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   Dear Editor,

This letter aims to investigate the optimization problem where the
decision variable is contained in a closed convex set. By combing the
gradient decent-like method with the push-sum algorithm framework,
we design the distributed iterative formulas under the condition that
the  considered  graphs  sequence  is  time-varying  and  unbalanced.
Under  some  standard  assumptions  on  the  problem  setting  and  the
decaying step-sizes, we analyze the convergence property of the gen-
erated variables sequence under the proposed iterative formulas.

The  distributed  optimization  has  been  widely  and  deeply  resear-
ched during the recent  decades due to its  great  potential  application
value in various practical  fields.  Accordingly,  a  great  deal  of  excel-
lent  results  with  both  the  continuous-time  [1]–[5]  and  discrete-time
algorithms  [6]–[16]  developed  have  been  obtained.  Here,  we  only
care about the results with discrete-time algorithms developed.

x ∈Ω

argminx∈Ω

References  [6]  and  [7]  respectively  developed  the  basic  frame-
works  of  the  distributed  gradient  descent  algorithms  for  uncons-
trained and constrained problems. Then, based on [6] and [7], resear-
chers  solved  the  constrained  optimization  problems  with  different
constraints  by  various  distributed  algorithms  designed  on  balanced
graphs  [8],  [9]  or  unbalanced  graphs  [10],  [11].  Specially,  with  the
time-varying and unbalanced graphs considered, the distributed algo-
rithm was designed in [12], which was only effective on the uncon-
strained optimization  problem.  Most  recently,  the  distributed  algo-
rithms  under  the  gradient  tracking  framework  [13]–[16]  became
more  popular  since  those  algorithms  can  possess  the  linear  conver-
gence  rates.  Particularly,  the  unbalanced  and  time-varying  graphs
were involved in [16]. However, those algorithms can only solve the
unconstrained optimization problems. In a conclusion, it is still very
hard to  design  the  distributed  algorithms  for  the  constrained  opti-
mization  problems  on  the  time-varying  and  unbalanced  graphs  and
only few related works exist. Specially, [17] studied the constrained
optimization problem with a  closed convex set  constraint  and
considered  the  time-varying  and  unbalanced  graphs.  However,  the
operation  was employed in the designed algorithm to deal
with  the  involved  constraint,  which  will  make  the  solving  process
more complex and will demand more numerical task.

argminx∈Ω

As for this paper,  the main contributions are that a novel gradient
decent-like method handling the closed convex set constraint is intro-
duced and it  can be successfully integrated into the push-sum based
algorithm.  Accordingly,  the  new  distributed  iterative  formulas  are
designed without using the operation , which can success-
fully  address  a  kind  of  constrained  optimization  problems  although
the  time-varying  and  unbalanced  graphs  are  involved.  Furthermore,

under the  suitable  assumptions  on  the  decaying  step-sizes,  we  pro-
vide the convergence analysis.

Preliminaries: In  this  part,  a  general  description  on graph theory
and the notations employed are shown.

N ≜ {1, . . . ,n} {G(r)
}

r ∈ {0,1,2 . . . } ≜ R
{B(r)}

B(r)
r ∈ R B ji(r) B ji (r) > 0 i ∈ N j(r) i = j

B ji (r) > 0 N j(r)
j ∈ N G(r),G(r+1), . . . ,G(r+H0)

H0
N E(r)

∪E(r+1)
∪ · · ·∪E(r+H0)

{G(r)}
r ∈ R

G(r),G(r+1), . . . ,G(r+H−1)

Graph  theory: Let  the  index  set  of  the  nodes  be  denoted  as
. Specially, assume the communication network among

n agents  in  this  letter  consists  of  the  graphs  sequence  with
,  which  is  time-varying  and  unbalanced.  Additio-

nally, we assume that  is the adjacency matrices sequence and
all  are  nonnegative  column  stochastic.  Furthermore,  for  the
given ,  we  define  as ,  if  or ;

, otherwise, where  denotes the neighbours set of the
agent  at  step r.  For  the  digraphs 
with  being a positive integer, their joint graph is depicted by the
node  set  and  the  edge  set . Fur-
thermore,  we say  is  uniformly jointly strongly connected if  a
positive  integer H exists  such  that  for  all ,  the  joint  graph  of

 is strongly connected.
{G(r)}Assumption 1:  considered in this  letter  is  uniformly jointly

strongly connected.
Rp Rq×p

q× p
y ∈ Rp M ∈ Rq×p ∥y∥ ∥M∥

Mi j
i j
Rp ∂g(y)

PY (·)

Notations: Let  stand for Euclidean vectors space and  repre-
sent  the -dimensional  Euclidean  matrices  space.  Furthermore,
for a given  and ,  and  respectively stand for
the 2-norm of y and the Frobenius norm of M. Furthermore,  rep-
resents  the -th  entry  of M.  Additionally,  for  a  convex  function g
defined on ,  represents its gradient at y. For a closed convex
set Y,  represents the projection operator on Y.

Main results: First, we formulate the optimization problem as
 

min
x∈X

g (x) =
1
n

n∑
i=1

gi (x) (1)

X ⊆ Rp gi
Rp i ∈ N

where  is  a  closed  convex  set;  are  convex  local  objective
functions defined on  for all . Next, to solve the problem (1),
the following distributed iterative (2) is designed:
 

zi(r+1) =
n∑

j=1

Bi j(r)y j(r) (2a)

 

wi(r+1) =
n∑

j=1

Bi j(r)w j(r) (2b)

 

xi(r+1) =
zi(r+1)
wi(r+1)

(2c)
 

yi(r+1) = zi(r+1)+
β(r)

∥di(r+1)∥ (si(r+1)

− xi(r+1))−α(r)∂gi(si(r+1)) (2d)
si(r+1) = PX(xi(r+1))where , and

 

di(r+1)=
{

si(r+1)−xi(r+1), ∥si(r+1)−xi(r+1)∥>d
s, ∥si(r+1)−xi(r+1)∥≤d

∥s∥ = 1 d = 1
{α(r)} {β(r)}

yi(0)
wi(0) = 1 ∀i ∈ N

with d being a positive constant and s being a nonzero vector satisfy-
ing .  Furthermore,  we  set  for  convenience.  The  step-
sizes sequences  and  are assumed to be positive and non-
increasing.  The  initial  values  can  be  arbitrarily  selected  and

, .
Assumption 2: It holds

 

max{∥∂gi(si(r+1))∥,1} ≤ D, ∀i ∈ N , r ∈ R (3)
where D is a positive constant.

Clearly, we can deduce that
 ∥∥∥∥∥ si(r+1)− xi(r+1)

∥di(r+1)∥

∥∥∥∥∥ ≤ 1.

∀r ∈ R
Thus, under Assumptions 1 and 2, we can directly get the follow-

ing result based on the result in [12]: , 
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∥xi(r+1)− ȳ(r)∥ ≤ D1ρ
r +D2

r−1∑
l=0

ρr−1−l(α(l)+β(l)) (4)

ȳ(r) = (1/n)
∑n

i=1 yi(r) D1 D2 0 <
ρ < 1 r ∈ R ϕi1(r) = β(r)∥xi(r+1)− ȳ(r)∥ ϕi2(r) =
α(r)∥xi(r+1) − ȳ(r)∥ N1(r) = {i ∈ N | di(r + 1) = s} N2(r) =
{i ∈ N | di(r+1) , s}

where ;  and  are positive constants and 
.  For all ,  we define , 

,  and 
.

∀r ∈ R ȳ(r)Lemma 1: , the following inequality holds for the  under
the algorithm (2) and Assumptions 1 and 2:
 

∥ȳ(r+1)− s∗∥2 ≤
(
1+

2
n

n∑
i=1

ϕi1(r)
)
∥ȳ(r)− s∗∥2 −2α(r)(g(s̄(r))

−g(s∗))−
( |N1(r)|

n
β(r)∥ȳ(r)− s̄(r)∥2

+2
l|N2(r)|

n
γ(r)∥ȳ(r)− s̄(r)∥

)
+φ(r) (5)

s∗ s̄(r) =
PX(ȳ(r)) γ(r) = β(r)− (D/l)α(r) l

0 < l ≤ 1

where  is  an  arbitrary  vector  in  the  optimal  solutions  set, 
,  with  being a positive constant sat-

isfying , and
 

φ(r) =
4D
n

n∑
i=1

ϕi2(r)+
2
n

n∑
i=1

ϕi1(r)+2D2α2(r)

+2β2(r)+
D2|N1(r)|

n
α2(r)
β(r)
.

Proof  1:  For  maintaining a  smooth presentation flow,  the detailed
proof of Lemma 1 is provided in the supplementary file. ■

φ(r)

α(r) β(r)
φ(r)

Clearly,  the  summable  condition  of  should  be  obtained  for
completing  the  convergence  analysis.  To  this  end,  an  assumption  is
shown blow on  and  for guaranteeing the summable condi-
tion of .

{α(r)} {β(r)}Assumption  3:  The  step-sizes  and  satisfy the  follow-
ing conditions:
 

∞∑
r=0

α(r)=∞,
∞∑

r=0

α2(r)<∞, β(r) =
D
l
α(r)+γ(r)

{γ(r)} γ(r) ≥ α(r) ∀r ∈ Rwith  satisfying ,  and
 

∞∑
r=0

γ(r) =∞,
∞∑

r=0

γ2(r) <∞,
∞∑

r=0

α2(r)
γ(r)

<∞.

α(r) = 1/(r+1)
β(r) = (D/l)(1/(r+1))+1/(r+1)0.6 γ(r) = 1/(r+1)0.6∑∞

r=0α(r) =∞ ∑∞
r=0α

2(r) <∞∑∞
r=0 γ(r) =∞ ∑∞

r=0 γ
2(r) <∞

Remark  1:  In  fact,  the  step-sizes  satisfying  the  above  conditions
can be easily found. For example, we can choose  and

, implying that .
Easily,  we  can  confirm  that , ,

 and . Furthermore, we have
 

∞∑
r=0

α2(r)
γ(r)

≤
∞∑

r=0

1
(r+1)1.4 <∞. (6)

β(r) ≥ γ(r) ∀r ∈ RAdditionally,  under  Assumption 3,  noting that , ,
we have
 

∞∑
r=0

β(r) ≥
∞∑

r=0

γ(r) >∞,
∞∑

r=0

α2(r)
β(r)

≤
∞∑

r=0

α2(r)
γ(r)

<∞. (7)

Moreover, under Assumption 3, we can also get
 

∞∑
r=0

β2(r) ≤
∞∑

r=0

2
(D2

l2
α2(r)+γ2(r)

)
<∞. (8)

β(r)
D/l

l
l

Remark 2: One may concern that the definition of  involves the
coefficient  whose  denominator  can  not  be  exacted  defined.  In
fact,  as  we  state  in  the  proof  of  Lemma  1,  is  near  to  one,  which
implies that we can choose  a small positive constant.

Based on Lemma 1,  we have enough foundations to  conclude the
main theorem below.

xi(r) i ∈ NTheorem 1: All  ( ) converge to a common optimal solu-
tion of (1) under Assumptions 1, 2 and 3, and the iterative rules (2).

∀r ∈ RProof 2: , let

 

a(r) = ∥ȳ(r)− s∗∥2, b(r) =
2
n

n∑
i=1

ϕi1(r), c(r) = φ(r)

d(r) = 2α(r)(g(s̄(r))−g∗)+h(∥ȳ(r)− s̄(r)∥,r) (9)
g∗ h(y,r)

h(y,r) = |N1(r)|/nβ(r)y2 +2l|N2(r)|/nγ(r)y
φ(r)

β2(r) α2(r)/β(r) α(r)β(r) ≤ (1/2)×
(α2(r)+β2(r)) α(r)β(r)

ϕi1(r) ϕi2(r)
φ(r)

where  represents the optimal value and  denotes the follow-
ing  function .  Next,  we
will verify that  is summable. Recall the discussion in Remark 1,

 and  are  summable.  Furthermore, 
 indicates  that  is  summable.  Thus,  based  on

[11,  Lemma  1],  we  deduce  that  and  are  summable.
Thus,  the  summable  property  of  is  established.  Hence,  noting
that all the required conditions in [11, Lemma 2] holds, we have
 

lim
r→∞
∥ȳ(r)− s∗∥2 = c (10)

 ∞∑
r=0

α(r)(g(s̄(r))− f ∗) <∞ (11)

 ∞∑
r=0

h(∥ȳ(r)− s̄(r)∥,r) <∞ (12)∑∞
r=0α(r)

∑∞
r=0 β(r)where c is  a  positive  constant.Noting  that  and 

tend to infinity, we have
 

lim inf
r→∞

g(s̄(r))−g∗ = 0 (13)
 

lim inf
r→∞

h(∥x̄(r)− s̄(r)∥,r) = 0. (14)

s∗0
c = 0 {s̄(rt)} limt→∞ g(s̄(rt))−
g∗ = 0

{ȳ(r)}
{s̄(rt)}

{s̄(rtl )} liml→∞ s̄(rtl ) =
s∗0 g∗ = liml→∞ g(s̄(rtl )) =
g(liml→∞ s̄(rtl )) = g(s∗0) s∗0

s∗ s∗0
∥ȳ(r)− s∗0∥

2 ≤ 2(∥ȳ(r)− s̄(r)∥2 + ∥s̄(r)− s∗0∥
2)

Next,  we will  confirm that  an optimal solution  exists  such that
. Based on (13), a subsequence  satisfying 

 exists.  Furthermore,  taking  (10)  into  consideration,  we  can
deduce that  is  contained in  a  bounded set,  which implies  that

 is also contained in a bounded set. Consequently, there exists a
convergent  subsequence ,  and  we  assume that 

. Since the function g is continuous, we have 
,  which  indicates  that  is an  optimal  solu-

tion of (1). Then, by replacing  by  in (9), we can directly obtain
, which yields

 

c
2
≤ lim inf

r→∞
∥ȳ(r)− s̄(r)∥2 + lim inf

r→∞
∥s̄(r)− s∗0∥

2

≤ lim inf
r→∞
∥ȳ(r)− s̄(r)∥2. (15)

Additionally, considering the definition of the function h and based
on (14), we can obtain
 

lim inf
r→∞
∥ȳ(r)− s̄(r)∥ = 0 (16)

which implies that (10) holds. ■

n = 4
R2

Computer simulations: For verifying the theoretical result above,
a simple simulation example which may be involved in the fields of
smart  grid  and  machine  learning  is  given.  Select  and the  fol-
lowing four local objective functions defined on  are considered in
our simulation:
 

gi(x) = ln[1+ e−ai(bi x1+x2)]+ |x1|
i = 1,2,3,4 ai = (−1)i bi = 0.01i

[0,2]× [0,2]

G(r) r ∈ R
α(r) = 1/(r+1) β(r) =

1/(r+1)+1/(r+1)0.6 r ∈ R
xi(r) x∗ =(0,0.0325)

with ,  and . Moreover, X is selected as
. The unbalanced graphs sequence is selected to describe

the  communication  topologies,  which  is  depicted  in Fig. 1. Further-
more, it is stipulated that Figs. 1(a)−1(d) are sequentially and repeat-
edly  selected  as  for . Moreover,  according  to  the  condi-
tions  given  in  Assumption  3,  we  select  and 

, for all . Finally, Fig. 2 clearly shows that
all  converge to the optimal solution  under itera-
tive rules (2).

Conclusion: This  paper  has  investigated an optimization problem
where  the  decision  variable  is  contained  in  a  closed  convex  set.
Accordingly, we have designed a distributed algorithm over the time-
varying and unbalanced graphs sequence. Furthermore, the favorable
convergence of the designed algorithm has been shown based on the
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convergence analysis.  The  advantage  is  that  we  address  a  challeng-
ing problem  in  distributed  optimization  field  based  on  a  novel  dis-
tributed algorithm designed.
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Fig. 1. Unbalanced graphs sequence with four agents.
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