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Abstract. Despite many recent advances, computer-aided mild cogni-
tive impairment (MCI) conversion prediction is still a very challenging
task due to: 1) the abnormal areas are subtle compared to the size of the
whole brain, 2) the features’ dimension is much larger than the number of
samples. To tackle these problems, we propose a region ensemble model
using a divide and conquer strategy to capture the disease’s finer rep-
resentation. Specifically, the features are independently extracted from
non-overlapping regions and then fused to describe the subject accord-
ing to the attention scores. Moreover, we design a novel loss that models
the relationship between different stages of the disease to regularize the
training process explicitly. Experiments on public data sets for MCI con-
version prediction demonstrate that our method has achieved state-of-
the-art performance. Specifically, the area under the receiver operating
characteristic curve (AUC) is improved from 79.3% to 85.4%. Beyond
that, each region’s contribution can be assessed quantitatively, using the
proposed method.

Keywords: Alzheimer’s disease · Mild cognitive impairment · Region
ensemble network · Relation regularized loss

1 Introduction

Mild cognitive impairment (MCI) is the prodromal stage of Alzheimer’s dis-
ease (AD). A systematic review found that 32% of individuals with MCI would
convert to AD within five years’ follow-up. Hence, identifying which individ-
uals with MCI are more likely to develop AD is a primary goal of current
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research [1]. Before some noticeable symptoms of the disease, several subtle
structural changes have already happened in the brain. As an essential computer-
aided diagnosis technique, structural magnetic resonance imaging (sMRI) can
non-invasively capture such changes. Therefore many machine learning or deep
learning-based methods have been applied to AD diagnosis and MCI conversion
prediction based on sMRI [2,3] and have reported remarkable success.

In general, all of these methods can be grouped into detection-dependent
approaches and detection-free approaches, depending on whether they need a
separate model to detect regions of interest (ROI) or not. Detection-dependent
methods [4–9] first locate ROI based on prior domain knowledge using an inde-
pendent detection model. It then constructs a diagnosis model based on the
ROI’s feature. These methods reduce the feature’s dimension using the whole
brain’s sub-areas but may miss some critical regions in practice. Thus, it is
hard for them to achieve high performance. To tackle this limitation, current
state-of-the-art methods adopt the detection-free approach. Taking the whole
brain as the input, the methods in [10–12] locate abnormal areas and predict
the result simultaneously. In this way, they can extract the critical areas and
discard useless regions in a data-driven and target-consistent way. While these
methods are more powerful and flexible in principle, they tend to suffer from
severe over-fitting due to the limited number of training samples. One way to
alleviate this problem is to use auxiliary data. For example, the works [10] and
[12] both pre-train an AD diagnosis model first and then fine-tune the model for
the MCI conversion prediction task.

This paper proposes a region ensemble model together with a relation regu-
larized loss for the MCI conversion prediction task. The model’s core idea is to
divide the brain into non-overlapping regions and learn a region-based diagnosis
sub-network for each region. In this way, sub-networks overcome the curse of
dimensionality by focusing on small regions of the brain. Finally, we construct
an ensemble model by weighted fusion of the regional features with attention
scores. Additionally, we propose a relation regularized loss based on an assump-
tion of the disease to regularize the training process. More importantly, this loss
allows our method to incorporate auxiliary samples to improve the performance.

In summary, the main contributions of this paper are three-fold. First, we pro-
pose a novel region ensemble model that uses a divide-and-conquer strategy and
attention mechanism to extract the discriminative features and locate abnormal
areas. Second, we propose a relation regularized loss to regularize the model’s
training process through additional samples. Third, on public data sets (ADNI-1
and ADNI-2), our method outperforms competing methods with a large margin
and achieves the state-of-the-art performance.

2 Method

2.1 Region Ensemble Network

As shown in Fig. 1, our diagnosis model consists of three sequential components:
1) feature extraction sub-network, 2) region-based diagnosis sub-network, and
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Fig. 1. The architecture of the region ensemble model. 15 region-based diagnosis sub-
networks are adopted in our model.

3) ensemble sub-network. We first extract the global feature map from the whole
brain through the feature extraction sub-network. This feature map then voxel-
wisely multiplies with the region masks, produced by a segmentation model, to
create a raw feature map for each brain region. After that, region-based diag-
nosis sub-networks generate discriminative features from the regional feature
maps. Finally, the ensemble sub-network fuses the regional representations with
an attention mechanism to produce the final representation and make a classifi-
cation.

In this framework, the segmentation network is trained separately using the
dataset in [13], while the other parts are trained in an end-to-end manner.

Feature Extract Sub-Network. In this stage, a sub-network is used to extract
a raw feature map for each region-based diagnosis sub-network. Concretely, we
first extract the whole brain’s feature map F g using three feature extraction
blocks, the first and the third blocks followed by a max-pooling layer. A block
is composed by stacking a convolution layer, a batch normalization (BN) [14], a
parametric rectified linear units (PReLU) [15], and a convolutional block atten-
tion module (CBAM) [16]. Meanwhile, we perform 3D whole brain segmentation
using an auxiliary segmentation network and get one region mask M r for each
region r. After that, the input feature map F r,in for the r-th region diagnosis
sub-network is calculated by F r,in = M r ⊗F g, where ⊗ denote an element-wise
multiplication.

Region-Based Diagnosis Sub-Network. For each region, we use an inde-
pendent diagnosis sub-network to extract the discriminative features from F r,in.
We first adopt a convolution layer followed by a max-pooling layer to reduce the
feature map scale. Next, 14 feature extraction blocks, each composed by stacking
a convolution layer, a BN, a PReLU, and a CBAM, are used to obtain the final
regional feature map F r,out. Finally, a convolution layer with kernel size 1×1×1
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combining with a softmax layer is applied to classify voxels in the feature map.
Note that the sizes of all regional feature maps are same: F r,out ∈ R

d×L×W×H

for all r. Here, d is the number of channels, and L,W,H is the length, width,
height of F r,out.

Let (X, y) be a training sample. Here, X is the sMRI image, y ∈ {1, ..., C}
is the ground-truth label of X, and C is the number of the categories. Then, the
diagnosis loss is defined as

Lvoxel
(
F r,out, y

)
=

1
L × W × H

L,W,H∑

i,j,k=1

C∑

c=1

yc log
(
P

(
ŷ = c|F r,out

i,j,k

))
. (1)

yc is the binary indicator of the ground-truth label, which equals to 1 if X belong
to class c and 0 otherwise. P

(
ŷ = c|F r,out

i,j,k

)
is the predicted probability for class

c of voxel (i, j, k). It is noted that different from the common-used strategy,
which first performs a global pooling to reduce F r,out to a feature vector and
then optimizes the loss defined on that vector, we optimize the loss defined on
each voxel to prevent losing critical details.

Ensemble Sub-Network. We design an ensemble sub-network to automati-
cally identify discriminative regions in the whole brain and perform classification.
The structure of the ensemble sub-network is shown in Fig. 1. It includes two
parts: an attention module and a classifier.

Because voxels have different discriminative abilities, we assign an attention
score to each region’s voxel independently. For simplicity, we only introduce
the computation of attention score for one voxel. Given voxel (i, j, k)’s feature
fr = F r,out

i,j,k ∈ R
d generated by the r-th region-based diagnosis sub-network, the

attention module first transforms fr into a scalar fr ∈ R by

fr = δ (W r
2 δ (W r

1 f
r)) , (2)

where δ refers to the PReLU function, W r
1 ∈ R

3d×d and W r
2 ∈ R

1×3d are
learnable parameters. To consider the relationship among regions, we combine
the values at the same location (i, j, k) in different regional feature maps into
f = [f1, f2, ..., fR] and get the final attention score by

a = σ(W a
2 δ(W a

1 f)) ∈ R
R, (3)

where σ refers to the sigmoid function, W a
1 ∈ R

R
3 ×R, and W a

2 ∈ R
R×R

3 . R is
the number of regions. After computing the scores for each voxel, we can get the
attention score Ar ∈ R

L×W×H for each regional feature map F r,out and then
the ensemble feature map is computed as

F e =
R∑

r=1

F r,out ⊗ Ar. (4)
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Finally, a convolution layer with kernel size 1 × 1 × 1 combining with a softmax
layer is applied to F e to classify all voxels. The probability of a given sMRI X
to be predicted as class c is calculated by

P (ŷ = c|X) =
1

L × W × H

L,W,H∑

i,j,k=1

P
(
ŷ = c|F e

i,j,k

)
. (5)

2.2 Relation Regularized Loss

The main challenge in MCI conversion prediction is the lack of training samples.
To alleviate the problem, works [10] and [12] use AD and normal controls (NC)
samples to pre-train a model and then fine-tune it on stable MCI (sMCI) and
progressive MCI (pMCI) samples. In this work, we utilize AD/NC samples more
sophisticatedly by introducing a novel ranking loss.

NC/sMCI/pMCI/AD labels are intrinsically ordered because MCI is a pro-
dromal stage of AD, and its structural changes are between AD and NC [17].
Hence, we make an assumption as follows. We defined P c = P (ŷ = c|X) as the
predicted probability of X belonging to class c, For a training sample (X, y),

1) if y = NC, we have PNC > P sMCI > P pMCI > PAD.
2) if y = sMCI, we have P sMCI > PNC and P sMCI > P pMCI > PAD.
3) if y = pMCI, we have P pMCI > PAD and P pMCI > P sMCI > PNC.
4) if y = AD, we have PAD > P pMCI > P sMCI > PNC.

In order to enforce such relationship, we define a ranking loss as

Lrank (P c1 , P c2 , z) = z exp (−z (P c1 − P c2)) , (6)

where z ∈ {0, 1}. For z = 0, Lrank equals to 0 and plays no role in learning. For
z = 1, minimizing Lrank constrains the model to obey the relation P c1 > P c2 .
It is noted that we only optimize the relation of P c1 > P c2 , because P c1 > P c2

and P c1 < P c2 are equivalent. To represent the pairwise relation between the
predicted probabilities, a difference matrix D ∈ R

4×4 is defined as Dij = P ci −
P cj . For each label c, a relation matrix Zc ∈ {0, 1}4×4 is defined as Zc

ij = 1
for class c, P ci > P cj , according to relations explained above. Specifically, The
rows and columns of the matrix are set in order of NC, sMCI, pMCI, and AD,
(e.g. ZNC [2, 3] denotes the relation between the psMCI and ppMCI) we have the
following Zc

ZNC =

⎡

⎢
⎢
⎣

0 1 1 1
0 0 1 1
0 0 0 1
0 0 0 0

⎤

⎥
⎥
⎦ , ZsMCI =

⎡

⎢
⎢
⎣

0 0 0 0
1 0 1 1
0 0 0 1
0 0 0 0

⎤

⎥
⎥
⎦ , ZpMCI =

⎡

⎢
⎢
⎣

0 0 0 0
1 0 0 0
1 1 0 1
0 0 0 0

⎤

⎥
⎥
⎦ , ZAD =

⎡

⎢
⎢
⎣

0 0 0 0
1 0 0 0
1 1 0 0
1 1 1 0

⎤

⎥
⎥
⎦ .

Finally, the relation regularized loss can be defined as

Lrank(D,Zc) =
1

nonzero(Zc)

4∑

i,j=1

Zc
ij exp

(−Zc
ijDij

)
, (7)
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where nonzero(Y ) is the number of non-zero elements in Y .
The overall loss optimized in our method is defined as

Loss(X, y) = Lvoxel(F e, y) +
λ1

R

R∑

r=1

Lvoxel(F r,out, y) + λ2L
rank(D,Zy), (8)

where λ1, λ2 are hyperparameters to control the influences of Lrank and Lvoxel.

3 Experiments

3.1 Dataset and Evaluation Metrics

We perform experiments on the public Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) dataset [18]. Following [9–12], in all experiments, we treat ADNI-1
as the training set and leave ADNI-2 for testing to make an easier comparison.
The training and testing set contains 226 sMCI vs. 167 pMCI and 239 sMCI vs.
38 pMCI, respectively. We also collect 199 AD and 229 NC samples in ADNI-1 as
the additional samples to optimize the proposed relation regularized loss. Diag-
nostic performance is assessed using four metrics: classification accuracy (ACC),
sensitivity (SEN), specificity (SPE), and AUC.

3.2 Implementation Details

Since our method needs voxel-level annotation to extract brain regions, we use
the dataset in [13] and the method in [19] to train a segmentation model which
segments the whole brain into 134 regions. Then, we apply this model to sMRI
images in ADNI and obtain the initial region annotations. Since small regions
may result in unstable results, we merge the 134 regions into 15 according to
anatomy knowledge. The resulting regions are shown in Fig. 3.

sMRI images are processed following a standard pipeline. Specifically, we use
the segmentation model mentioned above to simultaneously strip the skull and
split the brain region. All subjects were aligned by affine registration to Colin27
template [20] to remove the global linear difference. After that, voxels were
resampled to an identical spatial resolution (1 × 1 × 1mm3), using SimpleITK
[21]. To handle sMRI with different sizes, we crop or pad them (for large or
small sMRI) into 160×196×152 for both the training and testing phases. In the
feature extract sub-network, the channel in the first building block is 16, and is
increased by 16 after each block. In the region-based diagnosis sub-network, the
channel in the first block is 24, and is increased by 14 after each block.

Stochastic gradient descent with momentum is used as the optimizer, and the
learning rate is set to 0.05 initially and is decreased during the training process.
The dropout is set to 0 initially and is increased to 0.1 until the 25th epochs.
The batch size is 4 for each GPU. The method is implemented by PyTorch [22],
and all experiments are conducted with two TITAN GPUs with 12 GB RAM.
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3.3 Ablation Studies

To better understand our method, we conduct ablation experiments to examine
how each proposed component affects performance. 1) The baseline model adopts
neither region partition nor relation regularized loss and is trained with tradi-
tional cross-entropy loss. For a fair comparison, we expand the baseline model’s
channels so that the model’s size is nearly the same as the proposed model.
2) The region ensemble model has 15 region diagnosis sub-networks based on
the non-overlapped brain regions. 3) The baseline model is trained by the pro-
posed relation regularized loss. 4) The region ensemble model is trained by the
proposed relation regularized loss.

Fig. 2. Contribution of the proposed components in MCI conversion prediction

The results are shown in Fig. 2. The four models are denoted as Baseline,
Region, Relation, and Region+Relation, separately. We have the following obser-
vations. First, our method consistently improves with each component’s addi-
tion. Second, the region ensemble model outperforms the whole brain classifica-
tion model. It implies that the region ensemble model can capture more helpful
information. Third, the model trained with the relation regularized loss is more
accurate than the baseline model and the region ensemble model. It indicates
that using more training samples and exploiting the task’s intrinsic structure are
the critical factors for obtaining high performance.

3.4 Comparing with SOTA Methods

We compare our method with several approaches for MCI conversion prediction.
We trained the model on ADNI-1 (using 10% of subjects for validation) and
then used it to diagnose the subjects from ADNI-2. The classification results are
summarized in Tab. 1. The results of compared methods are referred from [9–12].
All methods have used the same testing data. Furthermore, works in [10] and [12]
also use the same AD and NC sample as ours to pre-train the model. For a more
thorough and comprehensive evaluation, we compared the model’s performance
at different SEN values. From Table 1, we can see that our approach yields better
results, demonstrating the advantage of our proposed strategies, i.e., the region
ensemble network and relation regularized loss. Due to the limitations of sample
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quantity, we cannot get the SEN’s value at 0.6 and 0.7 exactly, hence, we set the
SEN near 0.6 and 0.7. Additionally, we also trained and tested on the ADNI-1,
using 5-folder cross-validation, obtaining a AUC of 0.82.

Table 1. Results for MCI conversion prediction on ADNI-2.

Methods ACC SEN SPE AUC

ROI [4] 0.661 0.474 0.690 0.638

VBM [5] 0.643 0.368 0.686 0.593

DMIL [9] 0.769 0.421 0.824 0.776

H-FCN [10] 0.809 0.526 0.854 0.781

IAF [11] 0.816 0.605 0.849 0.787

HybNet [12] 0.827 0.579 0.866 0.793

Ours(SEN = 0.5) 0.859 0.500 0.916 0.854

Ours(SEN ≈ 0.6) 0.870 0.605 0.912 0.854

Ours(SEN ≈ 0.7) 0.830 0.711 0.849 0.854

3.5 Interpreting the Model’s Prediction

We try to provide insights into the MCI conversion prediction problem by ana-
lyzing our model’s intermediate result. First, we examine how different brain

Fig. 3. The AUC of each brain region on ADNI-2 and the brain regions used to train
the region diagnosis sub-networks, with the same order as the bins in the histogram,
from left to right, top to bottom.

Fig. 4. Attention maps of sMCI subjects (top) and pMCI subjects (bottom).
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regions are related to sMCI vs. pMCI classification. The AUC values for 15
region-based diagnosis sub-networks are shown in Fig. 3. We can see that Hip-
pocampus and Amygdala are much more informative than other regions and can
get similar AUC results as the ensemble model. On the other hand, Cerebellum,
Parietal lobe, Thalamus, Ventral diencephalon, and Brain stem seemed valueless
for the prediction.

In Fig. 4 we multiply each region mask M r with the ensemble model’s atten-
tion score Ar as each region’s weight and visualize the weights at the individual
level. As shown in the figure, our model can localize different subjects’ abnor-
malities, which is valuable in clinical diagnosis.

4 Conclusion

MCI conversion prediction is a fundamental problem in the computer-aided diag-
nosis of Alzheimer’s disease. This paper introduces a region ensemble model to
predict the disease and identify the disease’s critical brain regions. Additionally,
we propose a relation regularized loss using the disease’s intrinsic structure and
AD/NC samples. Extensive experiments on public datasets show the superior-
ity of our method. However, the critical brain region assessed by our method is
relatively coarse because of the limitation of the GPU memory. In the future,
we will investigate methods for evaluating the more delicate brain regions.

Acknowledgments. This work has been supported by the National Key Research and
Development Program Grant 2018AAA0100400, the National Natural Science Foun-
dation of China (NSFC) grants 61773376, 61836014, 61721004 and 31870984.

References

1. Association, A., et al.: 2020 Alzheimer’s disease facts and figures. Alzheimer’s
Dement. 16, 391–460 (2020)

2. Rathore, S., Habes, M., Iftikhar, M.A., Shacklett, A., Davatzikos, C.: A review on
neuroimaging-based classification studies and associated feature extraction meth-
ods for alzheimer’s disease and its prodromal stages. Neuroimage 155, 530 (2017)

3. Leandrou, S., Petroudi, S., Reyes-Aldasoro, C.C., Kyriacou, P.A., Pattichis, C.S.:
Quantitative MRI brain studies in mild cognitive impairment and alzheimer’s dis-
ease: a methodological review. IEEE Rev. Biomed. Eng. 11, 97–111 (2018)

4. Zhang, D., Wang, Y., Zhou, L., Yuan, H., Shen, D.: Multimodal classification
of Alzheimer’s disease and mild cognitive impairment. Neuroimage 55, 856–867
(2011)

5. Ashburner, J., Friston, K.J.: Voxel-based morphometry–the methods. Neuroimage
11(6), 805–821 (2000)

6. Zhang, J., Gao, Y., Gao, Y., Munsell, B.C., Shen, D.: Detecting anatomical land-
marks for fast alzheimer’s disease diagnosis. IEEE Trans. Med. Imaging 35, 2524–
2533 (2016)

7. Lei, B., Yang, P., Wang, T., Chen, S., Ni, D.: Relational-regularized discriminative
sparse learning for alzheimer’s disease diagnosis. IEEE Trans. Cybern. 47, 1102–
1113 (2017)



194 Y.-X. Zhao et al.

8. Cheng, B., Liu, M., Zhang, D., Shen, D., Initiative, A.D.N., et al.: Robust multi-
label transfer feature learning for early diagnosis of alzheimer’s disease. Brain Imag-
ing Behav. 13, 138–153 (2019)

9. Liu, M., Zhang, J., Adeli, E., Shen, D.: Landmark-based deep multi-instance learn-
ing for brain disease diagnosis. Med. Image Anal. 43, 157–168 (2018)

10. Lian, C., Liu, M., Zhang, J., Shen, D.: Hierarchical fully convolutional network for
joint atrophy localization and alzheimer’s disease diagnosis using structural MRI.
IEEE Trans. Pattern Anal. Mach. Intell. 42, 880–893 (2018)

11. Li, Q., et al.: Novel iterative attention focusing strategy for joint pathology local-
ization and prediction of mci progression. In: International Conference on Medical
Image Computing and Computer-Assisted Intervention, pp. 307–315 (2019)

12. Lian, C., Liu, M., Pan, Y., Shen, D.: Attention-guided hybrid network for dementia
diagnosis with structural mr images. IEEE Trans. Cybern. 1–12 (2020, early access)

13. Landman, B., Warfield, S.: Miccai 2012 workshop on multi-atlas labeling. In: Med-
ical Image Computing and Computer Assisted Intervention Conference (2012)

14. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. In: International Conference on Machine Learning,
pp. 448–456 (2015)

15. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pp. 1026–1034 (2015)

16. Woo, S., Park, J., Lee, J.-Y., So Kweon, I.: Cbam: Convolutional block attention
module. In: Proceedings of the European Conference on Computer Vision (ECCV),
pp. 3–19 (2018)
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