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Abstract—Excessive stress will have a negative impact on
people’s physical and mental health, especially for some special
occupations. Because stressful stimuli can trigger a variety of
physiological responses, analyzing physiological signals collected
by wearable devices has become an important way to evaluate
the stress state in recent years. However, the number of available
subjects of a target group may be small, and collecting a large
amount of data when the target group changes is costly and time-
consuming. To solve this problem, we propose a stress detection
framework for a small target group which uses adversarial
transfer learning method to learn shared knowledge about stress
between different groups. In order to verify the performance of
the framework, we establish a dataset consisting of 264 ordinary
college students and 32 police school students, aiming to evaluate
the acute stress state of police school students under video
stimuli for psychological training in the future. Comprehensive
experiments show that our algorithm has achieved a significant
improvement in the target group compared with the baseline
methods.

Index Terms—Stress Detection, Transfer Learning, Physiolog-
ical Signal Processing, Wearable Devices

I. INTRODUCTION

Stress monitoring is one of the key aspects in the field of
health care, and stress affects people’s cognitive behaviors and
decision-making. The stress states have a significant impact on
people’s working efficiency, and long-term excessive stress and
negative emotion may even cause harm to a person’s physical
and mental health [1]. Especially, people with some special
occupations (such as police, doctors, and drivers) are vulner-
able to acute stressful stimuli in the working environment.
Monitoring their responses to stressful stimuli is helpful to
protect their health and guarantee their safety.

When people are exposed to stressful events, physiological
responses are triggered under the control of the Autonomic
Nervous System (ANS). Physiological signals which are com-
monly used for stress detection include Electrodermal Activity
(EDA), Photoplethysmography (PPG), respiration, Electroen-
cephalogram (EEG) and Skin Temperature (ST) [1]. Moreover,
cortisol in salivary and blood is related to stress levels [2]. The
stress state will also be reflected on behaviors such as eye
movements, facial expressions [3], and speech [4]. The above
measures have been widely applied to the research of stress
detection in the laboratory environment. Physiological signals

are more convenient to collect than cortisol, and have better
objectivity than behaviors. However, some of the physiological
signals such as EEG rely on non-portable equipment, making it
difficult to be applied to real-world application scenarios. With
the development of wearable sensors, the use of wrist-worn
devices provides a portable, unobtrusive, and non-invasive way
of physiological signal collection, and has achieved excellent
performance. In this paper, we use wearable devices to collect
EDA, PPG and ST signals for analysis.

This paper aims to assess the acute stress of a specific
target group under multiple stressful stimuli, so as to lay the
foundation for subsequent targeted psychological adjustment
and training. One of the challenges is that the amount of
available subjects of the target group may be small, and it is
difficult to train an accurate stress detection model using only
these data. In addition, although people have similar stress
physiological responses, the intensity of their stress will be
affected by various factors such as different ages, genders,
occupations, and environments of data collection [1]. When the
model trained on the general group is used for a specific group,
the data distribution differences between these two groups may
lead to large errors. In order to solve these problems, the
transfer learning method is adopted in this paper to realize the
data distribution alignment of the ordinary group and the target
group, thereby achieving the purpose of data enhancement.

Transfer learning can transfer knowledge learned from pre-
vious tasks to new problems [5]. The domain that provides
prior knowledge is called source domain, and the domain of
the new problem to be solved is called target domain. It assists
the learning of target domain knowledge by mining the similar-
ities between the two domains in data, tasks, and models. The
transfer learning algorithm has good performance for various
transfer problems such as different research objects [6] and
different research tasks [7]. Especially in the field of physio-
logical signal analysis [8], [9], it can be used to compensate
for the errors caused by the factors of individual differences,
data distribution differences, and stimulus material differences.
By using transfer learning methods, high accuracies can be
achieved when the target domain has only a small amount of
labeled data.

In this paper, an adversarial transfer learning method is used
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for training, which contains three main modules: a feature
extractor, a domain discriminator and a stress detector. The
domain discriminator and the stress detector take the output
of the feature extractor as input, and then output domain labels
and stress levels respectively. The domain discriminator is used
to distinguish whether a sample belongs to the source domain
or the target domain, and the purpose of the feature extractor
is to generate features that the domain discriminator cannot
distinguish. Through adversarial training, the data distribution
of the two domains in the feature space can be more consistent.
At the same time, the stress detector is also jointly trained
with the above two modules to ensure that these features are
contributed to the stress detection task, so that the learned
model can be applied to stress assessment in both the source
domain and the target domain.

The main contributions of this paper are as follows:
• To solve the problem of small amount of data for a

specific target group, we propose an adversarial transfer
learning framework for the task of physiological-signal-
based stress detection, which uses general group data for
data enhancement.

• In order to verify the performance of the framework, we
designed an experimental protocol to induce stress and
established a physiological signal dataset containing 264
ordinary college students and 32 police school students.

• Comprehensive experiments demonstrate that we have
achieved robust feature extraction and stress classification
on the target group, and the performance of our frame-
work significantly outperforms the baseline method.

II. RELATED WORK

A. Physiological-signal-based Stress Detection

Great progress has been made in stress detection by
constructing the relationship between the time-domain and
frequency-domain features of a single signal and the stress
levels. Among them, EEG [10], [11], ECG [12], and EDA [13],
[14] are most commonly used. Besides, more algorithms focus
on multiple physiological signals and use multi-modal fusion
methods for comprehensive analysis. For example, Ciabattoni
et al. analyzed the data of skin response and body temperature
captured by smart watches, and used K-Nearest Neighbor
(KNN) method to detect real-time mental stress in cognitive
tasks [15]. Sriramprakash et al. collected ECG and EDA
signals and used Support Vector Machine (SVM) and KNN
to detect users’ workload [16]. Betti et al. established a
wearable sensor system based on multi-modal information
(EEG, ECG, and EDA), and used saliva cortisol as the criterion
for assessing stress levels [2].

The above algorithms depend on manual features and tradi-
tional machine learning models. With the development of deep
learning technology in recent years, deep networks have grad-
ually been applied to the fields of physiological-signal-based
stress detection and emotion recognition. For example, Jafari
et al. converted multi-modal sequence signals into images and
used a scalable and low-power embedded Deep Convolutional

Neural Network (DCNN) to learn shared features [17]. The
algorithm achieves an accuracy of 94% in the task of stress
detection. Aristizabal et al. used deep networks to extract the
features of physiological signals and behaviors collected by
a wearable device [18]. Hassan et al. extracted deep features
of EDA, PPG, and Zygomaticus Electromyography (zEMG)
by the Deep Belief Network (DBN) and merged them with
the statistical features [19]. Siddharth et al. obtained the
spectrograms of all signal channels and used a deep network to
extract their image features [20]. Although algorithms based
on deep learning have achieved more superior performance
in stress assessment, they have higher requirements on the
scale of training data. The datasets which contain only dozens
of subjects in the early research are difficult to meet the
requirements of the training of the deep networks.

B. Transfer Learning

Transfer learning algorithms can be divided into 4 cate-
gories: instance transfer, feature representation transfer, pa-
rameter transfer, and relational knowledge transfer [5]. Most
of the current studies focus on feature-based transfer learning,
which reduces the gap between the source domain and the
target domain through feature transformation [21], [22]. In
recent years, deep networks have been used for transfer learn-
ing. Some adaptive methods based on the Maximum Mean
Discrepancy (MMD) metric [23], [24] have been proposed.
Transfer learning algorithms based on Generative Adversarial
Network (GAN) [25]–[27] have also achieved great success. In
the GAN-based algorithms, the generator aims to extract do-
main features and make the discriminator unable to distinguish
the difference between the two domains, thereby achieving
robust feature extraction.

In the field of physiological-signal-based stress recognition,
there are only a few studies related to transfer learning, and
most of them are used for cross-subject model training. Han
et al. considered the trade-offs between task-related and user-
related information to learn robust features that eliminate user
difference, by introducing an additional adversarial network
and a nuisance network [8]. Chen et al. proposed a cross-
subject feature evaluation method to select a subset of features
suitable for transfer in the driving state detection task [9].
Yin et al. proposed a transfer dynamical autoencoder for
EEG feature extraction and mental stress recognition, which
transferred the knowledge of EEG signal analysis knowledge
in the emotion recognition task to the mental stress recognition
task [7]. These works have learned robust physiological signal
features and ensured a high recognition accuracy, even when
the labeled data of the target domain are insufficient.

III. METHODOLOGY

The brief flow of our stress detection framework is shown
in Fig. 1. The multi-modal signals are first pre-processed to
remove abnormal fragments and noise. Next, manual features
and deep features of the signals are extracted and fused.
Then, during training, three modules are jointly trained in
our proposed transfer learning method: feature extractors (it
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Fig. 1. The brief flow of our framework. The multi-modal signals are first pre-processed (blue) to remove abnormal fragments and noise. Then, manual
features and deep features of multi-modal signals are extracted and fused. The manual feature extraction module and part of the deep network with fixed
parameters (red) will not be updated during training. The proposed adversarial transfer learning algorithm contains the trainable feature extractor (yellow), a
stress detector (green), and a domain discriminator (purple). After joint training, a model which is not sensitive to domain differences can be obtained.

is composed of the trainable part of the above deep feature
extraction network and feature fusion network), domain dis-
criminators, and stress detectors. Among them, the domain
discriminator is used to distinguish whether a sample belongs
to the source domain or the target domain. The pressure detec-
tor is used to give the classification result of the stress level.
The feature extractor aims to generate the features required
for stress detection and make the domain discriminator unable
to distinguish between the two domains. After adversarial
training of the three modules, a stress detection model that
is insensitive to domain differences can be obtained.

A. Signal Processing

The goals of this module are denoising and removing
abnormal data points of multi-modal signals. First, the hand
movements are estimated based on the acceleration sensor
signal, and data fragments of low quality caused by the intense
movements are removed. Then, the PPG signal is filtered
with a fourth-order Butterworth band-pass filter with a cut-off
frequency of 0.5-3 Hz. The EDA signal is filtered by a fourth-
order Butterworth low-pass filter with a cut-off frequency of
1 Hz. The ST signal is filtered by a moving average filter.

Finally, the outlier detection based on wavelet transform is
performed on the signals. The outliers are determined and
eliminated by detecting the modulus maximum point of the
coefficient of the wavelet transform.

B. Feature Extraction

Manual Features. The EDA signal is decomposed into
tonic component and phasic component which are related to
the Skin Conductance Level (SCL) and the Skin Conductance
Response (SCR) respectively. Based on these components, the
features such as mean, standard deviation, number of startles,
and rise time are calculated [2]. For the PPG signal, the peak
detection algorithm in HeartPy toolbox [28] is first performed
to extract the RR Intervals for the calculation of Heart Rate
Variability (HRV). The extracted PPG features include time-
domain features such as Beats Per Minute (BPM), Inter-Beat
Interval (IBI), and frequency-domain features such as Low
Frequency (LF) power and High Frequency (HF) power. For
the ST signal, we calculate its average and standard deviation
as features. All manual features and their descriptions are
shown in Table I.
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TABLE I
MANUAL FEATURES AND DESCRIPTIONS

Number Signal Features Description
1

EDA

TC mean Mean of the tonic component
2 TC SD Standard deviation of the tonic component
3 TC mean1 Mean of the first-order differential of the tonic component
4 TC SD1 Standard deviation of the first-order differential of the tonic component
5 PC mean Mean of the phasic component
6 PC SD Standard deviation of the phasic component
7 Startle Number of detected startles
8 Startle mean Mean of the amplitude of the startles
9 Startle SD Standard deviation of the amplitude of the startles

10 Rise time mean Mean of the rise time of the startles
11 Rise time SD Standard deviation of the rise time of the startles
12 Fall time mean Mean of the fall time of the startles
13 Fall time SD Standard deviation of the fall time of the startles

14

PPG

BPM Beats per minute
15 IBI Inter-beat interval
16 SDNN Standard deviation of all normal RR intervals
17 SDSD Standard deviation of the squared differences between adjacent normal RR intervals
18 RMSSD Square root of the mean of the squared differences between adjacent normal RR intervals
19 PNN20 Percentage of differences between adjacent normal RR intervals exceeding 20 ms
20 PNN50 Percentage of differences between adjacent normal RR intervals exceeding 50 ms
21 LF Signal power in low frequency (0.04-0.15Hz)
22 HF Signal power in high frequency (0.15-0.4Hz)
23 LF/HF Ratio between LF and HF powers

24
ST

ST mean Mean of the skin temperature
25 ST SD Standard deviation of the skin temperature

Deep Features. A short-time Fourier transform with a win-
dow length of 1s is used to obtain the frequency components of
the PPG and EDA signals in different time periods. The time-
series data are converted to a frequency domain-based image
representation [20]. Then, the spectrograms are input to the
pre-trained Convolutional Neural Networks (CNN) for deep
feature extraction. Among them, the parameters of the last
several layers of this network are involved in network training,
and the parameters of other layers are fixed. Because the fre-
quency analysis of the ST signal contains less information, we
only use a Long Short-term Memory (LSTM) network [29] for
temporal feature extraction. These deep features are cascaded
with the above manual features after dimension reduction, and
the fused features are input into the stress detector and the
domain discriminator.

C. Classification based on Transfer Learning

Let the data of the source domain can be denoted as Ss =
{Xs, Ys, Gs}, where Xs represents the intermediate results of
feature extraction which is input to the trainable network, Ys ∈
{1, . . . ,K} represents the corresponding stress labels, K is the
number of stress categories, and Gs = {0, 0, · · · , 0} represents
the domain labels of the source domain. Similarly, the data of
the target domain can be expressed as St = {Xt, Yt, Gt},
where Gt = {1, 1, · · · , 1} represents the domain labels of the
target domain. Our goal is to construct a discriminant model

that can predict the stress level y of a given x and is not
sensitive to domain differences.

Inspired by [25], we propose a transfer learning method
based on adversarial networks, which includes a feature ex-
tractor F (the yellow part in Fig. 1), a stress detector C,
and a domain discriminator D to determine which domain the
sample belongs to. The goal of D is to distinguish the source
domain from the target domain depending on the features
generated by F , while the goal of F is to generate features
that are not related to the domains. By competing with each
other, F and D can make the transformed feature distribution
of the source domain and target domain tend to be consistent.
At the same time, the training of C ensures that F can extract
the features that contribute to stress detection so that the model
can be applied to the stress assessment of both domains.

Both D and C are composed of multiple Fully Connected
(FC) layers and a softmax layer. For an input x, the output
of F is denoted as F (x), the output of D is denoted as
D (F (x)), and the output of C is denoted as C (F (x)). Then
the classification loss of C and D can be expressed as:

Lcls (Xs, Ys, Xt, Yt) =

−E(x,y)∼(Xs,Ys)∪(Xt,Yt)

K∑
k=1

1[k=y]logC (F (x)) ,
(1)
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Fig. 2. The wearable device in our experiment.

Ladv (Xs, Xt) =−Ex∼Xs (logD (F (x)))

−Ex∼Xt (log (1−D (F (x)))) .
(2)

Based on the above analysis of the goals of the three
modules, C is optimized by minimizing Lcls, D is optimized
by minimizing Ladv , and F is optimized by minimizing Lcls

and maximizing Ladv . The optimization formulas of C, D and
F can be expressed as:

min
C

Lcls (Xs, Ys, Xt, Yt |F ) , (3)

min
D

Ladv (Xs, Xt |F ) , (4)

min
F

(Lcls (Xs, Ys, Xt, Yt |C )− Ladv (Xs, Xt |D )) , (5)

During training, the parameters of each module are updated
alternately. During testing, D is not used, and the output of
the whole model is the stress levels given by C.

IV. MATERIALS

A. Instruments

We use a wrist-worn wearable device for data collection,
as shown in Fig. 2. This device can acquire signals including
EDA, PPG, ST, and accelerometer data. It is connected to
a smart phone via Bluetooth and can display waveforms of
multiple signals in real-time in a supporting APP.

B. Participants

In this study, we recruited participants who belonged to two
groups: police school students (group P) and ordinary college
students (group O). Compared with group O, group P has
better physical fitness and stronger psychological endurance,
so there are differences in data distribution between the two
groups.

Group P contains 32 healthy participants (24 males and 8
females) with an average age of 20.9 years. Group O contains
264 healthy participants (151 males and 113 females) with
an average age of 22.8 years. People suffering from heart
disease, high blood pressure, depression, etc. were excluded.
All participants signed an informed consent form before being
included in the study.

Relax 1 Video 1 Relax 2 Video 2

2' 2'25'' 2' 2'56''

Self-reporting: 5''

Fig. 3. The description of our experiment protocol.

C. Experimental Protocol

We use video stimuli to induce stress. In the preparation of
video stimuli, we collected the blood cortisol concentrations
of 10 additional subjects before and after watching the video.
This experimental result proved that the selected videos in this
study can effectively trigger stress responses.

The experimental protocol (which is shown in Fig. 3)
includes 4 phases: Relax 1, Video 1, Relax 2, Video 2.
Participants were required to wear a wrist-worn device, sit in
front of the screen for more than 10 minutes, and follow the
prompts to sit quietly or watch the video. All participants were
required to sit comfortably and keep their body (especially
wrists) still during the whole procedure. At the end of each
stage, the subjects were required to verbally provide the
self-reporting level (5 levels) of their current stress. The
experimental protocol is designed as follows:
• Relax 1: Sit still for 2 minutes.
• Video 1: Watch a clip from the movie ”Final Destination

5”, which lasts 2 minutes and 25 seconds.
• Relax 2: Sit still for 2 minutes.
• Video 2: Watch a clip of a documentary related to the

riot, which lasts 2 minutes and 56 seconds. This stimulus
is closely related to the future working environment of
police school students.

D. Data Annotations

During data collection, we obtained the self-reporting stress
levels of each phase, which range from 1 to 5 (from low to
high). They are used as training labels, and the stress detection
task is transformed into a 5-class classification problem. In
addition, we re-label the first and second levels as low stress,
and levels from the third to the fifth as high stress. A 2-class
stress detector is also trained. The experimental results with
the self-reporting labels are shown in Section V-B1.

Finally, we also use different phases in our experimental
protocol as training labels. The data are divided into two
categories: relaxed (Relax 1 and Relax 2) and stressful (Video
1 and Video 2). The experimental results with the phase labels
are shown in Section V-B2.

V. EXPERIMENTS

A. Implementation Details

For the PPG and EDA signals, we choose the pre-trained
VGG16 network [30], a classic network, for deep feature
extraction due to its effectiveness. The number of trainable
layers is set to 2. For the ST signals, a two-layer BLSTM
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TABLE II
EXPERIMENTAL RESULTS WITH SELF-REPORTING LABELS

Method 5-class Accuracy 2-class Accuracy
SVM (Group O) 37.50% 66.41%
SVM (Group P) 33.33% 62.29%
JDA+SVM 40.91% 72.65%
Our Framework 43.18% 75.00%

network is used to extract features, and the numbers of LSTM
neurons are set to 64. Both FC layers which fuse the deep
features and the manual features have 50 units. In the stress
detector, the numbers of units of the two FC layers are set
to 50 and 20. The numbers of units in the discriminator are
set to 30 and 10. The activation function in the network is
ReLU. During training, the batch size is set to 8. The Adam
optimizer is utilized to minimize the loss, and the learning rate
is set to 0.0001. The hyper-parameters are selected by 5-fold
cross-validation.

B. Experimental Results and Analysis

1) Comparisons with Baseline Methods Using Self-
reporting Labels: In this section, we compare our proposed
framework with the following baseline and state-of-the-art
methods: a). an SVM trained with the manual features of group
O; b). an SVM trained with the manual features of group P;
c). a state-of-the-art transfer learning algorithm called Joint
Distribution Adaptation (JDA) [22] and an SVM trained with
the manual features of the two group. All models use 5-fold
cross-validation to divide the group O, and the test samples
are all from the group P. Model b), c) and our algorithm use
5-fold cross-validation to divide group P. Besides, in model c)
and our algorithm, the training samples of group P combine
all samples of group O to train 5 models. The experimental
result of each method is the average accuracy of 5 models,
which is shown in Table II.

The recognition accuracy of the SVMs which train only
on group O or group P is the lowest. Because group P has
few training samples, it is prone to problems such as outlier
interference and category unbalance during training, which
leads to a decrease in the robustness of the model. The sample
amount of group O is sufficient to support the training of the
model a), but the physique and stress tolerance of the two
groups are different. Using this model to predict the samples
of group P will bring obvious bias. After the data adaptation
of the JDA algorithm, the feature distribution of the two
groups tends to be consistent, and the recognition accuracy
has increased significantly.

Because the difference between the multiple stress levels
is difficult to distinguish, the accuracy of the 5-class setting
is not satisfactory. Especially there are only a few samples
at level 4 or 5 (high stress), the misclassification rates of
these methods at level 4 or 5 are high. However, it can be
observed that the framework proposed in this paper achieves
the highest recognition accuracy in both the 5-class and 2-class
settings. The fusion features with abundant information and the

TABLE III
EXPERIMENTAL RESULTS WITH PHASE LABELS

Method Accuracy
SVM (Group O) 76.56%
SVM (Group P) 80.05%
JDA+SVM 84.37%
Our Framework 86.76%

adversarial transfer method contribute to the improvement of
the detection performance.

2) Comparisons with Baseline Methods Using Phase Label-
s: We compare the above algorithms in the task of distinguish-
ing whether a sample is related to a relaxed state or a stress
state which is triggered by video stimuli. The experimental
results are shown in Table III. We can observe that the transfer
learning algorithms still show obvious advantages, and our
framework achieves the highest accuracy rate.

It is worth noting that these results are much higher than
the 2-class accuracy in Table II. Although the self-report rating
is a commonly used way to establish stress ground truth, the
stress state is a subconscious process in some cases, and the
self-report rating is highly subjective [1]. In addition, stress
is a multifaceted experience, and the intensity and reaction
time of the self-experience and physiological response may be
varied. Although sometimes people’s inner stress feeling is not
obvious, their physiological reactions will still be stimulated.
Compared with ordinary students, this phenomenon is more
obvious among police school students. Their psychological
endurance may be stronger, but it also brings the problem
that it is difficult to detect and adjust abnormal states in time
under pressure stimulation. In future work, we will conduct
a comprehensive analysis with reference to various pressure
marking methods.

VI. CONCLUSION

In this paper, we propose a stress detection framework
based on transfer learning to solve the problem of insufficient
samples of the target group. It is obtained through adversarial
training of three modules: a feature extractor, a domain dis-
criminator, and a stress detector. To evaluate the effectiveness
of our method, we design an experimental protocol for data
collection and established a physiological signal dataset con-
taining ordinary college students and police school students.
In the experiments, we compare the proposed framework with
the baseline and the state-of-the-art algorithms, and analyze
the experimental results based on self-report labels and phase
labels. The experimental results demonstrate the effectiveness
and superiority of our framework. In future work, we will
explore the impact of different feature components, framework
modules, and network parameters on model performance in
detail. In addition, we also aim to develop a real-time stress
detection system with stronger anti-interference capabilities
and apply it in real-world environments.
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