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   Dear editor,

Infrared and visible image fusion (IVIF) technologies are to extract
complementary  information  from  source  images  and  generate  a
single fused result [1], which is widely applied in various high-level
visual tasks such as segmentation and object detection [2].

Traditional  fusion  methods  mainly  include  spatial  domain-based
methods and multi-scale  decomposition-based (MSD) methods.  The
former  ones,  such  as  the  guided  filter-based  methods  (GF)  [3]  and
Bayesian  [4],  are  to  produce  fusion  images  generally  by  weighting
local  pixels  or  saliency  of  source  images.  MSD methods,  including
TE-MST [5], Hybrid-MSD [6], MDLatLRR [7], etc., first decompose
the  source  images  into  multi-scale  features,  and  further  employ
fusion  rules  to  integrate  these  features  at  each  level,  for  a  recon-
structed  result.  However,  how  to  pixel-wisely  measure  the  impor-
tance  or  fusion  contribution  of  source  images  is  always  an  open
problem  in  these  methods.  Such  they  must  elaborately  design
reasonable weighed strategies or fusion rules.

In  recent  years,  deep  learning  has  emerged  as  a  powerful  tool  to
perform  image  fusion  tasks  [8],  [9].  Different  from  traditional
methods, it can adaptively extract the multi-level features and autom-
atically  reconstruct  the  result  we  expected,  guided  by  a  reasonable
loss. Supervised learning-based methods, such as FuseGAN [10], are
mainly devoted to multi-focus image fusion because there is ground
truth  for  each  pair  of  training  images.  For  our  IVIF  task,  the  most
popular  ways  are  unsupervised  learning-based  methods,  including
SeAFusion  [2],  FusionGAN  [11],  DenseFuse  [12],  RFN-Nest  [13],
DIDFuse  [14],  and  DualFuse  [15],  etc.,  in  which  the  network
architecture  is  generally  designed  as  an  encoder-decoder.  Similar
technology  is  also  utilized  for  multi-exposure  image  fusion  [16].
However, we are not uncertain whether the features from the encoder
are  all  the  best  ones.  For  this  point,  self-supervised  learning-based
algorithms,  such  as  TransFuse  [17]  and  SFA-Fuse  [18],  have  been
developed,  where  the  encoder  is  designed  to  conduct  an  auxiliary
task and extract  the features with a prior.  Nevertheless,  we can also
note in these methods that the features from the encoder are directly
employed  to  reconstruct  the  fused  result,  only  guided  by  a  loss
design.  That  is,  their  importance  or  fusion  contribution  not  be  well
measured.

For contribution estimation, Nie et al. [19] stated a very novel idea

based on information exchange. A person with less knowledge tends
to learn more information from the other one with more knowledge,
and  vice  versa,  implying  that  this  one  will  provide  fewer  contri-
butions when they cooperatively perform a certain task. Based on this
principle,  the work [19] constructed a pulse coupled neural network
(PCNN)-based  information  exchange  module,  and  applied  it  to
perform  the  contribution  estimation  for  multi-modal  medical  image
fusion, where the fusion contribution can be easily estimated, via an
exchanged  information-based  inverse  proportional  rule.  Unfortun-
ately,  this  module  can  not  be  optimized  by  the  derivative-based
image  fusion  method,  due  to  the  existing  hard  threshold  of  PCNN,
and not  be  also  trained  on  a  large-scale  dataset  due  to  the  complic-
ated structure of a neuron.

To tackle these challenges above, in this letter, we propose a self-
supervised  learning-based  fusion  framework,  named  SSL-WAEIE,
for  the IVIF task.  There are  two key ideas  in  our  method.  First,  we
design  a  weighted  auto-encoder  (WAE)  to  extract  the  multi-level
features  to  be  fused,  from  source  images.  Second,  inspired  by  the
basic principle of information exchange in [19], we further construct
a  convolutional  information  exchange  network  (CIEN)  to  easily
complete  the  fusion  contribution  estimation  for  source  images.  The
main contributions of our method can be summarized as follows.

1)  A  novel  self-supervised  learning-based  fusion  framework:  To
our best knowledge, it is the first try to perform the image fusion via
a  convolutional  neural  network  (CNN)-based  information  exchange
in a manner of self-supervised learning.

2)  A  new  network  architecture:  Our  SSL-WAEIE  consists  of  a
WAE and a CIEN, where the WAE designed for an auxiliary task is
to extract the multi-level features from source images, whereas CIEN
contributes to estimating the fusion contribution mainly via a CNN-
based information exchange module (IEM-CNN).

3) Hybrid losses: We propose two hybrid losses to effectively train
the WAE and SSL-WAEIE, respectively.

Methodology:
I = (Ii,Iv)Overview: Given  a  pair  of  infrared  and  visible  images, ,

our  IVIF  task  can  be  simply  formulated  as  a  weighted  problem  as
follows:
 

F = τi ⊗ Ii +τv ⊗ Iv (1)
Ii, Iv ∈ RM×N

F ∈ RM×N τi, τv ∈ RM×N

⊗

I

where  denote  the  infrared  and  visible  images,
respectively, and  is the fused result, whereas 
are the fusion weights or fusion contributions to each source image,
respectively,  is  the  Hadamard  Product  operation.  Now the  key  to
(1)  is  how  to  estimate  the  fusion  contributions.  To  this  end,  we
construct a fusion framework shown in Fig.1, which is composed of
a  WAE  and  a  CIEN.  Specifically,  To  conduct  a  self-supervised
auxiliary task, the WAE is to extract multi-level features from . On
the  other  hand,  in  the  information  exchange  encoder  (IEE),  each
IEM-CNN  will  perform  the  information  exchange  among  pairs  of
features of source images at  each level,  to produce multi-level pairs
of exchanged information. Then the contribution estimation decoder
(CED) will reduct the multi-level exchanged information and finally
generate  the  fusion  contribution  according  to  an  exchanged  inform-
ation-based inverse proportional operation.

I

I

WAE  architecture: The  WAE  with  two  Siamese  branches  is
designed to perform an auxiliary task to the weighted reconstruction
over . There are three convolutional blocks (CB) in each branch of
the  encoder,  each  of  which  sequentially  includes  two  2D  convo-
lutions (Conv2) layers  and a  ReLU function.  Hence,  the multi-level
features of  can be formulated as follows:
 

Fi(l) =ZWAE−E(Fi(l−1),KWAE−E(l)) (2)
 

Fv(l) =ZWAE−E(Fv(l−1),KWAE−E(l)) (3)
ZWAE−E

Fi(l−1) Fv(l−1)
KWAE−E(l) Fi(l) Fv(l) ∈ RM×N

Fi(0) = Ii Fv(0) = Iv

where  stands  for  the  feature  mapping  of  each  CB  in  the
encoder,  whereas  or  is  its  input  at  the l-level,  and

 is the set of filters. As outputs, ,  denote
the  features  for  the  infrared  and  visible  images,  respectively,  and

, .  The  decoder  has  a  similar  architecture  to  the
encoder. Differently, its function is to perform the channel reduction
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I
of  inputs,  completing  the  final  image  reconstruction,  whereas  the
encoder is to extract the multi-level features from .
CIEN architecture:

1)  IEM-CNN:  According  to  the  basic  principle  of  convolution  in
CNN, a feature map is from the sum of channels for the convolutions
over each channel, which just is a way of information communicating
among channels. Therefore, instead of PCNN in [19], we can employ
2D convolutions to simulate the mechanism of information exchange
among  pairs  of  features.  In Fig. 1,  we  exploit  three  IEM-CNNs  to
construct the IEE.

Fi(l), Fv(l) ∈ RCl×M×N

Fiv(l) ∈ R2Cl×M×N

Fiv(l) Cl Cl

In  detail,  given  inputs ,  we  first  concatenate
them as a tensor of , then perform a 2D-convolution
on  by  utilizing  pairs  of  convolution  kernels,  to  produce 
pairs of exchanged information after a ReLU function. This process
can be formulated as follows:
 

∆Ei(l),∆Ev(l) = split (ZIE(Fi(l) ◦Fv(l),Kl )) (4)
Kl = (Ki,(1,l), . . . ,Ki,(Cl,l),Kv,(1,l), . . . ,Kv,(Cl,l))

Ki,(x,l) Kv,(x,l)

Fi(x,l),Fv(x,l) ZIE ()
◦

split
∆Ei(l),∆Ev(l) ∆Ei(l) ∈

RCl×M×N Fv(l) Fi(l)
∆Ev(l)

where  is the set of filters
at the l-level, and  and  are the x-pair of filters to produce
the  exchanged  information  between  the x-pair  of  features
( ).  contains 2D convolutions with a kernel size of
3  ×  3  and  a  ReLU  function,  whereas  denotes  a  concatenation
operation.  Resorting to the  function,  we can split  a  tensor into
two  chunks  ( )  with  the  same  channels,  where 

 is the exchanged information from  to , vice versa
for . Compared with the IE-PCNN in [19], our IEM-CNN has
several  advantages:  a)  It  can  be  optimized  by  resorting  to  a
derivative-based method, such that it can be trained on a large-scale
dataset;  b)  In a fire-new manner,  it  presents a very concise network
architecture to complete information exchange; c) It can perform the
information exchange among pairs of multi-level features, not limited
a single-scale source image.

2) CED: Reference [13] employs the multi-level features from the
encoder  to  reconstruct  the  fused  result.  Similarly,  we  fed  the  multi-
level exchanged information from the IEE, into our CED to produce
a pair of single-scale exchanged information. As a Siamese network
with  the  ability  of  channel  reduction,  each  branch  of  the  CED  is
composed  of  three  convolution  blocks,  each  of  which  includes  two
2D  convolutions  with  a  kernel  size  of  3  ×  3,  a  BatchNorm,  and  a
ReLU function. Hence, we have
 

∆Ei =ZCEN (∆Ei(1) ◦∆Ei(2) ◦∆Ei(3),KCEN ) (5)
 

∆Ev =ZCEN (∆Ev(1) ◦∆Ev(2) ◦∆Ev(3),KCEN ) (6)
∆Ei ∈ RM×N

∆Ev ZCEN

KCEN

where  is  the  single-scale  exchanged  information  from
the  visible  image  to  infrared  image,  similarly  for . 
presents  the  channel  reduction  map  of  CED  on  a  tensor,  and  the
shared  is the set of filters in any one branch.

Now,  according  to  the  inverse  proportional  operation  based  on
exchanged information, we can obtain the fusion contribution estim-
ations as follows: 

τi = ∆Ev/(∆Ei +∆Ev) (7)
 

τv = ∆Ei/(∆Ei +∆Ev). (8)
Training:

LW−WAE Lssim

1) Loss to WAE: The loss of the WAE is composed of two items:
weighted  reconstruction  loss  and  structural  loss ,
which are balanced by a weight λ, such that
 

LWAE = LW−WAE +λLssim (9)
LW−WAEAmong  them,  is  to  encourage  the  WAE  to  reconstruct

source images in the sense of minimizing pixels.
 

LW−WAE = ||Wi ⊗ (̃Ii − Ii)||22 + ||Wv ⊗ (̃Iv − Iv )| |22 (10)
Wi Wv ∈ RM×N Ii Iv

Wi = Ii/(Ii + Iv) Wv = 1−Wi

Lssim
I

where ,  are  the  weights  for  and ,  respectively,
, and . This weighted strategy is a simple

and  effective  way  that  the  encoder  can  extract  more  representation
from  the  pixels  with  higher  intensity,  given  source  images.  Addi-
tionally, we further employ  to encourage the encoder to extract
more structural features from , such that
 

Lssim = 2−S S IM
(̃
Ii,Ii
)
−S S IM

(̃
Iv,Iv
)

(11)

S S IM (·)where  measure the structural similarity [20].

Lw f
LIE

2) Loss to SSL-WAEIE: The loss in our SSL-WAEIE also includes
two items:  the weighted fidelity  loss  and information exchange
loss , with a regularization parameter μ.
 

LCIEN = Lw f +µLIE (12)
Lw fwhere  aims to produce a similarity between the fused result and

each source image, which is defined as
 

Lw f = ||Wi ⊗ (F− Ii)||22 + ||Wv ⊗ (F− Iv )| |22. (13)
Wi Wv

I
Similar  to  (7),  and  are  beneficial  to  fuse  more  pixel

intensity from , alleviating the luminance degeneration of the fused
result.  Moreover,  we  expect  that  the  information  exchange  among
pairs  of  features  should  be  sufficient  as  far  as  possible  because  the
more sufficient the information exchange between two objects is, the
more  accurately  and  easily  we  can  measure  their  contributions  to  a
certain  cooperative  task.  To  this  end,  for  our  IVIF  task,  we  should
maximize  the  difference  among  pairs  of  exchanged  information  at
each level, such that
 

LIE = −
1

MN

∑
l
||∆Ei(l) −∆Ev(l)||22. (14)

Experiments:

β1 = 0.5
β2 = 0.999 ε = 1E−8 2×10−5

Training details: We select 16 pairs of infrared and visible images,
collected  from  the  TNO1 dataset,  to  train  our  SSL-WAEIE.  In
Pytorch,  the  optimizer  is  set  as  Adam with  the  parameters ,

,  and ,  whereas  the  learning  rate  is .
Note, however, that this learning rate for the WAE is only a tenth of
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Fig. 1. Our fusion framework contains a WAE and a CIEN, where the CIEN is composed of a IEE and a CED. Note that each subnetwork is constructed by
different CB, and there are three types of CBs, termed as CB-I to CB-III, respectivelly. In particular, a CB-II just corresponds to a IEM-CNN.
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what  it  was  before,  in  the  phase  of  fine-tuning.  Additionally,  the
constant λ in  the  loss  of  WAE is  empirically  set  to  5.  On  the  other
hand, in the testing phase,  21 pairs of source images from the TNO
dataset  and  20  image  pairs  from  the  RoadScene2 dataset  [21]  are
employed, where the parts of which are shown in Fig. 2.
Setups: We compare the fusion results of our SSL-WAEIE with nine
state-of-the-art  methods,  which contain  four  traditional  technologies
such  as  MDLatLRR  [7],  TE-MST  [5],  Bayesian  [4],  and  Hybrid-
MSD [6], and five deep learning-based algorithms, i.e.,  FusionGAN
[11],  DenseFuse  [12],  RFN-Nest  [13],  DIDFuse  [14]  and  DualFuse
[15].  Moreover,  as  four  typical  metrics,  normalized  mutual  inform-
ation  (NMI)  [22],  Yang’s  metrics  (QY)  [23],  gradient-based  metric
(QABF)  [24],  and  information  fidelity  criterion  (IFC)  [25]  are
employed to quantitatively evaluate the results.
Results: As  shown  in Fig. 3,  the  results  from  FusionGAN,
DenseFuse,  DualFuse,  and  TE-MST,  suffer  from  obscure  edges  for
the  infrared  objects.  On  the  other  hand,  although  RFN-Nest  and
Bayesian  preserve  acceptable  background  from  the  visible  image,
their  results  show  low  contrast  due  to  luminance  degradation.
Additionally,  MDLatLRR  produces  obvious  artifacts,  especially  in
Fig. 4. DIDFuse and Hybrid-MSD achieve good results, whereas the
details  and  luminance  of  the  targets  in  the  red  rectangle  are  still
defective.  Compared  to  these  methods,  our  SSL-WAEIE  not  only
depicts a significant improvement in luminance but also retains more
texture details furthest.

Table 1 illustrates  that  our  method  gives  the  best  quantitative
results in terms of NMI, QY, and IFC, on the TNO dataset, compared
with  nine  competitors,  whereas  it  ranks  second for  QABF.  The  same
conclusion, on RoadScene dataset, also can be drawn from Table 2.
Parameter analysis: The regularization parameter μ in our loss plays
an important role to train our network. Hence, we vary it from 9 to 11
to investigate its influence on the fusion performance related to each
metric. Table 3 shows that as μ increases, all metrics increase before
10.  They  then  decrease  on  the  whole  and  fall  into  an  oscillation
period. Hence, we take the value of μ as 10 for our SSL-WAEIE.

Ablation study:
1)  Ablation  to  network:  Discarding  the  WAE  and  IEE,  respec-

tively, our SSL-WAEIE degenerates into two versions: No WAE and
No IEE. In the first one, the decoder of the WAE will be destroyed,
such that it will be not pre-trained via our auxiliary task. In the other
one,  the  multi-level  features  from  the  decoder  of  the  WAE  will  be
directly concatenated and fed into CEN to generate the fused result.
Table 4 shows that No IEE presents the worst results in terms of each
metric,  whereas  SSL-WAEIE  is  the  best  one.  Therefore,  WAE  and
IEE both  provide  significant  contributions  to  our  method,  however,
IEE  is  more  important.  Moreover,  let  IEE  perform  the  information
exchange  on  only  the  last  level  features  from  WAE,  such  that  our
IEE turns to a single-level one (SL-IEE) and only has an IEM-CNN.
We can see  that  SL-IEE,  in  terms of  each  metric,  is  superior  to  No
IEE, whereas it  is inferior to the IEE. Hence, instead of single-level
information  exchange,  the  multi-level  one  in  our  IEE  is  more
beneficial  to  produce  a  good result,  this  also  implies  that  our  WAE
can extract good multi-level features rather than trivial solutions.

L1 = L f
L2 = Lw f LCIEN

2)  Ablation  to  loss:  In Table 4,  is  the  baseline  loss,
through discarding the  weighted  strategy to  in  our .

L2 L1
LCIEN

LCIEN)

LIE

LIE

We can see that  is superior to  in terms of each metric, whereas
the quantitative results are further improved by our . Therefore,
the weighted strategy and the constraint to the information exchange
in  are both beneficial to improve the fusion performance. It is
worthy  to  note  that  the  implementation  of  information  exchange  in
our method is  not  only via the loss ,  but  more resulted from the
network  architecture  with  IEM-CNN.  That  is  to  say  that  our  fusion
framework  also  can  be  performed  if  there  is  no ,  whereas  this
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Fig. 2. Several samples of training and test datasets from two public datasets. For the TNO or RoadScene, the first row of each dataset represents the infrared
images, whereas the second row denotes the visible images. Additionally, the left parts are the examples of the training samples, wheres the examples of test
samples are on the right.
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Fig. 3. An  example  of  visual  comparison  among  different  methods  on  TNO
dataset,  where  the  results  of  our  method  have  a  significant  advantage  over
other algorithms.
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Fig. 4. An  example  of  visual  comparison  among  different  methods  on
RoadScene  dataset.  Compared  to  other  algorithms,  our  proposed  method
gives the best visual result.
 

 

Table 1.  Average Quantitative Results on TNO for Different Methods
Metrics NMI ↑ QY ↑ QABF ↑ IFC ↑

FusionGAN [11] (2019) 0.3852 0.6075 0.2993 2.2958
DenseFuse [12] (2018) 0.3794 0.6742 0.3542 2.6165
DIDFuse [14] (2020) 0.3730 0.6067 0.3785 2.2139
RFN-Nest [13] (2021) 0.3509 0.6363 0.3356 2.3313
TE-MST [5] (2020) 0.5770 0.8070 0.5044 2.9937

MDLatLRR [7] (2020) 0.2523 0.7423 0.4817 3.0380
DualFuse [15] (2021) 0.3663 0.7021 0.4076 2.6076
Bayesian [4] (2020) 0.4110 0.7147 0.3641 2.7767

Hybrid-MSD [6] (2016) 0.4207 0.8037 0.5427 2.8068
Ours 0.5826 0.8320 0.5412 3.6330

Best and second results are shown in bold and underlined, respectively.
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regularization  can  further  improve  the  fusion  performance  resulting
from the mechanism of information exchange.

Conclusions: In  this  letter,  we  propose  a  novel  self-supervised
learning-based  fusion  network  for  infrared  and  visible  images.  A
WAE  is  designed  to  perform  an  auxiliary  task  for  the  weighted
reconstruction over source images. Such that we can further employ
the  multi-level  features  from  the  encoder  of  WAE  to  perform  the
exchanged  information-based  fusion  contribution  estimation  in
CIEN.  Particularly,  according  to  the  principle  of  information
exchange,  we  employ  CNN to  specifically  construct  an  information
exchange module, such that our CIEN can easily complete the fusion
contribution estimation for source images. Moreover, we employ the
weighted strategy and the  constraint  to  the  information exchange to
design a hybrid loss to effectively train our SSL-WAEIE. Extensive
experiments  on  two  public  datasets  verify  the  superiority  of  our
method to other state-of-art competitors.
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Table 2.  Average Quantitative Results on RoadScene for Each Method
Metrics NMI ↑ QY ↑ QABF ↑ IFC ↑

FusionGAN [11] (2019) 0.4365 0.5308 0.3056 1.3666
DenseFuse [12] (2018) 0.4402 0.6389 0.3617 1.7094
DIDFuse [14] (2020) 0.4430 0.6733 0.4345 1.8302
RFN-Nest [13] (2021) 0.4369 0.6121 0.3485 1.6660
TE-MST [5] (2020) 0.5708 0.7409 0.4761 2.646

MDLatLRR [7] (2020) 0.3484 0.7503 0.4968 2.6157
DualFuse [15] (2021) 0.3888 0.4800 0.2936 1.3317
Bayesian [4] (2020) 0.4689 0.7079 0.4118 1.9616

Hybrid-MSD [6] (2016) 0.4668 0.8218 0.5364 2.5806
Ours 0.6617 0.8653 0.5001 2.9144

Best and second results are shown in bold and underlined, respectively.
 

 

LCIEN

Table 3.  Quantitative Results in Terms of Each Metric for Different
Regularization Parameters in , on TNO

Parameter (μ) NMI ↑ QY ↑ QABF ↑ IFC ↑
µ = 9 0.5402 0.8070 0.5177 3.3803
µ = 9.5 0.5476 0.8161 0.5220 3.4300

µ = 10 (Ours) 0.5826 0.8320 0.5412 3.6330
µ = 10.5 0.5422 0.8285 0.5339 3.5110
µ = 11 0.5467 0.8223 0.5289 3.4377

Best results are shown in bold fonts.
 

 

Table 4.  Quantitative Results for the Ablation Study on TNO
Ablation Methods NMI ↑ QY ↑ QABF ↑ IFC ↑

Network

No WAE 0.4580 0.8126 0.5167 2.7935
No IEE 0.5081 0.7734 0.4412 2.5825
SL-IEE 0.5325 0.8297 0.5313 3.2468

IEE (Ours) 0.5826 0.8320 0.5412 3.6330

Loss

L1 = L f 0.3782 0.7514 0.4683 2.5998
L2 = Lw f 0.5433 0.8122 0.5201 3.1900

LCIEN (Ours) 0.5826 0.8320 0.5412 3.6330
Best results are shown in bold fonts.
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