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Abstract. Despite remarkable progress, 3D whole brain segmentation of
structural magnetic resonance imaging (MRI) into a large number of regions
(>100) is still difficult due to the lack of annotated data and the limitation of
GPU memory. To address these challenges, we propose a semi-supervised
segmentation method based on deep neural networks to exploit the plenty of
unlabeled data by extending the self-training method, and improve the U-Net
model by designing a novel self-ensemble architecture and a random patch-size
training strategy. Further, to reduce the model storage and computational cost,
we get a compact model by knowledge distillation. Extensive experiments
conducted on the MICCAI 2012 dataset demonstrate that our method dramati-
cally outperforms previous methods and has achieved the state-of-the-art per-
formance. Our compact model segments an MRI image within 3 s on a
TITAN X GPU, which is much faster than multi-atlas based methods and
previous deep learning methods.

Keywords: 3D whole brain segmentation � Semi-supervised learning �
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1 Introduction

Whole brain segmentation of structural MRI into anatomical regions, typically by
predicting the category of each voxel (>100 labels), is of great importance in the non-
invasive investigation for neuroanatomy. Traditionally, multi-atlas segmentation
(MAS) based on non-rigid registration and label fusion has been the most widely used
approach due to its high accuracy and low requirement in human-annotated data.
However, MAS methods suffer from very high computational cost, for example, the
segmentation of one MRI image may take several hours. Recently, Deep Convolution
Neural Networks (DCNNs) have been applied to this task and have reported remark-
able success. The comprehensive review [1] introduces many progresses of DCNNs-
based brain MRI segmentation methods.
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Compared with natural image segmentation in computer vision, DCNNs based
segmentation methods for MRI images face two main challenges. First, annotated MRI
images are very scarce due to privacy concerns and the high cost of human annotation.
For example, the training set of MICCAI 2012 challenge on Multi-Atlas labeling
contains only 15 annotated scans. Given that DCNNs typically have millions of
parameters, the scarcity of annotated data can hardly guarantee the generalization
performance of DCNNs. Second, the training of DCNNs consumes large GPU mem-
ory, while the large volume of 3D MRI image data makes the training of DCNNs with
large patches and large batches forbidden. As a result, by training with small MRI
patches DCNNs cannot gain enough receptive fields to model the global structure of
brains and the spatial relations between different anatomical regions.

To relieve the lack of labeled data, various semi-supervised segmentation methods
have been proposed to utilize the large amount of unlabeled scans. Huo et al. [2]
utilized MAS methods to generate pseudo labels on unlabeled scans and then trained
DCNNs with the augmented training set. Ganaye et al. [3] introduced an unsupervised
loss function, named NonAdjLoss, based on the adjacency relations between
anatomical regions of brains and use it to regularize the training of DCNNs. Works [4,
5] proposed semi-supervised methods based on data perturbation and self-training,
while works [6, 7] introduced semi-supervised methods by adversarial learning. To
overcome the limitation of GPU memory and incorporate more global information,
works [8, 9] used 2D, 2.5D and 3D patches jointly to train a model of multiple
branches. Wachinger et al. [10] used spectral coordinates as an intrinsic brain
parameterization to retain context information in patches.

In this work, to better utilize unlabeled data and overcome the limitation of GPU
memory in training, we propose a semi-supervised segmentation algorithm and a novel
neural network architecture for 3D whole brain segmentation. Following the frame-
work of self-training, our algorithm iteratively updates an ensemble model which is
composed of models trained for different data transformation. The individual model is
designed based on the classic U-Net model [11] by introducing multi-scale prediction
units and a random patch size training strategy. To reduce the model storage and
computational cost, we utilize knowledge distillation [12] to learn a compact student
model with competitive performance. We conducted experiments to justify the effec-
tiveness of each part of our method and perform comparison experiment to show that
our method achieves state-of-the-art performance in both accuracy and speed.

2 Methods

2.1 Self-ensemble U-Net

U-Net [11] is a variant of fully convolutional networks and has achieved excellent
results in medical image segmentation [13, 14]. Its core idea is to fuse feature maps of
different scales to build powerful representations. In this work, we improve it by two
aspects. First, we propose an architecture that makes prediction at each scale of U-Net
and combines them in a memory efficient way. Secondly, to exploit the global structure
of brains, we present a training strategy that enables large training patches.
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Self-ensemble U-Net. The whole architecture of the proposed model is shown in
Fig. 1. For many computer vision tasks, a classic way to boost the accuracy is to
combine multiple prediction results made at different scales. Inspired by this obser-
vation, we introduce a new architecture, named self-ensemble, that makes predictions
at each scale of U-Net and then joins them to obtain the final prediction. The simple
way to combine predictions of different sizes is to resize them to the size of the input
image as illustrated at the top of Fig. 2. However, it is highly memory consuming since
it up samples every prediction tensor to the largest size. Instead, we propose to combine
the predictions in a recursive manner which is illustrated at the bottom of Fig. 2 and
formulated as

ys ¼ Up ysþ 1; 2ð Þþ~ys s ¼ S� 1; S� 2; . . .; 1 ð1Þ

y ¼ y1 ð2Þ

where ~ys is the prediction tensor of the s-th scale, S is the number of scales in U-Net
and Up(y, t) is a function that up samples y by rate t. The prediction of the current scale
ys is based on ysþ 1 and only needs to model the residual of ysþ 1. The final result
y ¼ y1, combining predictions at each scale, outperforms any single prediction.

Random Patch-Size Training Strategy. The global structure of brains is crucial for
accurate segmentation for MRI images. Therefore, training patches and receptive fields
should be as large as possible so that the network can model such structural infor-
mation. However, due to the limited GPU memory, we have to trade-off between the
patch size and the batch size. Particularly, using large patches could include more
contextual information but leads to the small batch size which increases the variance of
stochastic gradients and hurts optimization. On the other hand, using the large batch
size could facilitate the optimization but leads to small patches which results in less
contextual information.

Dense
BlockConv Concat Identity Up 

sampling
Down 

sampling

Naïve U-Net Self-Ensemble

Fig. 1. The overall architecture of the self-ensemble U-Net model
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To resolve this contradiction, we propose a strategy as shown in Fig. 3. First, we
construct a training batch pool with batches of different patch sizes. Note that if the size
of the patch is large, the corresponding batch size will be small. For each iteration
during training, we randomly select a batch from the pool to update the model. In order
to learn the same scale of structural information among different patch sizes, we add
constant padding for the small patches at the bottom of the U-Net. In this way, we take
the advantages of both large patches and the large batch size. In practice, we found this
simple strategy very efficient as shown in the experimental part.

2.2 Multi-view Semi-supervised Segmentation

To tackle the lack of annotated data, we propose a novel semi-supervised segmentation
method. Following the framework of self-training, our method first generates pseudo
annotations for unlabeled images using a segmentation model and then updates this
model by minimizing the supervision loss between the predictions and the annotations.
This process is iterated for multiple times until convergence.

Inspired by the method of data distillation [15], we generate the pseudo annotations
by aggregating multiple predictions by data transformation (e.g., flipping, rotation and
scaling). But different from [4, 5] where one model is learned for all data transfor-
mations, we build one model for each type of transformation. In addition, we use
overlap cropping to further improve the pseudo annotations. We detail the key steps of
our algorithm in the follows and summarize it in Fig. 4.

Fig. 2. The top figure is the
naive way to combine predic-
tions of different scales. The
bottom figure is our self-
ensemble method.

Random 
selected 

batch

Network

Fig. 3. Random patch-size training strat-
egy. At each iteration, we select a training
batch with random patch size.
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Model Training. Given the training patches and their annotations, the self-ensemble
U-Net model can be trained by solving the following problem,

f ¼ argminf
X

l
L xl; yl; fð Þþ a

X
u
L xu; yu; fð Þ ð3Þ

Here, L is the summation of cross entropy and average Dice similarity. xl is a
labeled MRI patch and yl is its human annotation. xu is an unlabeled MRI patch and yu
is its pseudo annotation. a is a scaling factor to balance the two losses.

To improve segmentation accuracy, we independently train multiple models and
combine them to build an ensemble model. Particularly, we perform data transfor-
mations to data and train one model for each type of transformation. Formally, the
ensemble model can be expressed as (4), Here, Tv is a data transformation function,
T�1
v is the inverse transformation and fv is the model trained for Tv. Although various

transformations are available, we adopt image transposition to generate front views,
side views and top views of MRIs.

F xð Þ ¼ 1
V

XV

v¼1
T�1
v fv Tv xð Þð Þð Þ ð4Þ

Generating Pseudo Annotations. We first use the ensemble model to segment each
unlabeled patches and obtain initial annotations. Because of the overlap cropping
technique, each voxel is included in many patches and therefore has multiply prediction
results. We determine its final pseudo annotation by averaging all its predictions.

Algorithm 1: Multi-View Semi-Supervised Segmentation

1. Input: 
a. Overlapped MRI labeled patches and unlabeled patches
b. Data transformation functions:

2. Training the ensemble model:
a. Initialize pseudo labels by some supervised trained model
b. Repeat

- For each transformation function , update the model : 

- Update the ensemble model by Eq. (4)
- Update pseudo labels by the method described in Sec.2.2

Until convergence
3. Training the student model:

a. Learn a student model based on F,

Fig. 4. Multi-view semi-supervised segmentation algorithm
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Knowledge Distillation. The algorithm introduced above produces a high accuracy
segmentation model, but the model suffers from high storage and computation cost
since it is composed of multiple DCNNs. Embracing the method of knowledge dis-
tillation [12], we treat the final ensemble model as a teacher model to train a compact
student model. As shown by experiments, the student model enjoys both the high
accuracy and low computational cost.

3 Experiments

3.1 Dataset and Evaluation Metrics

Dataset. We use two datasets in our experiments.

MICCAI 2012 Challenge on Multi-atlas Labeling. It contains 35 T1-weighted MRI
scans of OASIS [16, 17] which are splitted into 15, 20 scans to form the training and
test sets. All images were manually segmented into 134 regions by Neuromorpho-
metrics, Inc according to the BrainCOLOR protocal.

OASIS. It consists of 749 unlabeled T1-weighted MRI scans excluding the subjects
who also appear in MICCAI 2012 dataset.

Evaluation Metrics. The segmentation performance was quantitatively assessed using
the mean Dice coefficient (DSC). Let A and B denote the manual label and predicted

label, respectively. The mean Dice similarity coefficient is defined as DSC ¼
1
n

Pn
i¼1

2 AiBij j
Aij j þ Bij j where Aij j denotes the number of positive elements in the binary seg-

mentation Ai and AiBij j is the number of shared positive elements by Ai and Bi. n=134
is the number of labels.

3.2 Implementation Details

We use the summation of cross entropy and average Dice similarity as the loss
function. The ensemble model is composed of 3 sub-models trained with online hard
sample mining. At each iteration, the patch size is randomly selected from 64, 80, 96,
112 and the corresponding batch size is 5, 2, 1, 1. SGD with the momentum is used as
the optimizer and the learning rate is set to 10−2. The model is trained in an end-to-end
way and no pre-processing or post-processing is performed. The method is imple-
mented by TensorFlow and all experiments are conducted on two TITAN GPUs with
12G RAM.

3.3 Results

To better understand our method, we conduct ablation experiments to examine how
each proposed component affects the final performance. We evaluate the performance
under different experimental settings. (1) U-Net: the basic U-Net. (2) U-Net+Self:
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U-Net with the self-ensemble architecture. (3) U-Net+Self+Rand: U-Net with both self-
ensemble and random patch training. (4) U-Net-T-i: the U-Net+Self+Rand model after
the i-th iteration of Alg.1. (5) U-Net-S: the U-Net+Self+Rand student model trained by
U-Net+Self+Rand+T3. Note that (1), (2), (3) are trained only with labeled data, while
(4) and (5) are trained with both labeled and unlabeled data. From the results listed in
Table 1, we can observe that our method steadily improves the accuracy with the
adding of each component. It is noted that we segment the testing image using the
largest patch size in training, which results in fewer testing patches and faster speed for
U-Net+Self+Rand, and because of the limitation of GPU memory, we combine the
multiple predictions on CPU so that the testing time of U-Net-T-i is longer than the
single model.

We train models with different patch sizes to evaluate the random patch size
strategy. As shown in Table 2, directly increasing the size of training patches do not
improve the accuracy because the small batch size will hurt the optimization process.
When the random patch size strategy is employed, dramatic improvement is achieved.

We report the segmentation accuracy of our method and existing methods on
MICCAI 2012 test set in Table 3. It is noted that all other results showed in Table 3
were obtained from the original papers. It is observed that our method outperforms
other methods by a large margin. Two examples are visualized in Fig. 5. We can see
that most voxels are segmented correctly, while some errors occur in the small
anatomical regions and the boundaries between regions. Because our method need no
preprocessing, its speed is 3 s per-MRI, which is much faster than the multi-atlas based
method [18] and previous deep learning methods [2].

Table 1. Ablation study on MICCAI 2012 dataset.

Method Dice Training time Testing time

U-Net 76.2% 22 h 5 s
U-Net+Self 77.8% 22 h 5 s
U-Net+Self+Rand 78.5% 22 h 3 s
U-Net-T-1 79.2% 22 h � 3 180 s
U-Net-T-2 79.7% 22 h � 3 � 2 180 s
U-Net-T-3 79.9% 22 h � 3 � 3 180 s
U-Net-S 79.2% 22 h 3 s
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4 Conclusion

In this paper, we propose a semi-supervised algorithm and a DCNNs architecture for
the 3D MRI whole brain segmentation problem. The semi-supervised algorithm is
designed to exploit a large amount of unlabeled data, while the aim of the novel
architecture is to enlarge the receptive field of model and utilize more structure
information of brains. Extensive experiments conducted on MICCAI 2012 dataset have
shown the superiority of our method in both accuracy and efficiency.

However, our model tends to make false predictions for small anatomical regions.
In the future, we will investigate methods for accurately segmenting small regions and
apply the method to computer-aided diagnosis.

Acknowledgments. This work is supported by the National Natural Science Foundation of
China (NSFC) Grants 61773376, 61721004, 61836014, 31870984 and Beijing Science and
Technology Program Grant Z181100008918010.

Fig. 5. The visualization results of the test set of MICCAI 2012 dataset. The first column is the
input MRI images. The second column is the human annotations. The third column is the result
of our method. The fourth column is the difference between our results and human annotations

Table 2. Results for different patch
sizes on MICCAI 2012 dataset.

Patch/Batch size Dice

64/5 77.8%
80/2 77.2%
96/1 75.2%
112/1 77.3%
[64/5, 80/2, 96/1, 112/1] 78.5%

Table 3. Comparison results on MICCAI 2012
dataset.

Method Dice Time

Wang et al. [18] 77.1% 1 h
de Brebisson et al. [8] 72.5% –

Mehta et al. [9] 74.3% 15–20 min
Ganaye et al. [3] 73.9% –

U-Net-S 79.2% 3 s
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