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ABSTRACT

Vehicle detection in traffic surveillance videos is a special
subtask in object detection, where desired objects are vehi-
cles moving on the road while the background is still within a
sequence. The disparity of speed within each frame, i.e. mov-
ing and static, is consistent with the vehicle and background
semantic to some extent, thus motions can be extracted to en-
hance the appearance of foreground. In this paper, we propose
a motion prior embedded parallel architecture for vehicle de-
tection, aiming at illuminating vehicles and suppressing false
positives in the background. We further implement extensive
experiments on the UA-DETRAC dataset to validate the ef-
fectiveness of our approach, and achieve promising perfor-
mance in both accuracy and speed.

Index Terms— Motion priors, vehicle detection, traffic
surveillance videos

1. INTRODUCTION

Vehicle detection aims at simultaneously recognizing and lo-
calizing vehicles in images or frames. This is a crucial ap-
plication in traffic surveillance, since accurate vehicle detec-
tion benefits downstream missions like vehicle tracking and
re-identification. It also remains a challenging issue due to
unconstrained environment such as lighting and occlusions,
which imposes dramatic impacts on object appearance and
raises many difficulties for detecting vehicles in real traffics.

Considering that the background in a traffic surveillance
video is identical and only vehicles are moving along the road,
we propose a parallel architecture embedded with motion pri-
ors to improve vehicle detection. The motivation stems from
the sensitivity of human eyes to moving objects. The motion
stimulation along with specific appearance can together high-
light vehicles from the cluttered background.

Instead of simply blending motion priors into the detector,
we decouple the moving object detection from the vehicle de-
tection task by constructing a network of two partly sharing
weights sub-branches. One branch takes both original frames
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(a) original image

(c) baseline detector (d) our detector

Fig. 1. Effect of motion priors. Heatmaps (c-d) generated by
Grad-CAM highlight the attention of detectors in identifying
vehicles. The more and stronger responses triggered in (d) in-
dicate our detector better focuses on vehicles when integrated
with motion priors.

and motion masks as input to separately detect moving vehi-
cles. The other branch detects overall vehicles to ensure a full
coverage of targets. The moving and global (static and mov-
ing) responses of vehicles are further aggregated for the final
inference. By decoupling detection targets, motion priors can
directly act on moving vehicles, and thus a false suppression
from motion priors on static vehicles waiting for traffic lights
can be avoided. The network structure will be detailed in Sec-
tion 3. We further carry out experiments on the UA-DETRAC
[1] dataset to demonstrate the effectiveness of our detector.

2. RELATED WORK

Generic object detection. Recent years have witnessed
significant progress in object detection. As a classic type,
two-stage detectors such as Faster R-CNN [2] first generate a
set of candidate proposals, and then refine them for accurate
bounding boxes and class labels. R-FCN [3] further intro-
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Fig. 2. An overview of the proposed framework. Here we show one prediction layer of feature pyramids for clarity.

duces position-sensitive score maps to improve the efficiency
of Faster R-CNN. As for single-stage approaches which are
popularized by SSD [4] and YOLO [5], objects are detected
within a single network. Following that, many works focus
on improving detection performance while maintaining com-
putational efficiency such as RefineDet [6] and RetinaNet [7].
These image-based detectors explore representative features
in geometric space, and thus can serve as the basic framework
in our method for integrating motion priors.

Surveillance vehicle detection. In recent literature, EB [8]
proposes a cascade detector called Evolving Boxes to refine
bounding boxes by combining features with different fusion
techniques. GP-FRCNNm [9] takes structural information of
scenes into account and re-ranks proposals with an approx-
imate geometric estimation of roads. FG-BRNet [10] sepa-
rates foreground and background to generate gating features
for suppressing false positives, and requires a feedback con-
nection from detection results to distill foreground objects.
These methods achieve remarkable performance to facilitate
the application of vehicle detection in the surveillance system.

3. PROPOSED METHOD

The overview of our framework is illustrated in Fig. 2. Our
detector contains three core modules, i.e. Motion Branch,
Global Branch and Aggregation Block. Both branches are
constructed on the same meta-detector like RefineDet [6]
without loss of generality. In this section, we present details
of our detector and explain the main purpose of design.

3.1. Motion priors embedding

Motions are commonly encoded as optical flow [11, 12] in
video object detection [13, 14, 15]. Considering the charac-
teristic of surveillance videos, we prefer a simpler and faster
method, background subtraction such as Visual Background
Extractor (ViBE) [16], to extract binary motion priors from
past frames. We take the motion mask as input and integrate it

into Motion Branch through a shallow side branch as shown in
Fig. 2. Here we apply space-to-depth pooling [17] for down-
sampling feature maps, which is an operation stacking adja-
cent features of high resolution maps into channels, to retain
complete motions as no pixels are discarded. Downsized mo-
tion masks are then concatenated with the conv4_ 3 layer in
VGG-16 [18], the backbone of RefineDet, to enrich seman-
tics of low level layers. We also experiment on more complex
structures but the gain is limited. Thus we choose this effec-
tive design for a fast processing speed despite its simpleness.

3.2. Parallel branches with shared weights

Decoupling moving objects from vehicle detection is an es-
sential part in our method. Since static vehicles like those
waiting for traffic lights or buses waiting for passengers are
deactivated on motion masks, their appearance may be false-
ly weakened or eliminated as background when directly fus-
ing features with motion priors. Thus we propose a parallel
structure to separately detect moving vehicles to mitigate this
negative effect. Global Branch is designed to be parallel with
Motion Branch. It detects overall vehicles to ensure a full cov-
erage of targets besides taking charge of all static foreground.
We further share weights between identical layers of
Global and Motion Branch to narrow parameter space. This
design is also based on the observation in experiments that
sharing weights benefits accuracy of detectors. One possible
reason may be that sharing weights enables Global Branch
with no explicit motion attention to sense features highlighted
in Motion Branch, while in turn, Global Branch stabilizes the
training of vehicles in Motion Branch which lacks explicit
supervision for static objects. Thus two branches together
push features towards a compact space for vehicle detection.

3.3. Aggregation of moving and overall detection

Detection results of Motion and Global Branch need to be ag-
gregated in inference, thus we employ Aggregation Block to
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Table 1. Ablation studies on the UA-DETRAC val set.

input size 320x320
baseline v v v v
+ Motion Branch vV vV N4
+ Aggregation Block v v
with shared weights 4 Vv
AP(%) 728 770 765 775
input size 512x512
baseline vV Vv Vv V4
+ Motion Branch v v v
+ Aggregation Block v v
with shared weights v v
AP(%) 75.0 79.8 789 80.7

get final vehicle predictions. Specifically, prediction layers of
two branches are first concatenated with each other. We then
insert a Squeeze-and-Excitation [19] (SE) block to generate
channel-wise weights to recalibrate the concatenated features,
aiming at adaptively enhancing informative patterns from dif-
ferent branches. Finally two convolutional layers are attached
to the SE block to reduce feature dimensions as well as to ex-
tract features, on which bounding boxes can further be classi-
fied and regressed as those in Global and Motion Branch.

3.4. Joint training of multi-modules

As for the training of the whole network, we follow the loss
function of classification (cls) and localization (loc) in [6] and
jointly optimize the three modules as below:

1= ¥

i€{MB,GB,AB}

(L + aLiy), (1

where MB, GB and AB are short for Motion Branch, Global
Branch and Aggregation Block, respectively, and « is a weight
term we set to 1. It is worth mentioning that the three modules
are all activated in training, but we obtain final predictions
only from Aggregation Block in inference.

Different from Global Branch and Aggregation Block
which apply overall ground-truth boxes for supervision, Mo-
tion Branch is only optimized with moving labels. Since the
separate moving labels for vehicles are not available in the
UA-DETRAC dataset, we specify them according to the area
of motion priors. We consider ground-truth boxes whose
overlap with motion masks is higher than a threshold p to
be moving targets. This threshold should be set a bit higher
than 0 to cope with noisy masks introduced by ViBE. Others
such as static and slowly moving ones whose overlap with
motion masks is less than 4 are ignored as neutrals rather than
negative background. By separately training moving vehicle
detection, motion priors can directly act on moving object-
s and be fully fused into their appearance features without
affecting the performance on static vehicles.

4. EXPERIMENTS

4.1. Experimental details

We conduct experiments on the challenging UA-DETRAC
[1] dataset to validate the effectiveness of our method. This
dataset contains 100 video sequences (60 for training and val-
idation, 40 for testing) corresponding to more than 140,000
frames of real-world traffic scenes, and involves four scenar-
ios of weather conditions, i.e. cloudy, rainy, sunny and night.

In the experiments, we set RefineDet as the baseline and
optimize all variant detectors with Adam [22]. The learning
rate is 10~ for the first 32 epochs, then reduced to 10~° and
10~ for another two 8 epochs. We set the batch size to 10 for
models with the input size of 320x320, and 6 for 512x512
models. The motion priors are generated by ViBE with de-
fault settings, which takes a negligible average time of 1.0ms
per image on GPU. The threshold ;¢ which defines moving
labels is set to 0.1. According to [1], results evaluated by Av-
erage Precision (AP) at the matching IoU of 0.7 are reported.

4.2. Ablation studies

Our proposed detector mainly involves three components, i.e.
Motion Branch with motion priors embedded, Aggregation
Block, and shared weights within the parallel networks. We
implement ablation studies to evaluate these components.

We first add Motion Branch and Aggregation Block to the
baseline in sequence, and report results in Table 1. Since
no aggregation is available in the + Motion Branch setting,
we gather detections from Motion and Global Branch, and
operate the common post-processing of Non-Maximum Sup-
pression (NMS) afterwards to obtain final predictions. In the
320320 model, both modules improve the detection perfor-
mance. Applying Motion Branch contributes +4.2% (77.0%)
AP, and learning to aggregate with a light neural network fur-
ther improves the detector by 0.5% (77.5%) AP. Similar im-
provements are observed in the 512x512 model, where we
achieve +4.8% and +0.9% AP gains for successively adding
Motion Branch and Aggregation Block, respectively.

To validate the effectiveness of sharing weights within the
parallel networks, we build a variant model with no weights
shared between Motion Branch and Global Branch. As shown
in Table 1, removing shared weights leads to 1.0% (76.5%)
and 1.8% (78.9%) AP drop for detectors with the input size of
320x320 and 512x512, respectively. These results show that
sharing weights can promote the feature learning for better
vehicle detection even with half less parameters.

4.3. Visualized results

We further turn to Grad-CAM [23], a technique of produc-
ing visual explanations for decisions of Convolutional Neural
Network (CNN)-based models, to see how our detector work-
s. As shown in Fig. 1, the highlighted areas represent the
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Fig. 3. Qualitative results of the baseline (top) and ours (bottom). As shown in (a), our detector suppresses the parterre that
is falsely recognized by the baseline detector for its streamline shape similar with cars, and detects small vehicles with high
confidence. It also steadily localizes the bus and truck in (b), and filters out the falsely detected traffic sign under a low
illumination condition. Here yellow boxes represent false positives, and yellow arrows point to missed detections.

Table 2. Comparisons with the state-of-the-arts on the UA-DETRAC fest set alongside the best/second best AP (%) results.

Method Overall | Easy Medium Hard | Cloudy Night Rainy Sunny | FPS Environment
YOLOV2 [17] 5772 | 83.28 6225 4244 | 5797 6453 4784 69.75 - GPU@GTX1080
Faster R-CNN [2] | 58.45 | 8275  63.05 4425 | 6629 69.85 4516 6234 | 11.1 GPU@TitanX
EB [8] 67.96 | 89.65  73.12  53.64 | 7242 7393 5340 83.73 | 10 GPU@TitanX
R-FCN [3] 69.87 | 9332  75.67 5431 | 7438 75.09 56.21 84.08 6 GPU@TitanX
CSP [20] 77.67 | 93.65 83.67 6454 | 86.81 80.63 61.39 89.66 4 GPU@K40
GP-FRCNNm [9] | 77.96 | 92.74 8239  67.22 | 83.23 7775 70.17 86.56 4 GPU@K40
HAT [21] 78.64 | 93.44  83.09 68.04 | 86.27 78.00 67.97 8878 | 3.6 GPU@TitanX
FG-BR Net [10] 7996 | 93.49  83.60 70.78 | 87.36 7842 70.50 89.89 | 10 GPU@M40
Ours 80.76 | 9456 8590  69.72 | 87.19 80.68 71.06 89.74 | 14 GPU@GTX1080

attention of detectors in identifying vehicles. Our detector
perceives a broader range of vehicles in correspondence with
motion masks compared with the baseline detector.

The qualitative performance is shown in Fig. 3 with a s-
core threshold of 0.5 for displaying. Since the background in
surveillance videos hardly changes, false positives such as the
parterre and traffic signs which have similar shapes with cars
may continuously appear once detected as shown in the top
line of Fig. 3. Compared with the baseline detector, our de-
tector performs more stably in recalling true positives as well
as suppressing false positives in real traffic background.

4.4. Comparisons with the state-of-the-arts

Following the protocol of UA-DETRAC, we submit the re-
sults of our detector with the input size of 512x512 to the
public testing server for evaluation. A comparison with re-
cently published state-of-the-art methods is shown in Table 2.
We achieve an overall accuracy of 80.76% AP while main-
taining the fastest speed of 14 FPS among these detectors. In
terms of the performance under different weather condition-
s, our approach obtains competitive results on the cloudy and

sunny subset, and outperforms the other methods on the night
and rainy subset. We attribute the stable performance under
various conditions especially the bad weather to the proper
use of motion priors. Detectors only use geometric features
are susceptible to unexpected environment when detecting ve-
hicles in real traffic, thus motions are very critical to generate
robust predictions in surveillance vehicle detection.

S. CONCLUSION

In this paper, we propose the motion priors embedded paral-
lel architecture for surveillance vehicle detection. The key is
to properly leverage motions by decoupling moving objects
from overall vehicles, in order to enhance vehicle appearance
while carefully suppressing false positives in the background.
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