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   Dear Editor,

In  this  letter,  in  order  to  deal  with  random  network  delays  and
packet  losses  in  a  class  of  networked nonlinear  systems,  three data-
driven  networked  predictive  control  methods  are  designed.  Their
closed-loop systems and control increments are derived, respectively.
Although  the  expressions  of  their  control  increments  are  obviously
different, they are similar in form and composition, which are helpful
to evaluate the effects of control actions. A comparison of the control
performance  of  the  three  methods  is  carried  out  by  a  simulation
example so as to show their advantages and disadvantages.

Networked  control  systems  (NCSs)  have  found  practical  applica-
tions  in  many fields  such  as  smart  microgrids  and  urban  traffic  [1],
[2]. However, the utilization of networks inevitably brings commun-
ication  problems  such  as  network  delays  and  packet  losses,  which
would  damage  system  performance.  The  past  two  decades  have
witnessed  several  typical  control  approaches  to  handle  them,  see,
e.g.,  [3]–[5].  One of them, networked predictive control  (NPC),  can
effectively  compensate  for  those  communication  constraints,  which
fully utilize the packet-based transmission mechanism of networks.

Random  network  delays  and  packet  losses  in  the  backward  and
forward channels  can be treated as  destination-based lumped delays
(DBLDs) defined in [6]. Up to date, there are two ways to deal with
random DBLDs in NPC methods. One is to compensate for random
round-trip  time  delays  (RTTDs)  [7],  and  the  other  is  to  separately
handle  one-way time delays  (OWTDs)  in  the  two channels  [8].  For
an NCS with an accurate model, the two ways can provide the same
dynamic  performance  as  that  of  the  control  system  with  no  delays,
although they have different closed-loop stability conditions.

In practice, however, it  is not easy to create a precise model for a
complex  system,  due  to  intrinsic  properties  such  as  nonlinearity,
time-variance, and so on. In this case, a data-driven NPC approach is
necessary. In [9] and [10], a data-driven NPC method was proposed
to compensate for random RTTDs. According to delay compensation
ways,  another  two  data-driven  NPC  methods  can  also  be  designed.
Thus, two questions arise: what are the differences between the three
data-driven  NPC methods,  and  which  one  is  superior?  The  answers
will be given by theoretical analysis and numerical simulation in the
following, which are also the main contributions of this letter.

Three  data-driven  NPC  methods: Consider  a  discrete-time

nonlinear system:
 

y(t+1) = f
(
y(t), . . . ,y(t−ny),u(t), . . . ,u(t−nu)

)
(1)

y(t) ∈ R u(t) ∈ R
ny nu f (·)

u(t)
|∆y(t+1)| ≤

ψ̄|∆u(t)| ∆u(t) , 0 ψ̄ > 0
∆u(t) = u(t)−u(t−1)

where  and  are  the  system  output  and  input  with
unknown  orders  and ,  respectively,  and  is  an  unknown
nonlinear function, of which the partial derivative with respect to 
is  continuous.  It  is  assumed  that  system  (1)  satisfies 

 for  any t and ,  where  is  a  constant,  and ∆ is
the difference operator,  e.g., .  Then,  system (1)
can be converted into the data model [11]
 

∆y(t+1) = ψ(t)∆u(t) (2)
ψ(t) |ψ(t)| ≤ ψ̄
ψ(t)

where  is  a  time-varying  parameter  with .  To  real-time
estimate , the following recursive algorithm is used:
 

ψ̂(t) = ψ̂(t−1)+γ(t)
(
∆y(t)− ψ̂(t−1)∆u(t−1)

) (3)
ψ̂(t) ψ(t) γ(t) ≜ ∆u(t−1)/(µ+∆u(t−1)2)

µ > 0
where  is the estimate of , and 
with the weighting factor .

τsc
t τca

t τ̄sc τ̄ca
The random DBLDs in  the  backward and forward  channels  of  an

NCS  are  denoted  by  and  with  upper  bounds  and ,
respectively.  In order  to mitigate adverse effects  of  the two-channel
random  DBLDs  on  system  performance,  by  using  data  model  (2),
three  data-driven  NPC  methods  are  designed,  which  are  called  R-
NPC1, R-NPC2, and O-NPC, respectively. The former two methods
are  based  on  RTTDs  (see Fig. 1),  and  the  last  one  is  based  on
OWTDs  (see Fig. 2).  Obviously,  the  three  methods  consist  of  three
same control components, i.e., a data buffer, a control predictor, and
a  delay  compensator,  which  are  assumed  to  be  time-driven  and
synchronous.  Although  the  three  methods  have  similar  structures,
there are differences in the control schemes, which are given below.
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Fig. 1. R-NPC scheme.
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Fig. 2. O-NPC scheme.
 

Dt = {y(t), . . . ,y(t− τ̄sc),u(t−1), . . . ,u(t− τ̄sc −1), t}
Dt

Dt−τsc
t

Dt−τsc
t

1)  Design  of  R-NPC1:  As  shown  in Fig. 1,  the  data  sequence
 is  sent  to the con-

trol predictor at each sampling instant t, where the last element of ,
i.e., t,  is  the  timestamp.  In  the  control  predictor,  the  latest  data
sequence  at  time t is .  By  using  and  an  incremental
control  law  in  [9],  the  following  control  increment  predictions  are
generated:
 

∆û(t−τsc
t + i|t−τsc

t ) = a(t−τsc
t )
(
r(t−τsc

t +1+ i)− ŷ(t−τsc
t + i|t−τsc

t )
)

(4)
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i = 0,1,2, . . . , τ̄ τ̄ = τ̄sc + τ̄ca

a(t−τsc
t ) ≜ ψ̂(t−τsc

t )/(λ+ ψ̂(t−τsc
t )2) λ > 0

r(·) ŷ(t−τsc
t |t−τsc

t ) = y(t−τsc
t )

for , where  is the upper bound of RTTDs,
,  is  a  control  parameter,

 is the reference signal, , and
 

ŷ(t−τsc
t + j|t−τsc

t ) = ŷ(t−τsc
t + j−1|t−τsc

t )

+ ψ̂(t−τsc
t )∆û(t−τsc

t + j−1|t−τsc
t ) (5)

j=1,2, . . . , τ̄ ∆Ût−τsc
t
=

{∆û(t−τsc
t |t−τsc

t ),∆û(t−τsc
t +1|t−τsc

t ), . . . ,∆û(t−τsc
t + τ̄|t−τsc

t ), t−τsc
t }

for . As a result, the control increment sequence 

is  obtained,  which  is  transmitted  to  the  delay  compensator.  In  the
delay compensator, the real-time RTTD is
 

τt = τ
ca
t +τ

sc
t−τca

t
(6)

∆Ût−τt = {∆û(t−τt |t−τt),
∆û(t−τt +1|t−τt), . . . ,∆û(t−τt + τ̄|t−τt), t−τt}
τt

and the latest control increment sequence is 
.  To  compensate  for

, the applied control signal is
 

u(t) = u(t−1)+∆Ût−τt {τt} = u(t−1)+∆û(t|t−τt) (7)
∆Ût−τt {τt} τt +1 ∆Ût−τtwhere  denotes the { }-th control action of .

2) Design of R-NPC2: For this method, the only difference from R-
NPC1 lies in that the applied control signal is
 

u(t) = u(t−τt −1)+
τt∑

i=0

∆û(t−τt + i|t−τt). (8)

Yt = {y(t),y(t−1), . . . ,y(t− τ̄sc), t}

Yt−τsc
t

3)  Design  of  O-NPC:  As  illustrated  in Fig. 2,  the  data  buffer
transmits  the  data  sequence  to  the
control  predictor  at  each  time  instant t.  In  the  control  predictor  at
time t,  the  received  output  data  sequence  and  the  historical
control  commands  buffered  here  are  employed  to  produce  the
following output predictions:
 

ŷ(t−τsc
t + j|t−τsc

t ) = ŷ(t−τsc
t + j−1|t−τsc

t )

+ ψ̂(t−τsc
t )∆u(t−τsc

t + j−1) (9)
j = 1,2, . . . , τsc

t + τ̄
ca t+ τ̄cafor . Then, the control increment at time  is

obtained as
 

∆u(t+ τ̄ca) = a(t−τsc
t )
(
r(t+ τ̄ca +1)− ŷ(t+ τ̄ca|t−τsc

t )
)
. (10)

∆Ut = {∆u(t),∆u(t+1), . . . ,∆u(t+
τ̄ca), t}

∆Ut−τca
t
= {∆u(t−τca

t ),
∆u(t+1−τca

t ), . . . ,∆u(t+ τ̄ca −τca
t ), t−τca

t } τca
t +1

The  control  increment  sequence 
 is sent to the delay compensator. In the delay compensator, the

latest  control  increment  packet  at  time t is 
,  of  which  the  { }-th

element is used, i.e.,
 

u(t) = u(t−1)+∆Ut−τca
t
{τca

t }. (11)

t+ τ̄ca

Remark 1: There are two main differences between R-NPC1/2 and
O-NPC.  One  lies  in  the  control  predictors  (see  (4)  and  (10)).  The
former  two  methods  provide  a  sequence  of  candidate  control
increment  predictions,  and  which  one  will  be  applied  in  the  delay
compensator  cannot  be  known  in  advance  in  the  control  predictor.
Nevertheless,  the  O-NPC method  only  gives  a  single  future  control
command, which will definitely be used in the delay compensator at
time . The other difference refers to Remark below.

Closed-loop  stability  analysis: The  stability  of  the  three  data-
driven NPC methods is analyzed as follows.

r̄1) Stability of R-NPC1: For a constant reference input , define
 

e(t) = r̄− y(t) (12)
as the output tracking error. According to [9], it is obtained that
 

∆u(t) = ∆u(t|t−τt) = a(t−τt)σ(t−τt)τt e(t−τt) (13)
 

e(t+1) = e(t)−ψ(t)a(t−τt)σ(t−τt)τt e(t−τt) (14)
σ(t−τt) = λ/(λ+ ψ̂(t−τt)2)where .

λ ≥ (2τ̄+1)2ψ̄2/16
limt→∞ |e(t)| = 0

Theorem  1  [9]:  If ,  the  closed-loop  system  for
R-NPC1 is stable with .

2) Stability of R-NPC2: From (4) and (5), we have
 

e(t|t−τt) ≜ r̄− ŷ(t|t−τt)
= σ(t−τt)τt e(t−τt). (15)

Substituting (15) into (4) yields
 

∆û(t|t−τt) = a(t−τt)σ(t−τt)τt e(t−τt). (16)

It is obtained from (8) that
 

∆u(t) = a(t−τt)
τt∑

i=0

σ(t−τt)ie(t−τt)−
τt∑

i=1

∆u(t− i). (17)

From (2) and (12), we get
 

e(t+1) = e(t)−ψ(t)∆u(t). (18)
Then, from (17) and (18), we obtain

 

X(t+1) = Φ(t)X(t) (19)
where
 

X(t) =
[

E(t)
∆U(t−1)

]
, Φ(t) =

[
A+B(t)D(τt) B(t)C(τt)

D(τt) C(τt)

]

E(t) =


e(t)

e(t−1)
...

e(t− τ̄)

 , ∆U(t) =


∆u(t)
∆u(t−1)

...
∆u(t− τ̄+1)


A =
[

1 01×τ̄
Iτ̄×τ̄ 0τ̄×1

]
, B(t) =

[−ψ(t) 01×(τ̄−1)
0τ̄×τ̄

]
C(τt) =

[
ξ(τt) 01×(τ̄−τt)

I(τ̄−1)×(τ̄−1) 0(τ̄−1)×1

]
ξ(τt) =

[−1,−1, . . . ,−1︸           ︷︷           ︸
τt

]
D(τt) =

[
01×τt d(τt) 01×(τ̄−τt)

0τ̄×(τ̄+1)

]
d(τt) = a(t−τt)

τt∑
i=0

σ(t−τt)i.

Thus, a result is obtained as follows.

Φ(t) limt→∞ |e(t)| = 0
Theorem  2:  The  closed-loop  system  for  R-NPC2  is  stable  if  and

only if the matrix  is stable, and also .
3) Stability of O-NPC: It is obtained from (9) that

 

e(t|t−τ′t ) = e(t−τ′t )− ψ̂(t−τ′t )
τ′t∑

i=1

∆u(t− i) (20)

where
 

τ′t ≜ τ̄
ca +τsc

t−τ̄ca . (21)
From (10) and (20), we have

 

∆u(t) = a(t−τ′t )e(t−τ′t )−
(
1−σ(t−τ′t )

) τ′t∑
i=1

∆u(t− i). (22)

Combing (18) and (22), we have
 

X(t+1) = Φ′(t)X(t) (23)
where
 

Φ′(t) =
[
A+B(t)D′(τ′t ) B(t)C′(τ′t )

D′(τ′t ) C′(τ′t )

]
C′(τ′t ) =

[
ξ′(τ′t ) 01×(τ̄−τ′t )

I(τ̄−1)×(τ̄−1) 0(τ̄−1)×1

]
ξ′(τ′t ) =

(
1−σ(t−τ′t )

) [−1,−1, . . . ,−1︸           ︷︷           ︸
τ′t

]
D′(τ′t ) =

[01×τ′t a(t−τ′t ) 01×(τ̄−τ′t )
0(τ̄−1)×(τ̄+1)

]
.

Similar to (19), we obtain the following result.

Φ′(t) limt→∞ |e(t)| = 0
Theorem  3:  The  closed-loop  system  for  O-NPC  is  stable  if  and

only if  is stable, which also guarantees .

τt
τ′t

τ′t ≥ τt

Remark 2: The other difference between R-NPC1/2 and O-NPC is
in  RTTDs.  From  (6)  and  (21),  it  can  be  seen  that  the  RTTD  of  R-
NPC1/2, , consists of the real-time DBLDs in both channels, while
the RTTD of O-NPC, , is composed of the real-time DBLD in the
backward  channel  and  the  upper  bound  of  DBLDs  in  the  forward
channel.  It  is  clear that ,  which would affect  the performance
of O-NPC if data model (2) cannot be accurately obtained.

Remark  3:  From  (13),  (17),  and  (22),  it  is  easy  to  see  that  the
control  increments  of  the  three  methods  are  similar  in  form  and
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τt = τ
′
t

r̄ > 0
∆u(t)R−NPC2 >

∆u(t)O−NPC > ∆u(t)R−NPC1
y(t) r̄

composition.  That  is,  they  are  all  combined  with  the  actions  of  a
delayed  tracking  error  or/and  historical  control  increments.
Moreover, (13) is one part of the first term of (17), and if , the
first  and  second  terms  of  (22)  are  one  part  of  the  first  and  second
terms  of  (17),  respectively.  Thus,  without  loss  of  generality,  for  a
constant  reference  input  and  with  zero  initial  system  outputs
and control increments, the control increments satisfy 

 at the start-up stage, and then the control
increment in (17) decreases fastest as  tends to . As a result, the
R-NPC2  method  would  have  the  fastest  response  time  and  the
smallest overshoot, and thus is superior to the other two methods.

Simulation results: The following system is used for simulation:
 

p(t) = 0.5u(t)3 −1.5u(t)2 +1.5u(t),
y(t+1) = 0.6y(t)−0.1y(t−1)+1.2p(t)−0.1p(t−1). (24)

µ = 1 λ = 10 ψ̂(0) = 1
The  initial  inputs  and  outputs  are  zero,  and  the  parameters  are

chosen  as , ,  and .  Two  simulation  cases  are
taken into account for comparison.

τsc
t ∈ [2,8]

τt = τ
′
t = τ

sc
t

∆u(t)R−NPC2 > ∆u(t)O−NPC > ∆u(t)R−NPC1 ∆u(t)R−NPC2

Case  1:  Random  DBLDs  are  considered.  The  output
responses  of  the  three  methods  are  given  in Fig. 3.  Obviously,  the
tracking performance of  R-NPC2 is  best,  and those of  R-NPC1 and
O-NPC  are  similar,  which  can  be  intuitively  observed  from  (13),
(17),  and  (22).  That  is,  in  this  case, ,  and  with  zero
historical control increments, three start-up control increments satisfy

,  and  then 
rapidly  decreases  as  the  system  output  approaches  the  reference
signal, which thus yield the output responses in Fig. 3.

 
0.6

0.4

0.2

0.0

−0.2

R
ef

er
en

ce
 a

nd
 o

ut
pu

t

−0.4

−0.6

−0.8
0 50 100 150

t (step)
200 250 300

yr(t)
y(t): R-NPC1
y(t): R-NPC2
y(t): O-NPC

 
τsc

t ∈ [2,8]Fig. 3. Simulation results for backward channel DBLDs .
 

τca
t ∈ [2,8]

τt = τ
ca
t ∈ [2,8] τ′t = τ̄

ca = 8
ψ̂(t) ψ(t)

Case 2:  The same random DBLDs as  in  Case 1 are  considered in
the  forward  channel,  i.e., .  The  simulation  results  are
illustrated in Fig. 4, indicating that the output responses of R-NPC1/2
are the same as those in Case 1, while the output response of O-NPC
becomes much worse than that in Case 1. The reason is that, for this
case,  still  holds, while .  Moreover, the
inevitable errors between  and  lead to that the performance
of O-NPC becomes worse than that of R-NPC1 and even that of the
networked control without compensation (green point line).

Conclusion: In  this  letter,  three  data-driven  NPC  methods  have
been  presented  for  a  class  of  nonlinear  NCSs.  In  order  to  compare
them,  the  control  scheme  design,  closed-loop  system  analysis,  and
numerical simulation have been conducted. The main similarities and
differences  between  them  have  been  discussed.  Simulation  results
have  shown that  among them,  the  R-NPC2 method  can  provide  the
best performance.
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