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Abstract. 3D brain tumor segmentation is essential for the diagnosis, moni-
toring, and treatment planning of brain diseases. In recent studies, the Deep
Convolution Neural Network (DCNN) is one of the most potent methods for
medical image segmentation. In this paper, we review the different kinds of
tricks applied to 3D brain tumor segmentation with DNN. We divide such tricks
into three main categories: data processing methods including data sampling,
random patch-size training, and semi-supervised learning, model devising
methods including architecture devising and result fusing, and optimizing pro-
cesses including warming-up learning and multi-task learning. Most of these
approaches are not particular to brain tumor segmentation, but applicable to
other medical image segmentation problems as well. Evaluated on the
BraTS2019 online testing set, we obtain Dice scores of 0.810, 0.883 and 0.861,
and Hausdorff Distances (95th percentile) of 2.447, 4.792, and 5.581 for
enhanced tumor core, whole tumor, and tumor core, respectively. Our method
won the second place of the BraTS 2019 Challenge for the tumor segmentation.
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1 Introduction

Gliomas are the most common primary brain malignancies, with different degrees of
aggressiveness. 3D brain tumor segmentation plays a vital role in addressing the
diagnosis, monitoring, and treatment planning of brain diseases. Although Deep
Convolutional Neural Networks (DCNN) have shown great success in solving general
computer vision problems, when applied to MRI image segmentation, they face two
special challenges.

First, annotated MRI images are very scarce due to privacy concerns and the high
cost of human annotation. For example, the training set of BraTS2019 contains only
355 annotated cases. Given that DCNN typically has millions of parameters, the
scarcity of annotated data can hardly guarantee the generalization performance of
DCNN. Second, the training of DCNN consumes large GPU memory, while the large
volume of 3D MRI image data makes the training of DCNN with large patches and
large batches impossible. As a result, by training with small MRI patches, DCNN
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cannot gain enough receptive fields to model the global structure of brains and the
spatial relations between different anatomical regions. Besides the specific difficulties
of 3D MRI segmentation, the phenomenon of class imbalance is also a common
problem that must be faced in semantic segmentation. Most of the tricks described in
this paper are aimed at conquering the problems described above.

Since the introduction of U-Net [1] in 2015, DCNN has become the dominating
approach for medical image segmentation. Various new approaches have been pro-
posed based on the original U-Net. Myronenko, A. [2] uses auto-encoder to reconstruct
the input image itself and regularize the optimizing process. Isensee, F. [3] takes
advantage of other labeled data, using a co-training method. McKinley, R. [4] proposes
label-uncertainty loss to models to label noise and uncertainty. These methods were
shown to be effective in improving the segmentation, yet further improvements can be
achieved by considering and combining various strategies in data processing, network
architecture, and learning-algorithm design. In this work, we introduce several useful
tricks in model learning and combine them to boost the overall accuracy of the model.

The rest of this paper is organized as follows. Section 2 introduces tricks used in
3D MRI brain-tumor segmentation. Section 3 presents the implementation details and
experimental results, and Sect. 4 provides concluding remarks.

2 Methods

Many tricks in general DCNN design and training for the image can also be applied to
the 3D brain-image segmentation. We divide such tricks into three categories: data
processing methods, model designing methods, and optimizing methods.

2.1 Data Processing Methods

Sampling. Data imbalance has always been a hot topic for segmentation. Commonly,
that training data contains an overwhelming number of background voxels, most of
which are easy for the classifier to predict, and only a few are difficult. Here, we use
two methods to cope with this problem.

Heuristic Sampling. To reduce the effect of background voxels, we use a heuristic
sampling method to select more informative patches. More concretely, several patches
are randomly cropped from the input MRI, and the one that contains the most fore-
ground voxels is selected to feed the model.

Hard Sample Mining. A standard solution was known as hard sample mining. At every
iteration, the voxels with the largest loss values are selected as training voxels, and their
gradients are back-propagated to update the model’s parameters. The gradients of other
voxels are discarded directly. The percentage of the selected voxels is set to and
decreases as the number of iteration increases.

The method described above can be seen as a method that uses a hard threshold to
select the difficult sample. Lin, T.Y. [5] proposed a new loss called focal loss to
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conquer the class imbalance problem through a soft threshold and outperforms the
alternatives of training with the hard sample mining. The loss is defined as (2).

pt ¼ p if y ¼ 1
1� p otherwise

�
ð1Þ

CE ptð Þ ¼ � 1� ptð Þclog ptð Þ ð2Þ

In the above, y 2 �1f g specifies the ground-truth class, and p 2 0; 1½ � is the model’s
estimated probability for the class with y ¼ 1. c[ 0 is a tunable focusing parameter.
When an example is misclassified and pt is small, the modulating factor is near 1, and
the loss is unaffected. As pt ! 1, the factor goes to 0, and the loss for well-classified
examples is down-weighted. The focusing parameter c smoothly adjusts the rate at
which easy examples are down-weighted. Experiment results demonstrate that focal
loss is better than general hard sample mining.

Random Patch-Size Training. Using large patches could include more contextual
information but leads to the small batch size, which increases the variance of stochastic
gradients and hurts optimization. On the other hand, using a large batch size could
facilitate the optimization but leads to small patches, which results in less contextual
information. To take benefit of both sizes of patches, we construct a training batch pool
with batches of different patch sizes. Note that if the size of the patch is large, the
corresponding batch size will be small.

This method is illustrated in Fig. 1. Using the different numbers of padding and
cropping layers between the convolution layer, this model can learn global information
from the largest patch and informative texture from the small patch with the same
parameter. For each iteration during training, we randomly select a batch from the pool
to update the model. We take advantage of both the large patches and the large batch
size. In practice, we found this simple strategy very efficient.

Fig. 1. Random patch-size training strategy. At each iteration, we select a training batch with
random patch size and using padding and cropping to adjust the size of the feature map. The
number in each square is the size of the patch.
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Semi-supervised Learning. To tackle the lack of annotated data, we use a semi-
supervised method called the multi-space semi-supervised method. At the first iteration,
the manually labeled dataset is used as a training set, and different student-models, s0i
are trained on the training set under some different conditions, such as the different
subset of training set or the different subspace of features, etc. Then, all student-models
are combined as a teacher model, so that the teacher model is defined as

T0 ¼ 1
n

Xn

i¼1
s0i ð3Þ

Finally, the teacher model, T0, is used to label the unlabeled dataset.
After the first iteration, we combine the manually labeled dataset and model labeled

dataset as the new training set and then repeat the training process as the first iteration.
We repeated the process until the accuracy of the student model is stable. Such a
process is summarized in Fig. 2.

2.2 Model Devising Methods

Architecture Devising. The whole architecture used in this paper is shown in Fig. 3.
For many computer vision tasks, a classic way to boost the accuracy is to combine
multiple prediction results made at different scales. Inspired by this observation, we
introduce a new architecture, named self-ensemble, that makes predictions at each scale
of U-Net and then joins them to obtain the final prediction. The simple way to combine

Algorithm 1: Multi-View Semi-Supervised Segmentation Algorithm

1. Input: 
a. Overlapped MRI labeled patches  and unlabeled patches 
b. Data transformation functions: 

2. Training the ensemble model:
a. Initialize pseudo-labels  by some supervised, trained model
b. Repeat

- For each transformation function  , update the model :

- Update the ensemble model by Eq. (4)
- Update pseudo labels  by the method described in Sec.2.2

Until convergence
3. Training the student model:

a. Learn a student model based on F, , 

Fig. 2. Multi-view semi-supervised segmentation algorithm
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predictions of different sizes is to resize them to the size of the input image, as
illustrated on the left side of Fig. 4. However, it is highly memory consuming since it
up-samples every prediction tensor to the largest size. Instead, we propose to combine
the predictions in a recursive manner which is illustrated at the right side of Fig. 4 and
formulated as

ys ¼ Up ysþ 1; 2ð Þþeys s ¼ S� 1; S� 2; . . .; 1 ð4Þ

y ¼ y1 ð5Þ

where eys is the prediction tensor of the s-th scale, S is the number of scales in U-Net,
and Up(y, t) is a function that up-samples y by rate t. The prediction of the current scale
ys is based on ysþ 1 and only needs to model the residual of ysþ 1. The final result of
y ¼ y1, combining predictions at each scale, outperforms any single prediction.

Fig. 3. The overall architecture of the self-ensemble U-Net model.

Fig. 4. The left figure is the naïve way to combine predictions of different scales. The right
figure is our self-ensemble method.
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Fusing Result. We use two methods for combining different results to improve the
final prediction. The overall architecture is shown in Fig. 5. The ensemble model
fusing the prediction of different models is shown at the top of Fig. 5, and the method
of fusing the prediction of overlapped patches is illustrated at the bottom of Fig. 5.

Fusing the Prediction of Different Models. The method combined different models like
[3]. We evaluate our model by running five-folds cross-validation on the training cases.
Then we use the average of all the five models as the final ensemble model.

Fusing the Prediction of the Overlapped Patch. The model may predict the different
results of the same voxel because of the voxel located in a different position related to
the different patches. Base on this phenomenon, we crop the input MRI into overlapped
patches and then combine these patches as a batch predicted by the model. In this way,
the overlapped voxel is predicted more than one time. A more accurate result would be
obtained by averaging these predictions.

2.3 Optimizing Methods

Gradual Warming Up Learning Rate. The gradual warming up learning rate, which
was first proposed in [6], gradually increases the learning rate from a small value to a
large value. In practice, with a mini-batch of size, we start from a learning rate of g and
increase it by a constant amount at each iteration until it reaches bg ¼ kg after several
epochs. After the warmup phase, we go back to the original learning rate schedule.

Fig. 5. The overall architecture of the result is fusing. At the top of the figure is the method for
fusing the predictions of the different models, and at the bottom of the figure is the method fusing
the prediction of overlapped patches.
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Multitask Learning. Multitask learning can be seen as a regulation method. It can
affect the process of optimizing and provide additional information related to the
learning problem. In this paper, we first calculate the cross-entropy loss between the
softmax result and the label provided by the organizer, including the background (BG),
the necrotic and the non-enhancing tumor core (NCR/NET), the peritumoral edema
(ED), and the enhancing tumor (ET). Then the predicted result and ground truth are
reorganized as four independent categories. These include background, enhancing
tumor, whole tumor (WT), and tumor core (TC). Finally, the binary cross-entropy loss
is calculated between the reorganized prediction and ground truth. The overall process
can be seen as Fig. 6.

3 Experiments and Results

3.1 Datasets and Evaluation Metrics

Datasets. We use two datasets in our experiments.

BraTS2019 [7–11]. It contains 355 cases whose corresponding manual segmentation
is provided. Each case has four MRI sequences that are named T1, T1 contrast-
enhanced, T2, and FLAIR, respectively.

Decathlon [12]. It comprises 750 cases collected from older BraTS challenges. We use
this dataset as the unlabeled dataset.

Fig. 6. Multitask learning. Optimizing the cross-entropy loss and the binary cross-entropy loss
simultaneously.
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Evaluation Metrics. The segmentation performance was quantitatively assessed using
the mean Dice coefficient (DSC). Let A and B denote the manual label and predicted
label, respectively. The mean Dice similarity coefficient is defined as

DSC ¼ 1
n

Xn

i¼1

2 AiBij j
Aij j þ Bij j ð6Þ

where Aij j denotes the number of positive elements in the binary segmentation Ai, and
AiBij j is the number of positive elements shared by Ai and Bi. n = 4 is the number of
labels.

3.2 Preprocessing

In our approach, before feeding the data to the deep neural network, each MRI
sequence of a case is normalized independently. Specifically, all voxels of an MRI
sequence are normalized to range from 0 to 1. We also apply a random axis mirror
along the horizontal axis.

3.3 Implementation Details

We use the summation of cross-entropy and average Dice similarity as the loss
function. The patch size is randomly selected from 64, 80, 96, 112, 128, 144, and the
corresponding batch size is 15, 8, 4, 2, 1, 1. SGD with momentum is used as the
optimizer, and the learning rate is set to 0.4. The step of warming up is set to 20 epochs.
The model is trained in an end-to-end way, and no additional preprocessing or post-
processing is performed. The method is implemented by Pytorch, and all experiments
are conducted on two TITAN GPUs with 12G RAM. It took around 21 h to train the
model.

3.4 Results

To better understand our method, we conduct ablation experiments to examine how
some trick affects the final performance. We evaluate the performance under different
experimental settings: (1) BL, the original U-Net: equipped with dense block structure
and self-ensemble structure. (2) BL+warmup: model 1 with warming-up learning rate.
(3) BL+warmup+fuse: model 2 with the resultant fusing of five different models trained
by fivefold cross-validation. (4) BL+warmup+fuse+semi: model 3 with semi-
supervised learning. From the results listed in Table 1, we can observe that our
method steadily improves accuracy with the addition of each component. Three
examples are visualized in Fig. 7. We can see that most voxels are segmented correctly,
while some errors occur in the small regions and boundaries between regions. Table 2
shows the results of our model on the BraTS 2019 testing dataset.
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Fig. 7. The visualization result of the validation set of the BraTS2019 dataset. From left to right,
the column is the original FLAIR image, the original T2 image, the original T1ce image, the
original T1 image, and the segmentation result overlaid over the T1 image.

Table 2. Results of the BraTS2019 testing data (166 cases). Metrics are computed by the online
evaluation platform.

Dice Hausdorff Dist.
ET WT TC ET WT TC

Mean 0.810 0.883 0.861 2.447 4.792 4.217
StdDev 0.193 0.145 0.225 4.030 6.619 7.503
Median 0.850 0.924 0.928 1.732 3.0 2.236
25quantile 0.783 0.875 0.882 1.0 1.494 1.414
75quantile 0.915 0.951 0.960 2.236 4.899 3.606

Table 1. Results of the BraTS2019 validation data (125 cases). Metrics are computed by the
online evaluation platform.

Method Dice Hausdorff Dist.
ET WT TC ET WT TC

BL 0.702 0.893 0.800 4.766 5.078 6.472
BL+warmup 0.729 0.904 0.802 3.832 4.141 8.099
BL+warmup+fuse 0.737 0.908 0.823 4.089 4.599 6.433
BL+warmup+fuse+psudo label 0.754 0.910 0.835 3.844 4.569 5.581
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4 Conclusion

In this paper, we review useful tricks for training DCNN to improve the accuracy of
brain tumor segmentation and evaluate their performance. Our empirical results on the
BraTS2019 indicate that these tricks improve model accuracy consistently. In partic-
ular, stacking all of them together leads to significantly higher accuracy. On the
BraTS2019 online validation set, our combined method achieved average Dice scores
of 0.754, 0.910, 0.835 for the enhancing tumor, whole tumor, and tumor core,
respectively. However, our model tends to make false predictions for small anatomical
regions.

In the future, we will investigate methods for accurately segmenting small regions
and apply them to other tasks such as prediction of patient overall survival from pre-
operative scans.
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