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   Abstract—In this work, a novel  shape control  approach of the
probability  density  function  (PDF)  for  nonlinear  stochastic
systems  is  presented.  First,  we  provide  the  formula  for  the  PDF
shape controller without devising the control law of the controller.
Then, based on the exact analytical solution of the Fokker-Planck-
Kolmogorov  (FPK)  equation,  the  product  function  of  the
polynomial  and  the  exponential  polynomial  is  regarded  as  the
stationary PDF of the state response. To validate the performance
of  the  proposed  control  approach,  we  compared  it  with  the
exponential  polynomial  method  and  the  multi-Gaussian  closure
method  by  implementing  comparative  simulation  experiments.
The  results  show  that  the  novel  PDF  shape  control  approach  is
effective and feasible. Using an equal number of parameters, our
method  can  achieve  a  similar  or  better  control  effect  as  the
exponential  polynomial  method.  By  comparison  with  the  multi-
Gaussian  closure  method,  our  method  has  clear  advantages  in
PDF  shape  control  performance.  For  all  cases,  the  integral  of
squared  error  and  the  errors  of  first  four  moments  of  our
proposed  method  were  very  small,  indicating  superior
performance  and  promising  good  overall  control  effects  of  our
method.  The  approach  presented  in  this  study  provides  an
alternative for PDF shape control in nonlinear stochastic systems.
    Index Terms—Fokker-Planck-Kolmogorov  (FPK)  equation,  nonli-
near  control,  nonlinear  stochastic  systems,  probability  density
function (PDF).
  

I.  Introduction

MOST  control  systems  are  subject  to  inevitable  random
noise  interference,  or  their  model  parameters  drift  in  a

random form. Therefore, deterministic systems almost do not
exist in nature. So, each system can be considered as a random
system.  For  the  convenience  of  mathematical  processing,
random uncertainty is often ignored when random uncertainty
does  not  play  a  leading  role,  and  a  deterministic  system  is
used to approximate the real system. In stochastic systems, the
common  stochastic  control  methods  take  the  mean  value  of
the  performance  index as  the  control  objective  [1];  neverthe-

less,  this  method  cannot  inhibit  the  volatility  caused  by  ran-
dom factors. Variance and higher-order moments can suppress
this  volatility,  resulting  in  a  large  number  of  remarkable
research results to solve volatility problems, such as variance
control  and  risk-sensitive  control  [2]–[4].  However,  variance
control  only  controls  the  second-order  moment  of  the
performance  index,  but  not  its  higher-order  moment.  Risk-
sensitive control attempts to control the weighted sum of each
order  moment  by  adjusting  a  risk-sensitive  coefficient,  but  it
cannot guarantee that  each order moment of the performance
index can be controlled to the desired form. The fundamental
method  to  solve  this  problem  is  to  control  the  complete
statistical  characteristics  of  random  variables.  For  stochastic
systems,  the  complete  statistical  characteristics  of  random
variables are contained in the shape of the probability density
function (PDF),  so controlling the PDF shape means that  the
mean,  variance  and  other  high-order  moments  of  random
variables  are  controlled.  The  shape  of  PDF  contains  all
information  on  process  dynamics,  system  disturbance,  and
nonlinearity.  Therefore,  compared  with  the  traditional  mean,
variance,  and  risk-sensitive  control,  controlling  the  shape  of
PDF  can  better  reflect  the  complete  statistical  characteristics
of random variables and has more research significance.

References  [5]−[14]  have  conducted  in-depth  research  on
PDF shape control and achieved prominent research develop-
ments. They mainly use B-spline technology, minimum entro-
py technology, and linear matrix inequality (LMI) technology
to  propose  PDF shape  control  schemes,  obtain  the  controller
that  makes  the  output  PDF  shape  approach  the  target  PDF
shape, and effectively solve the PDF shape control problem of
stochastic systems. However, these methods are aimed mainly
at linear stochastic systems and are not suitable those that are
nonlinear.

Stochastic  dynamic  systems  exhibit  strong  or  weak
nonlinear behaviors due to various nonlinear factors,  so most
stochastic dynamic systems are nonlinear [15]–[17]. A central
problem  in  studying  nonlinear  systems  is  the  response  of
nonlinear  stochastic  dynamical  systems.  Studies  on  random
response,  such  as  those  on  random  response  prediction  and
control  and  dynamic  reliability  estimation  [18]–[20],  have
been  implemented  using  the  statistical  characteristics  of  the
random  response.  As  stated  previously,  the  PDF  shape  can
describe  the  complete  statistical  characteristics  of  random
response;  therefore,  the  research  of  PDF  shape  control  has
important value in nonlinear systems [21].

One  approach  to  obtaining  the  PDF  shape  control  of  non-
linear  stochastic  systems  is  through  the  use  of  approximate
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methods  [22]–[28].  Examples  of  this  approach  include  the
equivalent  linearization  method,  Gram-Charlier  expansion
approximation,  and  multi-Gaussian  closure  method,  etc.  The
resulting  PDF  shape  controller  from  these  approximate
methods may be inaccurate.  Another way is  to determine the
exact  analytical  solution  of  the  Fokker-Planck-Kolmogorov
(FPK)  equation  [29]–[32].  The  control  effect  of  the  latter  is
more accurate than the former. The FPK equation reflects the
evolution  law  of  the  state  in  time  and  space  in  dynamic
systems, so it is an important tool to analyze the state response
of nonlinear stochastic systems. The FPK equation method is
the  most  rigorous  theoretical  solution  in  nonlinear  stochastic
dynamic analysis. However, in the FPK equation it is required
that  the  excitation  is  Gaussian  white  noise  and  the  state
variable  is  a  Markov  process.  Due  to  the  rigorous  theory  of
this  method,  it  is  difficult  to  obtain  the  analytical  solution of
the  FPK  equation.  In  the  literature  [31],  we  developed  a
detailed process of solving the FPK equation and obtained the
general solution of the FPK equation. For simplicity, we only
used one solution with an exponential polynomial form as the
stationary PDF of the state response and abandoned the other
solution due to its complex structure.

In  this  paper,  we  propose  a  novel  PDF  shape  control
approach based on the exact analytical solution, which is more
reliable and persuasive than other approximate methods. First,
the  expression  of  the  controller  is  obtained  by  the  FPK
equation without designing the specific form of the controller.
Then,  according  to  one  of  the  exact  solutions  of  the  FPK
equation,  the  PDF  expression  of  the  state  response  is  deter-
mined. From the curves of the probability density function and
cumulative distribution function (CDF), the integral of square
error, and errors of the first four moments (mean, variance, the
third moment, and the fourth moment), the performance of the
proposed method were then analyzed by comparing the results
with  the  exponential  polynomial  and  multi-Gaussian  closure
methods.

The main contributions and improvements of this study are
summarized as follows:

1)  The  proposed  method  does  not  set  the  form  of  the
controller, so it is suitable for any nonlinear stochastic system.

2)  The  PDF  shape  control  approach  is  proposed  upon  the
exact  analytical  solution,  and  thereby  is  more  accurate  and
dependable than other approximate methods.

3) The stationary PDF of the state response is composed of
the polynomial and exponential polynomial, so the method is
fit for different target probability density distributions.

The remainder of the paper is arranged as follows. We work
out  the  formula  for  the  PDF  shape  controller  and  the
stationary PDF expression of the state response in Section II.
We  provide  the  steps  for  solving  parameters  and  the  simul-
ation results in Section III. Then we make a detailed analysis of
the results and evaluate the proposed approach in Section IV.
Finally, we conclude the paper in Section V.  

II.  Problem Statement

Consider  a  one-dimensional  continuous  nonlinear  control
system excited with random noise 

dx
dt
= φ(x)+u(x)+ω(t), x(t0) = x0 (1)

x ∈ R x0
t0 φ(x) u(x)

ω(t)

where  is  the  state  response;  is  the  known  original
state at the start time ;  is the nonlinear function;  is
a  controller  to  be  determined;  and  is  Gaussian  white
noise.

The  corresponding  FPK equation  of  the  control  system (1)
is
 

∂p(x, t)
∂t

= − ∂
∂x
{[φ(x)+u(x)]p(x, t)} + 1

2
∂2[2πS 0 p(x, t)]

∂x2 (2)

S 0
p(x, t)

x(t)

t→∞ p(x, t) = p(x) ∂p(x,t)
∂t = 0

where  is  the  power  spectrum  density  of  Gaussian  white
noise and is a constant; and  is the PDF of state response

. When the system is in steady state, the PDF of the state
response  does  not  change  with  time t.  This  means  that  when

,  and .  We  get  the  following
expression from (2):
 

− d
dx
{[φ(x)+u(x)]p(x)}+ d2[πS 0 p(x)]

dx2 = 0. (3)

S 0 = 1/πFor  the  convenience  of  derivation,  take .  After
transposing and integrating (3), we get the expression
 

dp(x)
dx
= [φ(x)+u(x)]p(x)+C (4)

where C is a constant.
p(x)

lim|x|→∞p(x) = 0 lim|x|→∞
dp(x)

dx = 0
Theorem  1: For  any  probability  density  function ,

 and  hold.
lim|x|→∞ p(x) = 0Proof: We first prove .

p(x) (−∞,+∞)
x ∈ (−∞,+∞)

As  is  continuous  within ,  for  an  arbitrary
, we have

 

p(x) = F′(x) = lim
∆x→0

F(x+∆x)−F(x)
∆x

(5)

F(x) p(x)where  is the cumulative distribution function of .
Thus, we have

 

lim
x→∞

p(x) = lim
x→∞

lim
∆x→0

F(x+∆x)−F(x)
∆x

= lim
∆x→0

lim
x→∞

F(x+∆x)− lim
x→∞

F(x)

∆x

= lim
∆x→0

1−1
∆x
= 0. (6)

Similarly, we can derive
 

lim
x→−∞

p(x) = lim
x→−∞

lim
∆x→0

F(x+∆x)−F(x)
∆x

= lim
∆x→0

lim
x→−∞

F(x+∆x)− lim
x→−∞

F(x)

∆x

= lim
∆x→0

0−0
∆x
= 0. (7)

lim|x|→∞ p(x) = 0So, .
lim|x|→∞

dp(x)
dx = 0We then prove .
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lim
|x|→∞

dp(x)
dx
= lim
|x|→∞

lim
∆x→0

p(x+∆x)− p(x)
∆x

= lim
∆x→0

lim
|x|→∞

p(x+∆x)− lim
|x|→∞

p(x)

∆x

= lim
∆x→0

0−0
∆x
= 0. (8)

■
Take the limit on both sides of (4)

 

lim
|x|→∞

dp(x)
dx
= lim
|x|→∞

{[φ(x)+u(x)]p(x)}+C. (9)

φ(x)+u(x)
lim|x|→∞ p(x) = 0 lim|x|→∞

dp(x)
dx = 0

Since  the  one-dimensional  continuous  nonlinear  control
system focused in this study is a stable system,  is
bounded. Substituting  and 
into (9) yields
 

0 = 0+C. (10)
C = 0This means  holds.

C = 0We substitute  into (4) and get
 

dp(x)
dx
= [φ(x)+u(x)]p(x). (11)

Then we obtain the expression of the controller from (11)
 

u(x) =
dp(x)

dx

p(x)
−φ(x). (12)

u(x)
p(x)

It  is  known  from (12)  that  can  be  acquired  only  after
 is determined.

g(x) = φ(x)+u(x)Let , then (3) can be transformed as
 

p′′(x)−g(x)p′(x)−g′(x)p(x) = 0. (13)

We  have  successfully  solved  the  second-order  differential
equation  (13)  by  the  constant  variation  method to  capture  its
two  linear  independent  special  solutions  [31],  and  thus  the
stationary PDF of the FPK equation (3) is
 

p(x) = c1e
r

g(x)dx + c2e
r

g(x)dx
w

e−
r

g(x)d(x)dx (14)

c1 c2where  and  are arbitrary constants.
c2 = 0 c1 = 0 p1(x) = c1e

r
g(x)dx p2(x) =

c2e
r

g(x)dx
r

e−
r

g(x)d(x)dx
Take  or ,  then  or 

 is the solution to  (3).
q(x) = e

r
g(x)d(x) h(x) =

r
e−

r
g(x)d(x)dx

g(x)
Let  and ,  and suppose

 is of polynomial form, such that
 

g(x) =
l∑

r=0

αr xr (15)

αr g(x)where  is the coefficient of , and l is the highest order.
q(x) h(x)Substituting (15) into  and  yields

 

q(x) = e

l∑
r=0

1
r+1αr xr+1+C1

(16)
 

h(x) =
w

e
−(

l∑
r=0

1
r+1αr xr+1+C1)

dx (17)

C1where  is a constant.
To simplify, we take 

l∑
r=0

1
r+1
αr xr+1+C1 =

n∑
j=0

b jx j (18)

n = l+1 b0 =C1 b j =
1

r+1αr j = 1,2, . . . ,nwhere , , and  ( ).
Then we have

 

q(x) = e

n∑
j=0

b j x j

(19)
 

h(x) =
w

e
−

n∑
j=0

b j x j

dx. (20)

p1(x) p2(x)Thus, the expressions  and  can be obtained
 

p1(x) = c1e

n∑
j=0

b j x j

(21)
 

p2(x) = c2e

n∑
j=0

b j x j w
e
−

n∑
j=0

b j x j

dx. (22)

p1(x)
p2(x)

h(x)

p1(x) p2(x)
h(x)

h(x)

The  expressions  suggest  that  is  an  exponential
polynomial,  which  can  easily  be  calculated,  while 
contains  an  indefinite  integral  and  is  mathematically
more  complex.  In  previous  studies  [29]–[32],  to  make  the
calculations  more  simple  and  to  find  the  optimal  controller
more  easily,  was  selected  instead  of .  As  we  all
know, the analytical solution of the indefinite integral  can
be difficult to obtain, but we also know that  is a nonlinear
function,  so  it  can  be  approximated  by  an  interpolation
polynomial
 

h(x) ≈
w∑

i=0

aixi (23)

aiwhere  is the coefficient of the approximation function, and
w is its order.

p2(x)
From  (20),  (22),  and  (23),  we  can  obtain  the  approximate

expression of 
 

p2(x) ≈ c2

 w∑
i=0

aixi

e
n∑

j=0
b j x j

. (24)

Equation  (24)  is  the  product  function  of  a  polynomial  and
an  exponential  polynomial  and  is  used  in  this  study  as  the
stationary PDF of the state response, that is
 

p(x) = c2

 w∑
i=0

aixi

e
n∑

j=0
b j x j

. (25)

The  goal  of  PDF  shape  control  is  to  find  an  optimal
controller  to  make  the  PDF  of  the  state  response  optimally
track the target  PDF,  minimizing the performance index.  We
define  the  integral  of  square  error  as  the  performance  index
function.  The  integral  of  square  error  (ISE)  represents  the
deviation performance index between the actual PDF and the
expected PDF, which is  a  measure of the performance of the
control  system. The mathematical  expression of  the perform-
ance index function J is
 

J =
w xmax

xmin
[p(x)− pt(x)]2dx (26)

pt(x) xmin xmaxwhere  is the target PDF;  and  are the minimum

 1492 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 9, NO. 8, AUGUST 2022



and maximum of x, respectively.
ai b j p(x)The  parameters  and  in  are  optimized  by

minimizing J based  on  an  optimization  method.  Substituting
(25) into (12), we obtain the optimal PDF shape controller
 

u(x) =

w∑
i=1

iaixi−1

w∑
i=0

aixi
+

n∑
j=1

jb jx j−1−φ(x). (27)

  

III.  Case Study

When  the  PDF  shape  of  the  state  response  can  follow  the
shape of the target PDF, we utilize the least square method to
find the optimal  parameters  in (25),  which minimizes perfor-
mance index function J. The solution steps are as follows:

w = 1 n = 1
ai bi ε > 0

Step 1: Take  and , assign random initial values to
the parameters  and , and give the error accuracy .

Step  2: Using  the  least  square  method,  the  parameters  are
optimized.

J < εStep  3: If  the  optimized  parameters  make ,  the
algorithm ends. Otherwise, go to Step 4.

w = w+1 n = n+1
J < ε

Step  4: Let  or ,  repeat  Step  2  until  the
obtained  values  of  the  parameters  meet  the  condition ,
and  the  current  values  of  the  parameters  are  the  optimal
parameters.

Step  5: Substituting  the  optimal  parameters  into  (25)  and
(27)  yields  the  optimal  stationary  PDF  and  the  optimal  PDF
shape controller.

Subsequently,  we  use  the  above  solution  steps  to  find  the
optimal solutions of the parameters.

The  one-dimensional  nonlinear  stochastic  system  (1)  is  as
follows:
 

dx
dt
= −2x− x3+u(x)+ω(t), x(t0) = x0. (28)

φ(x) = −2x− x3This means .
Four  different  probability  distributions  were  used  as  the

target PDF, and the values of w and n were varied for different
target  PDFs.  In  the  simulations,  we  compared  the  proposed
approach  with  the  exponential  polynomial  method  and  the
multi-Gaussian closure method.

p1(x)
The  PDF  expression  based  on  the  exponential  polynomial

method is  in (21).
The  PDF  expression  based  on  the  multi-Gaussian  closure

method is
 

pMGC(x) =
N∑

z=1

λz
1

σz
√

2π
e
− 1

2σz2 (x−µz)2

(29)

µz σz
λz∑N

z=1 λz = 1

where N is  the  number  of  Gaussian  functions  in  multi-
Gaussian  closure  method;  and  are  the  mean  and  the
variance of the zth Gaussian function;  is the coefficient of
each Gaussian distribution, and .

To  properly  evaluate  the  performance  of  three  PDF  shape
control  methods,  in  each  case  study,  the  exponential
polynomial  method  and  the  proposed  method  had  the  same
number  of  parameters  to  be  solved,  and  the  multi-Gaussian
closure method was composed of two Gaussian functions.  

A.  Case 1
The target PDF is a symmetrical unimodal distribution, take

the Gaussian distribution for example
 

pt(x) =
1

0.5×
√

2π
e−

(x−2)2

2×0.52 . (30)

w = 2
n = 2 p(x)

According to the solution steps, we get that when  and
, the obtained  can meet accuracy requirements. That

is, the expression of the actual stationary PDF is
 

p(x) = c2

 2∑
i=0

aixi

e
2∑

j=0
b j x j

. (31)

c2
ai b j

a0 = 4.2711×10−5 a1 = −1.4883×10−5 a2 =

1.4495×10−6 b0 = 1.8455 b1 = 8.3292 b2 = −1.9611

The  value  of  was  calculated  as  1  from  the  target  PDF.
Parameters  and  were  then  obtained  based  on  the
nonlinear  least  square  method.  Through  simulation  experi-
ments,  we  get , , 

, , , .  Sub-
stituting the above parameters into (25), we get the stationary
PDF of the state response
 

p(x) = (4.2711×10−5−1.4883×10−5x+1.4495×10−6x2)

× e1.8455+8.3292x−1.9611x2
. (32)
a1 a2

p(x)

Note that the optimal values of  and  are very small, and
they  can  be  regarded  as  zero  without  affecting  the  control
effect,  such  that  the  optimized  in  (32)  is  an  exponential
polynomial
 

p(x) = 4.2711×10−5e1.8455+8.3292x−1.9611x2
. (33)

Based on (27), we calculate the PDF shape controller
 

u(x) = 8.3292−1.9222x+ x3. (34)

a1 ≈ a2 ≈ 0

This  may  be  related  to  the  fact  that  the  target  PDF  has  a
Gaussian  distribution  and  that  some  parameters  are
approximately  0  ( )  after  being  optimized.  For  the
Gaussian target PDF, only four parameters are needed to make
the  actual  PDF  track  the  target  PDF.  When  the  polynomial
parameters  other  than  the  constant  term  in  (25)  are  equal  to
zero,  the  exponential  polynomial  method  becomes  a  special
case in our method.

We compare  the  PDF shape  control  effect  of  the  proposed
approach  with  those  of  the  exponential  polynomial  method
and multi-Gaussian closure method (see Fig. 1). PDF-EP (blue
line)  is  the  actual  PDF  based  on  the  exponential  polynomial
method,  PDF-MGC  (green  line)  is  the  actual  PDF  based  on
the multi-Gaussian closure method, and PDF-PEP (black line)
is  the  actual  PDF  based  on  the  proposed  method  (i.e.,  the
product of the polynomial and exponential polynomial).  

B.  Case 2
The  target  PDF  is  an  asymmetrical  unimodal  distribution.

With the Beta distribution as example
 

pt(x) = x(1− x)4. (35)
Through simulation experiments,  the values of w and n are

the  same  as  those  in  Case  1,  so  the  actual  stationary  PDF
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devised  is  similar  to  (31).  After  optimizing  the  model  para-
meters, we obtain the optimal stationary PDF
 

p(x) = (0.0259x−0.0302x2)e−1.6140−2.4371x−2.6172x2
. (36)

The PDF shape controller is
 

u(x) =
0.0259−0.0604x

0.0259x−0.0302x2 −2.4371−3.2344x+ x3. (37)

The comparison of the control effects for the three methods
is shown in Fig. 2.
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Fig. 2.     Case 2: Asymmetrical unimodal target PDF.
  

C.  Case 3
The  target  PDF is  a  symmetrical  bimodal  distribution,  and

the mathematical expression is
 

pt(x) = 1.1284x2e−x2
. (38)

Similarly,  the actual  stationary PDF devised is  the same as
in (31).

The optimal stationary PDF is
 

p(x) = 0.3072x2e1.3009−x2
. (39)

The PDF shape controller is 

u(x) =
2
x
+ x3. (40)

The comparison of the control effects for the three methods
is shown in Fig. 3.
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Fig. 3.     Case 3: Symmetrical bimodal target PDF.
 

In  this  case,  only  three  of  the  optimal  parameters  are  not
zero.  That is,  our proposed method only needs three parame-
ters to achieve good control effects. The effect of the exponen-
tial polynomial method with six parameters is shown in Fig. 3.
If  we  continue  to  increase  the  number  of  parameters  in  the
exponential  polynomial  method  and  implement  the  test
experiments, the order of the exponential polynomial could be
as  high  as  20.  This  means  that  21  parameters  are  needed  to
have the same control effect as our method.  

D.  Case 4
The  target  PDF  is  an  asymmetrical  distribution,  and  the

mathematical expression is
 

pt(x) = 0.2413ex2−x3−x4
. (41)

The actual stationary PDF is given by the expression
 

p(x) = c2

 2∑
i=0

aixi

e
4∑

j=0
b j x j

. (42)

The optimal stationary PDF is
 

p(x) = (0.0103−0.0028x+0.0011x2)

× e3.1562+0.2661x+0.9299x2−1.0210x3−1.0017x4
. (43)

The PDF shape controller is
 

u(x) =
−0.0028+0.0022x

0.0103−0.0028x+0.0011x2

+0.2661+3.8598x−3.0630x2−3.0068x3. (44)
The comparison of the control effects for the three methods

is shown in Fig. 4.
For  the  above  four  cases,  in  order  to  more  clearly  analyze

and illustrate the PDF shape control performance of the three
methods,  we  provide  the  cumulative  distribution  function
curve of the PDF by three methods as well as that of the target
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Fig. 1.     Case 1: Symmetrical unimodal target PDF.
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PDF, as shown from Fig. 5(a) to Fig. 5(d). CDF-EP (blue line)
is  the  cumulative  distribution  function  curve  based  on  the
exponential polynomial method, CDF-MGC (green line) is the
cumulative  distribution  function  curve  based  on  the  multi-
Gaussian  closure  method,  and  CDF-PEP  (black  line)  is  the
cumulative distribution function curve based on the proposed
method in this study.

IS EEP IS EMGC IS EPEP

The integrals of square error for the different cases using the
three methods were calculated and are summarized in Table I.

, ,  and  indicate  the  integral  of  square
error (i.e., the performance index) for the exponential polyno-
mial  method,  the  multi-Gaussian  closure  method,  and  the
proposed method, respectively.

me = |mt −m|
ve = |vt − v| mt vt

meEP veEP

meMGC veMGC

mePEP vePEP

Meanwhile,  we  calculated  the  mean  error  and  the  variance
error between the target PDF and the optimized PDF based on
the  three  methods.  The  results  are  summarized  in Tables II
and III. Let the mean error  and the variance error

.  and  are  the  mean  and  the  variance  of  the
target  PDF,  while m and v are  the  mean  and  the  variance  of
the optimized PDF. In Tables II and III,  and  are the
mean  error  and  the  variance  error  of  the  exponential
polynomial method.  and  are the mean error and
the  variance  error  of  the  multi-Gaussian  closure  method.

 and  are the mean error and the variance error of
the proposed method.

se = |st − s| ke = |kt − k| st
kt

seEP
keEP

seMGC keMGC

sePEP kePEP

To further validate the proposed method, we also calculated
the  third  moment  error  and  the  fourth  moment  error  of  the
optimized  PDF in  three  methods,  as  shown in Tables IV and
V.  The  third  moment  and  the  fourth  moment  are  also  called
skewness  and  kurtosis,  respectively.  Let  the  third  moment
error  and  the  fourth  moment  error . 
and  are  the  third  moment  and  the  fourth  moment  of  the
target PDF, while s and k are the third moment and the fourth
moment of the optimized PDF. In Tables IV and V,  and

 are the third moment error and the fourth moment error
of the exponential  polynomial method.  and  are
the  third  moment  error  and  the  fourth  moment  of  the  multi-
Gaussian  closure  method.  and  are  the  third
moment  error  and  the  fourth  moment  error  of  the  proposed
method.  

IV.  Results Analysis

Figs. 1–4 show  that  the  proposed  PDF  shape  control
approach  has  excellent  control  effects  for  the  different  target
PDFs from unimodal to bimodal and symmetrical distribution
to  asymmetrical  distribution.  For  the  symmetrical  unimodal
target  PDF,  the  control  effects  of  three  methods  are  very
similar, as shown in Fig. 1. Illustrated from the CDF curves in
Fig. 5(a),  the  control  effect  of  the  exponential  polynomial
method  is  slightly  better  than  that  of  the  other,  but  the
difference in the performance of the three methods is tiny. In
Figs. 2 and 3,  the  proposed  method  has  a  more  pronounced
advantage than the other  two in PDF control  effect,  which is
also proven by the CDF curves in Figs. 5(b) and 5(c). In Fig. 4,
our  method  yielded  comparable  control  effects  as  the
exponential  polynomial  method  and  better  results  than  the
multi-Gaussian closure method, which keeps with the result in
Fig. 5(d).

When the target PDF is a symmetrical unimodal distribution
(Case 1) or an asymmetrical bimodal distribution (Case 4), the
integral of square error of the exponential polynomial method
is comparably smaller, as presented in Table I. This is because
the target PDFs in Cases 1 and 4 are the exponential polyno-
mial  form.  Therefore,  with  the  same  number  of  parameters,
the  exponential  polynomial  method  has  a  smaller  integral  of
square  error  than  our  method  for  the  target  PDFs  with  an
exponential polynomial form. However, for the target PDF in
Case  3,  the  control  effect  of  the  exponential  polynomial
method is much worse than our proposed technique using the
same  number  of  parameters.  For  the  exponential  polynomial
method to achieve the same control effect as our method, the
parameters would have to be increased considerably. For more
complex  target  PDFs,  the  exponential  polynomial  method
with a higher-order may have a better control effect than other
methods, but at the cost of more parameters.

10−7 10−5 10−11 10−8

10−1 10−2

For all the analyzed cases (see Table I), our method has the
smaller  integral  of  square  error  than  the  multi-Gaussian
closure method. The integral of square error of our method for
the  four  cases  in Table I are , ,  and ,
indicating  a  very  small  error  accuracy  for  each  case.  The
integral of square error of the exponential polynomial method
is  and that of the multi-Gaussian closure method is 
for Case  3.  Thus,  the  proposed  method  is  fit  for  any  of  the
four cases. In this study, what we control is the PDF shape of
the  state  response.  In Figs. 1–4,  the  PDF shape  generated  by
our  method  is  very  consistent  with  the  shape  of  the  target
PDF, which achieves our expected goal.

10−4

meMGC veEP veMGC
seMGC keMGC 10−1 10−2

keEP

In Tables II–V, the errors of the first fourth moments of the
exponential  polynomial  method  for  Cases  1  and  4  are  much
smaller  than  those  of  our  method  and  the  multi-Gaussian
closure  method.  Under  four  cases,  however,  the  order  of
magnitude  of  all  the  errors  generated  by  our  method  is  no
more than , while by the other two methods, the order of
magnitude  of  such  errors  including , , ,

, and  is  or  in some cases. Even worse,
the  value  of  in  Case  3  is  1.6396.  This  is  because  the
resulting PDF from our proposed control method can track the
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Fig. 4.     Case 4: Asymmetrical bimodal target PDF.
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target  PDF  well  for  all  cases,  demonstrating  that  the  overall
control effect of our method is better than that of the other two
methods. Therefore, controlling the shape of PDF means that
each moment  can also be controlled,  as  is  in  accord with the
theoretical analysis in the introduction.  

V.  Conclusion

In  this  study,  we  developed  a  novel  PDF  shape  control
approach for nonlinear stochastic systems. The stationary PDF
expression  of  state  response  is  determined  according  to  the
exact  analytical  solution  of  the  FPK  equation,  and  thus  is
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Fig. 5.     The cumulative distribution function curves of the three methods.
 

 

TABLE I 

The Integrals of Square Error of the Three Methods

IS EEP IS EMGC IS EPEP

Case 1 3.6561×10−15 5.1130×10−7 2.1893×10−7

Case 2 4.1069×10−4 1.5136×10−4 1.8835×10−5

Case 3 3.8623×10−1 5.9226×10−2 6.8797×10−11

Case 4 4.7031×10−21 7.4223×10−3 8.4183×10−8
 

 

TABLE II 

The Mean Errors of the Three Methods

meEP meMGC mePEP

Case 1 2.3812×10−9 5.0734×10−4 1.9194×10−4

Case 2 1.0299×10−5 2.9441×10−4 5.2842×10−5

Case 3 2.1099×10−3 2.1869×10−11 6.4266×10−15

Case 4 1.4347×10−11 1.1627×10−2 4.1667×10−5
 

 

TABLE III 

The Variance Errors of the Three Methods

veEP veMGC vePEP

Case 1 2.9732×10−10 1.4431×10−4 1.6588×10−4

Case 2 1.0878×10−5 2.5145×10−4 5.7211×10−5

Case 3 3.5524×10−1 1.3002×10−1 7.9969×10−6

Case 4 1.2436×10−11 6.7644×10−2 4.1752×10−5
 

 

TABLE IV 

The Third Moment Errors of the Three Methods

seEP seMGC sePEP

Case 1 3.3213×10−13 1.0034×10−5 1.3798×10−4

Case 2 2.2299×10−5 2.1376×10−4 6.0446×10−5

Case 3 6.6510×10−3 8.3333×10−11 2.4101×10−14

Case 4 5.4582×10−12 1.1380×10−1 1.2449×10−4
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more accurate than other approximate methods. The proposed
method  can  be  suitable  for  any  nonlinear  stochastic  systems
and  make  the  PDF  of  state  response  match  different  target
PDFs.

Given comparable numbers of parameters to be solved, our
method  can  achieve  a  similar  or  better  control  effect  as  the
exponential  polynomial  method.  Compared  with  the  multi-
Gaussian closure method, our method has clear advantages in
PDF  shape  control  performance.  When  we  calculated  the
integral  of  square  error  and  the  errors  of  the  first  four
moments  of  the  optimized  PDF in  three  methods,  the  results
show  that  the  proposed  approach  provides  better  overall
control results than the other two in all analyzed cases. Thus,
the method proposed in this study provides an alternative for
PDF shape control in nonlinear stochastic systems.

In  this  paper  we  mainly  focused  on  one-dimensional  sys-
tems suffering from Gaussian white  noise.  When a  nonlinear
system  is  multi-dimensional,  there  exist  multiple  random
variables  and  the  variables  are  coupled  with  each  other.  To
determine the mean of multiple random variables, we need to
calculate  a  multiple  integral,  while  there  is  almost  no way to
obtain  an  exact  solution  of  this  integral  in  mathematics.
Therefore,  it  is  very  difficult  to  solve  the  first-order  moment
(i.e.,  mean)  of  the  state  response  in  a  multi-dimensional
system,  and  even  more  difficult  to  solve  the  PDF containing
high-order  moments.  In  addition,  for  some  nonlinear
stochastic systems, the excitation is non-Gaussian white noise,
such  that  the  output  or  state  variables  of  the  system  obey
asymmetric  random  distribution.  It  is  a  great  challenge  to
solve  the  FPK  equation  corresponding  to  those  nonlinear
systems  subjected  to  non-Gaussian  noise.  Thus,  the  multi-
dimensional  nonlinear  systems  and  systems  with  non-
Gaussian noise would be considered in the future.
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