia,” J. Informetr., vol. 5, no. 3, pp. 431–438, 2011.

[168]

 L. da F. Costa, “Learning about knowledge: A complex network appr-
oach,” Phys. Rev. E, vol. 74, p. 026103, 2006. DOI: 10.1103/PhysRevE.
74.026103.

[169]

 H.  F.  de  Arruda,  F.  N.  Silva,  L.  da  F.  Costa,  and  D.  R.  Amancio,
“Knowledge  acquisition:  A  complex  networks  approach,” Inf. Sci.,
vol. 421, pp. 154–166, 2017.

[170]

 T. S. Lima, H. F. de Arruda, F. N. Silva, C. H. Comin, D. R. Amancio,
and L. da F. Costa, “The dynamics of knowledge acquisition via self-
learning in complex networks,” Chaos, vol. 28, p. 083106, 2018. DOI:
10.1063/1.5027007.

[171]

 L. Guerreiro, F. N. Silva, and D. R. Amancio, “A comparative analysis
of knowledge acquisition performance in complex networks,” Inf. Sci.,
vol. 555, pp. 46–57, 2021.

[172]

 D. R. Amancio, E. G Altmann, O. N. Oliveira Jr., and L. da F. Costa,
“Comparing  intermittency  and  network  measurements  of  words  and
their  dependence  on  authorship,” New  J.  Phys.,  vol.  13,  p.  123024,
2011. DOI: 10.1088/1367-2630/13/12/123024.

[173]

 A.  Mehri,  A.  H.  Darooneh,  and  A.  Shariati, “The  complex  networks
approach  for  authorship  attribution  of  books,” Physica A,  vol. 391,
pp. 2429–2437, 2012.

[174]

 J.  Cong  and  H.  Liu, “Approaching  human  language  with  complex
networks,” Phys. Life Rev., vol. 11, pp. 598–618, 2014.

[175]

 C.  Akimushkin,  D.  R.  Amancio,  and  O.  N.  Oliveira  Jr., “Text
authorship  identified  using  the  dynamics  of  word  co-occurrence
networks,” PloS One, vol. 12, no. 1, p. e0170527, 2017. DOI: 10.1371/
journal.pone.0170527.

[176]

 C. Akimushkin, D. R. Amancio, and O. N. Oliveira Jr., “On the role of
words  in  the  network  structure  of  texts:  Application  to  authorship
attribution,” Physica A, vol. 495, pp. 49–58, 2018.

[177]

Jinlu  Lü (Fellow,  IEEE)  received  the  Ph.D.  degree
in applied mathematics from the Academy of Mathe-
matics  and  Systems  Science,  Chinese  Academy  of
Sciences  in  2002.  He  was  a  Professor  with  RMIT
University,  Australia,  and  a  Visiting  Fellow  with
Princeton University, USA. Currently, he is the Dean
with  the  School  of  Automation  Science  and
Electrical  Engineering,  Beihang  University.  He  is
also  a  Professor  with  the  AMSS,  Chinese  Academy
of Sciences. He is a Chief Scientist of National Key

Research  and  Development  Program  of  China  and  a  Leading  Scientist  of
Innovative  Research  Groups  of  National  Natural  Science  Foundation  of
China.  His  current  research  interests  include  cooperation  control,  complex
networks, and industrial Internet.
     Dr.  Lü was  a  Recipient  of  the  prestigious  Ho Leung Ho Lee  Foundation
Award  in  2015,  the  National  Innovation  Competition  Award  in  2020,  the
State  Natural  Science  Award  three  times  from  the  Chinese  Government  in
2008,  2012,  and  2016,  respectively,  the  Australian  Research  Council  Future
Fellowships  Award  in  2009,  the  National  Natural  Science  Fund  for
Distinguished  Young  Scholars  Award,  and  the  Highly  Cited  Researcher
Award from 2014 to  2020.  He is/was  an  Editor  in  various  ranks  for  15  SCI
journals,  including  the  Co-Editor-in-Chief  of IEEE  TII.  He  served  as  a
Member in the Fellows Evaluating Committee of the IEEE CASS, the IEEE
CIS, and the IEEE IES. He was the General Co-Chair of IECON 2017. He is
the Fellow of CAA.

Guanghui Wen (Senior Member, IEEE) received the
Ph.D. degree in mechanical systems and control from
Peking  University  in  2012.  He  is  currently  a  Full
Professor  with  the  Department  of  Systems  Science,
Southeast  University.  His  current  research  interests
include  autonomous  intelligent  systems,  complex
networked  systems,  distributed  control  and  optimi-
zation,  resilient  control,  and  distributed  reinforce-
ment learning.
     Prof.  Wen  was  awarded  a  National  Natural

Science  Fund  for  Excellent  Young  Scholars  in  2017  and  the  Chang  Jiang
Scholars Programme of China for Young Scholars in 2020. Moreover, he was
a  Recipient  of  the  Australian  Research  Council  Discovery  Early  Career
Researcher  Award  in  2018  and  a  Recipient  of  the  Asia  Pacific  Neural
Network  Society  Young  Researcher  Award  in  2019.  He  is  a  Reviewer  for
American Mathematical Review and is an active reviewer for many journals.
He currently serves as an Associate Editor of the IEEE Journal of Emerging
and  Selected  Topics  in  Industrial  Electronics,  the IEEE  Transactions  on
Systems,  Man  and  Cybernetics:  Systems,  the IEEE  Open  Journal  of  the
Industrial Electronics Society, and the Asian Journal of Control. He has been
named a Highly Cited Researcher by Clarivate Analytics since 2018. He is an
IET Fellow.

Ruqian Lu received the diploma degree in mathema-
tics from Jena University, Germany in 1959. He is an
Academician  of  Chinese  Academy  of  Sciences,
Professor  with  the  Institute  of  Mathematics,  Aca-
demy  of  Mathematics  and  Systems  Science.  His
current  research  interests  include  artificial  intelli-
gence, knowledge engineering and knowledge based
software engineering.
     Prof.  Lu  is  holding  a  concurrent  professorship
with the Institute of Computing Technology, Chinese

Academy of Sciences. He has published more than 200 papers and authored a
dozen books. He has received China’s National Second Class and CAS’s First
Class Prize for Progress in Science and Technology (twice), the Hua Luogeng
Mathematics  Prize  from  China’s  Mathematics  Society,  and  the  Lifelong
Achievement Prize from the China Computer Federation (CCF).

Yong Wang received the Ph.D. degree in operations
research  and  control  theory  from  Chinese  Academy
of  Sciences  in  2005.  He  is  currently  a  Research
Professor  at  Academy  of  Mathematics  and  Systems
Science,  Chinese  Academy  of  Sciences.  His  current
interests  include  optimization,  data  science  and
computational systems biology.

Songmao  Zhang received  the  Ph.D.  degree  from
Institute  of  Mathematics,  Chinese  Academy  of
Sciences  (CAS)  in  1992.  She  is  currently  a  Full
Professor  at  Academy  of  Mathematics  and  Systems
Science,  Chinese  Academy  of  Sciences  from  2007.
Within the area of artificial intelligence, her research
interests  include  ontology  matching,  knowledge
graph, knowledge representation and reasoning in the
Semantic  Web,  AI-based  automatic  animation,  and
data mining.

LÜ et al.: NETWORKED KNOWLEDGE AND COMPLEX NETWORKS: AN ENGINEERING VIEW 1383 

http://dx.doi.org/10.1016/j.joi.2011.03.003
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1016/j.ins.2017.08.091
http://dx.doi.org/10.1063/1.5027007
http://dx.doi.org/10.1016/j.ins.2020.12.060
http://dx.doi.org/10.1088/1367-2630/13/12/123024
http://dx.doi.org/10.1016/j.physa.2011.12.011
http://dx.doi.org/10.1016/j.plrev.2014.04.004
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1016/j.physa.2017.12.054
http://dx.doi.org/10.1016/j.joi.2011.03.003
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1016/j.ins.2017.08.091
http://dx.doi.org/10.1063/1.5027007
http://dx.doi.org/10.1016/j.ins.2020.12.060
http://dx.doi.org/10.1088/1367-2630/13/12/123024
http://dx.doi.org/10.1016/j.physa.2011.12.011
http://dx.doi.org/10.1016/j.plrev.2014.04.004
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1016/j.physa.2017.12.054
http://dx.doi.org/10.1016/j.joi.2011.03.003
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1016/j.ins.2017.08.091
http://dx.doi.org/10.1063/1.5027007
http://dx.doi.org/10.1016/j.ins.2020.12.060
http://dx.doi.org/10.1088/1367-2630/13/12/123024
http://dx.doi.org/10.1016/j.physa.2011.12.011
http://dx.doi.org/10.1016/j.plrev.2014.04.004
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1016/j.physa.2017.12.054
http://dx.doi.org/10.1016/j.joi.2011.03.003
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1016/j.ins.2017.08.091
http://dx.doi.org/10.1063/1.5027007
http://dx.doi.org/10.1016/j.ins.2020.12.060
http://dx.doi.org/10.1088/1367-2630/13/12/123024
http://dx.doi.org/10.1016/j.physa.2011.12.011
http://dx.doi.org/10.1016/j.plrev.2014.04.004
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1016/j.physa.2017.12.054
http://dx.doi.org/10.1016/j.joi.2011.03.003
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1016/j.ins.2017.08.091
http://dx.doi.org/10.1063/1.5027007
http://dx.doi.org/10.1016/j.ins.2020.12.060
http://dx.doi.org/10.1088/1367-2630/13/12/123024
http://dx.doi.org/10.1016/j.physa.2011.12.011
http://dx.doi.org/10.1016/j.plrev.2014.04.004
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1016/j.physa.2017.12.054
http://dx.doi.org/10.1016/j.joi.2011.03.003
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1016/j.ins.2017.08.091
http://dx.doi.org/10.1063/1.5027007
http://dx.doi.org/10.1016/j.ins.2020.12.060
http://dx.doi.org/10.1088/1367-2630/13/12/123024
http://dx.doi.org/10.1016/j.physa.2011.12.011
http://dx.doi.org/10.1016/j.plrev.2014.04.004
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1016/j.physa.2017.12.054
http://dx.doi.org/10.1016/j.joi.2011.03.003
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1016/j.ins.2017.08.091
http://dx.doi.org/10.1063/1.5027007
http://dx.doi.org/10.1016/j.ins.2020.12.060
http://dx.doi.org/10.1088/1367-2630/13/12/123024
http://dx.doi.org/10.1016/j.physa.2011.12.011
http://dx.doi.org/10.1016/j.plrev.2014.04.004
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1016/j.physa.2017.12.054
http://dx.doi.org/10.1016/j.joi.2011.03.003
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1016/j.ins.2017.08.091
http://dx.doi.org/10.1063/1.5027007
http://dx.doi.org/10.1016/j.ins.2020.12.060
http://dx.doi.org/10.1088/1367-2630/13/12/123024
http://dx.doi.org/10.1016/j.physa.2011.12.011
http://dx.doi.org/10.1016/j.plrev.2014.04.004
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1016/j.physa.2017.12.054
http://dx.doi.org/10.1016/j.joi.2011.03.003
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1016/j.ins.2017.08.091
http://dx.doi.org/10.1063/1.5027007
http://dx.doi.org/10.1016/j.ins.2020.12.060
http://dx.doi.org/10.1088/1367-2630/13/12/123024
http://dx.doi.org/10.1016/j.physa.2011.12.011
http://dx.doi.org/10.1016/j.plrev.2014.04.004
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1016/j.physa.2017.12.054
http://dx.doi.org/10.1016/j.joi.2011.03.003
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1016/j.ins.2017.08.091
http://dx.doi.org/10.1063/1.5027007
http://dx.doi.org/10.1016/j.ins.2020.12.060
http://dx.doi.org/10.1088/1367-2630/13/12/123024
http://dx.doi.org/10.1016/j.physa.2011.12.011
http://dx.doi.org/10.1016/j.plrev.2014.04.004
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1016/j.physa.2017.12.054
http://dx.doi.org/10.1016/j.joi.2011.03.003
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1016/j.ins.2017.08.091
http://dx.doi.org/10.1063/1.5027007
http://dx.doi.org/10.1016/j.ins.2020.12.060
http://dx.doi.org/10.1088/1367-2630/13/12/123024
http://dx.doi.org/10.1016/j.physa.2011.12.011
http://dx.doi.org/10.1016/j.plrev.2014.04.004
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1016/j.physa.2017.12.054
http://dx.doi.org/10.1016/j.joi.2011.03.003
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1016/j.ins.2017.08.091
http://dx.doi.org/10.1063/1.5027007
http://dx.doi.org/10.1016/j.ins.2020.12.060
http://dx.doi.org/10.1088/1367-2630/13/12/123024
http://dx.doi.org/10.1016/j.physa.2011.12.011
http://dx.doi.org/10.1016/j.plrev.2014.04.004
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1016/j.physa.2017.12.054
http://dx.doi.org/10.1016/j.joi.2011.03.003
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1016/j.ins.2017.08.091
http://dx.doi.org/10.1063/1.5027007
http://dx.doi.org/10.1016/j.ins.2020.12.060
http://dx.doi.org/10.1088/1367-2630/13/12/123024
http://dx.doi.org/10.1016/j.physa.2011.12.011
http://dx.doi.org/10.1016/j.plrev.2014.04.004
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1016/j.physa.2017.12.054
http://dx.doi.org/10.1016/j.joi.2011.03.003
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1016/j.ins.2017.08.091
http://dx.doi.org/10.1063/1.5027007
http://dx.doi.org/10.1016/j.ins.2020.12.060
http://dx.doi.org/10.1088/1367-2630/13/12/123024
http://dx.doi.org/10.1016/j.physa.2011.12.011
http://dx.doi.org/10.1016/j.plrev.2014.04.004
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1016/j.physa.2017.12.054
http://dx.doi.org/10.1016/j.joi.2011.03.003
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1016/j.ins.2017.08.091
http://dx.doi.org/10.1063/1.5027007
http://dx.doi.org/10.1016/j.ins.2020.12.060
http://dx.doi.org/10.1088/1367-2630/13/12/123024
http://dx.doi.org/10.1016/j.physa.2011.12.011
http://dx.doi.org/10.1016/j.plrev.2014.04.004
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1016/j.physa.2017.12.054
http://dx.doi.org/10.1016/j.joi.2011.03.003
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1016/j.ins.2017.08.091
http://dx.doi.org/10.1063/1.5027007
http://dx.doi.org/10.1016/j.ins.2020.12.060
http://dx.doi.org/10.1088/1367-2630/13/12/123024
http://dx.doi.org/10.1016/j.physa.2011.12.011
http://dx.doi.org/10.1016/j.plrev.2014.04.004
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1016/j.physa.2017.12.054
http://dx.doi.org/10.1016/j.joi.2011.03.003
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1016/j.ins.2017.08.091
http://dx.doi.org/10.1063/1.5027007
http://dx.doi.org/10.1016/j.ins.2020.12.060
http://dx.doi.org/10.1088/1367-2630/13/12/123024
http://dx.doi.org/10.1016/j.physa.2011.12.011
http://dx.doi.org/10.1016/j.plrev.2014.04.004
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1016/j.physa.2017.12.054
http://dx.doi.org/10.1016/j.joi.2011.03.003
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1016/j.ins.2017.08.091
http://dx.doi.org/10.1063/1.5027007
http://dx.doi.org/10.1016/j.ins.2020.12.060
http://dx.doi.org/10.1088/1367-2630/13/12/123024
http://dx.doi.org/10.1016/j.physa.2011.12.011
http://dx.doi.org/10.1016/j.plrev.2014.04.004
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1016/j.physa.2017.12.054
http://dx.doi.org/10.1016/j.joi.2011.03.003
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1016/j.ins.2017.08.091
http://dx.doi.org/10.1063/1.5027007
http://dx.doi.org/10.1016/j.ins.2020.12.060
http://dx.doi.org/10.1088/1367-2630/13/12/123024
http://dx.doi.org/10.1016/j.physa.2011.12.011
http://dx.doi.org/10.1016/j.plrev.2014.04.004
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1016/j.physa.2017.12.054
http://dx.doi.org/10.1016/j.joi.2011.03.003
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1016/j.ins.2017.08.091
http://dx.doi.org/10.1063/1.5027007
http://dx.doi.org/10.1016/j.ins.2020.12.060
http://dx.doi.org/10.1088/1367-2630/13/12/123024
http://dx.doi.org/10.1016/j.physa.2011.12.011
http://dx.doi.org/10.1016/j.plrev.2014.04.004
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1016/j.physa.2017.12.054
http://dx.doi.org/10.1016/j.joi.2011.03.003
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1016/j.ins.2017.08.091
http://dx.doi.org/10.1063/1.5027007
http://dx.doi.org/10.1016/j.ins.2020.12.060
http://dx.doi.org/10.1088/1367-2630/13/12/123024
http://dx.doi.org/10.1016/j.physa.2011.12.011
http://dx.doi.org/10.1016/j.plrev.2014.04.004
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1016/j.physa.2017.12.054
http://dx.doi.org/10.1016/j.joi.2011.03.003
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1016/j.ins.2017.08.091
http://dx.doi.org/10.1063/1.5027007
http://dx.doi.org/10.1016/j.ins.2020.12.060
http://dx.doi.org/10.1088/1367-2630/13/12/123024
http://dx.doi.org/10.1016/j.physa.2011.12.011
http://dx.doi.org/10.1016/j.plrev.2014.04.004
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1016/j.physa.2017.12.054
http://dx.doi.org/10.1016/j.joi.2011.03.003
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1016/j.ins.2017.08.091
http://dx.doi.org/10.1063/1.5027007
http://dx.doi.org/10.1016/j.ins.2020.12.060
http://dx.doi.org/10.1088/1367-2630/13/12/123024
http://dx.doi.org/10.1016/j.physa.2011.12.011
http://dx.doi.org/10.1016/j.plrev.2014.04.004
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1016/j.physa.2017.12.054
http://dx.doi.org/10.1016/j.joi.2011.03.003
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1016/j.ins.2017.08.091
http://dx.doi.org/10.1063/1.5027007
http://dx.doi.org/10.1016/j.ins.2020.12.060
http://dx.doi.org/10.1088/1367-2630/13/12/123024
http://dx.doi.org/10.1016/j.physa.2011.12.011
http://dx.doi.org/10.1016/j.plrev.2014.04.004
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1016/j.physa.2017.12.054
http://dx.doi.org/10.1016/j.joi.2011.03.003
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1016/j.ins.2017.08.091
http://dx.doi.org/10.1063/1.5027007
http://dx.doi.org/10.1016/j.ins.2020.12.060
http://dx.doi.org/10.1088/1367-2630/13/12/123024
http://dx.doi.org/10.1016/j.physa.2011.12.011
http://dx.doi.org/10.1016/j.plrev.2014.04.004
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1016/j.physa.2017.12.054
http://dx.doi.org/10.1016/j.joi.2011.03.003
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1016/j.ins.2017.08.091
http://dx.doi.org/10.1063/1.5027007
http://dx.doi.org/10.1016/j.ins.2020.12.060
http://dx.doi.org/10.1088/1367-2630/13/12/123024
http://dx.doi.org/10.1016/j.physa.2011.12.011
http://dx.doi.org/10.1016/j.plrev.2014.04.004
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1016/j.physa.2017.12.054
http://dx.doi.org/10.1016/j.joi.2011.03.003
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1016/j.ins.2017.08.091
http://dx.doi.org/10.1063/1.5027007
http://dx.doi.org/10.1016/j.ins.2020.12.060
http://dx.doi.org/10.1088/1367-2630/13/12/123024
http://dx.doi.org/10.1016/j.physa.2011.12.011
http://dx.doi.org/10.1016/j.plrev.2014.04.004
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1016/j.physa.2017.12.054
http://dx.doi.org/10.1016/j.joi.2011.03.003
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1016/j.ins.2017.08.091
http://dx.doi.org/10.1063/1.5027007
http://dx.doi.org/10.1016/j.ins.2020.12.060
http://dx.doi.org/10.1088/1367-2630/13/12/123024
http://dx.doi.org/10.1016/j.physa.2011.12.011
http://dx.doi.org/10.1016/j.plrev.2014.04.004
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1016/j.physa.2017.12.054
http://dx.doi.org/10.1016/j.joi.2011.03.003
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1016/j.ins.2017.08.091
http://dx.doi.org/10.1063/1.5027007
http://dx.doi.org/10.1016/j.ins.2020.12.060
http://dx.doi.org/10.1088/1367-2630/13/12/123024
http://dx.doi.org/10.1016/j.physa.2011.12.011
http://dx.doi.org/10.1016/j.plrev.2014.04.004
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1016/j.physa.2017.12.054
http://dx.doi.org/10.1016/j.joi.2011.03.003
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1016/j.ins.2017.08.091
http://dx.doi.org/10.1063/1.5027007
http://dx.doi.org/10.1016/j.ins.2020.12.060
http://dx.doi.org/10.1088/1367-2630/13/12/123024
http://dx.doi.org/10.1016/j.physa.2011.12.011
http://dx.doi.org/10.1016/j.plrev.2014.04.004
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1016/j.physa.2017.12.054
http://dx.doi.org/10.1016/j.joi.2011.03.003
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1103/PhysRevE.74.026103
http://dx.doi.org/10.1016/j.ins.2017.08.091
http://dx.doi.org/10.1063/1.5027007
http://dx.doi.org/10.1016/j.ins.2020.12.060
http://dx.doi.org/10.1088/1367-2630/13/12/123024
http://dx.doi.org/10.1016/j.physa.2011.12.011
http://dx.doi.org/10.1016/j.plrev.2014.04.004
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1371/journal.pone.0170527
http://dx.doi.org/10.1016/j.physa.2017.12.054

	I Introduction
	II Networked Knowledge in the Context of Complex Network
	A Complex Networks
	B Knowledge Graph
	C Deep Learning Technologies for Networked Knowledge
	D Networked Knowledge in Form of Networked Software

	III Networked Knowledge and Potential Applications
	A Applications in Biological Networks
	B Applications in Semantic Networks
	C Applications in Social Networks
	D Applications in Power Networks
	E Other Applications

	IV Research Challenges and Future Trends
	V Conclusions
	References

