
Neural Networks 154 (2022) 13–21

n
f
Q
C
s
m
s
s
s

t
e
t

S

h

h
0

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Compressing speaker extractionmodel with ultra-low precision
quantization and knowledge distillation
Yating Huang a,b,1, Yunzhe Hao a,b,1, Jiaming Xu a,c,∗, Bo Xu a,b,c,d

a Institute of Automation, Chinese Academy of Sciences (CAS), Beijing, China
b School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
c School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
d Center for Excellence in Brain Science and Intelligence Technology, CAS, Shanghai, China

a r t i c l e i n f o

Article history:
Received 11 June 2021
Received in revised form 20 April 2022
Accepted 21 June 2022
Available online 27 June 2022

Keywords:
Speaker extraction
Quantization-aware training
Knowledge distillation
Parameter sharing

a b s t r a c t

Recently, our proposed speaker extraction model, WASE (learning When to Attend for Speaker Ex-
traction) yielded superior performance over the prior state-of-the-art methods by explicitly modeling
onset clue and regarding it as important guidance in speaker extraction tasks. However, it still remains
challenging when it comes to the deployments on the resource-constrained devices, where the model
must be tiny and fast to perform inference with minimal budget in CPU and memory while keeping
the speaker extraction performance. In this work, we utilize model compression techniques to alleviate
the problem and propose a lightweight speaker extraction model, TinyWASE, which aims to run on
resource-constrained devices. Specifically, we mainly investigate the grouping effects of quantization-
aware training and knowledge distillation techniques in the speaker extraction task and propose
Distillation-aware Quantization. Experiments on WSJ0-2mix dataset show that our proposed model
can achieve comparable performance as the full-precision model while reducing the model size using
ultra-low bits (e.g. 3 bits), obtaining 8.97x compression ratio and 2.15 MB model size. We further show
that TinyWASE can combine with other model compression techniques, such as parameter sharing, to
achieve compression ratio as high as 23.81 with limited performance degradation. Our code is available
at https://github.com/aispeech-lab/TinyWASE.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

With the emergence of deep learning technologies, a growing
umber of neural network-based methods have been proposed
or the cocktail party problem (Borgström, Brandstein, Ciccarelli,
uatieri, & Smalt, 2021; Bronkhorst, 2000; Chen & Zhang, 2021;
herry, 1953; Michelsanti et al., 2021). While researchers have
hown that large neural networks can achieve superb perfor-
ance, one important topic for network design, especially for the
peaker extraction problem, is to compress model size so that
uch models can be properly deployed on low-resource platforms
uch as mobile and hearable devices.
Current methods could be divided into two sorts according to

he formalized definition of tasks, speech separation and speaker
xtraction (Michelsanti et al., 2021; Wang & Chen, 2018). Suppose
here are N sources, x1(t), x2(t), . . . , xN (t), then the mixture x(t)
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can be formulated as:

x(t) =

N∑
i=1

xi(t). (1)

Speech separation aims to estimate N sources from the mixture,
which causes two problems, uncertain number of source problem
and label permutation problem (Yu, Kolbæk, Tan, & Jensen, 2017).
Deep clustering (Hershey, Chen, Le Roux, & Watanabe, 2016) and
permutation invariant learning (Yu et al., 2017) are proposed to
solve these problems. For speaker extraction, it utilizes partial
information from the target speaker as prior knowledge, which
does not require knowing the exact number of speakers and
avoids the label permutation problem inherently (Delcroix, Zmo-
likova, Kinoshita, Ogawa, & Nakatani, 2018). On some occasions,
people prefer to focus on someone and attend to what is being
said. It suggests that speaker extraction has great development
and application prospects in practical scenarios. Consequently,
there is a strong demand for model compression and lightweight
architectures. According to the types of auxiliary information,
speaker extraction models can be divided into three types, vision-
assisted models (Afouras, Chung, & Zisserman, 2019; Chen et al.,

2021; Chung, Choe, Chung, & Kang, 2020; Ephrat et al., 2018;
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u et al., 2021), azimuth-assisted models (Gu et al., 2019; Li,
u, Mesgarani and Xu, 2021; Li et al., 2021) and voiceprint-
ssisted models (Delcroix et al., 2018; Wang et al., 2020; Xu,
ao, Chng, & Li, 2020). Vision-assisted models use audio and
ideo synchronized cameras to catch the coupling and correlation
etween vision and speech, and use visual information, such as
ip movements, facial expressions and etc., to estimate the corre-
ponding acoustic signal. Azimuth-assisted models utilize multi-
hannel acoustic recordings to obtain the spatial information of
he acoustic scenes and extract the speaker at the given direction.
oth the vision-assisted models and the azimuth-assisted models
equire relatively high computation costs. On the other hand,
oiceprint-assisted models only require a single microphone to
xtract the voice characteristics from the spectrum distribution
f enrolled speech as prior knowledge. Therefore, compared with
ision-assisted models and azimuth-assisted models, voiceprint-
ssisted models show priority in lower computation costs and
ore application scenarios.
We recently proposed a novel model that can learn When to

ttend for Speaker Extraction, abbreviated as WASE (Hao, Xu,
hang, & Xu, 2021). WASE introduces onset signal, which is the
tart time of the target speaker’s voice activity, into the speaker
xtraction task. The onset signal is believed to be an important
lue in the auditory scene analysis when humans are in com-
lex auditory scenes (Shamma, Elhilali, & Micheyl, 2011; Szabó,
enham, & Winkler, 2016). More specifically, WASE takes full
dvantage of the given enrolled reference utterance and obtains
he voiceprint of the target speaker, which further assists the
nset detector to find the starting point of the target speaker’s
peech in the mixture. Experimental results showed that the
odel with voiceprint clue and onset clue can achieve a 0.85
DR improvement compared with the baseline model only with
oiceprint clue on WSJ0-2mix dataset (Hershey et al., 2016) with
he same model size and the similar network structure. Moreover,
ASE explores more complex clue forms, i.e., extending onset

lue to onset and offset clues, and the experimental performances
re further improved. Other current popular voiceprint-assisted
odels include Voicefilter (Wang et al., 2019), SpEx (Xu et al.,
020), SpeakerBeam (Žmolíková et al., 2019) and etc. Balancing
he performance and model size, we finally choose WASE as the
aseline model in our work.
It is worth noting that although WASE can perform well on

oth speaker extraction and speaker onset detection tasks, the
odel size and the memory consumption are still relatively high,
hich may pose constraints on its applications on resource-
onstrained platforms, such as mobile phones. Therefore, it is nec-
ssary to compress the models while preserving the performance.
arious model compression methods have been investigated to
ompress deep neural networks, including quantization (Raste-
ari, Ordonez, Redmon, & Farhadi, 2016; Wu, Li, Chen, & Shi,
018; Zhou et al., 2016), knowledge distillation (Ahn, Hu, Dami-
nou, Lawrence, & Dai, 2019; Hinton, Vinyals, & Dean, 2015;
uang & Wang, 2017; Romero et al., 2014), pruning (Han, Mao,
Dally, 2016; He, Zhang, & Sun, 2017) and etc. However, ex-

sting deep model compression methods mainly focus on image
lassification or segmentation tasks, and less attention is paid to
peaker extraction task, which is a regression task and needs to
econstruct speech with fine structures.

In this work, we propose TinyWASE, which combines
uantization-aware training and knowledge distillation technolo-
ies to reduce the model size and complexity while maintaining
he model performance compared to the baseline full-precision
odel. We investigate and conduct experiments on how to com-
ine quantization and knowledge distillation to reduce the per-
ormance degradation to a minimum. These strategies may shed
ight on compressing models in the speech separation and speaker
xtraction tasks, and are not constrained to our previously pro-
osed WASE model.
14
2. Related work

2.1. Model compression

In order to alleviate the deployment problem on resource-
constrained devices, many deep model compression methods
have been proposed to compress large deep learning models,
including knowledge distillation (Hinton et al., 2015) and quan-
tization (Rastegari et al., 2016; Wu et al., 2018; Zhou et al.,
2016).

Knowledge distillation is first developed in Hinton et al. (2015)
to transfer the knowledge from a large teacher model to a more
compact small student model. The main idea is that the small
student model mimics the behaviors of the teacher model under
the supervision signal from the teacher model, which is referred
to as ‘‘knowledge’’. The knowledge can be logits, activations or
features from the hidden layers (Ahn et al., 2019; Hinton et al.,
2015; Huang & Wang, 2017; Romero et al., 2014).

Different from knowledge distillation, quantization compres-
ses a model by quantizing the weights and/or the activations
to lower bits. Methods for quantizing the full-precision neural
networks can be roughly divided into two types: approximation-
based approaches (Rastegari et al., 2016; Wu et al., 2018; Zhou
et al., 2016) and loss-aware-based approaches (Hou & Kwok,
2018; Leng, Dou, Li, Zhu, & Jin, 2018). Approximation-based ap-
proaches approximate the full-precision values with lower bits
via step functions in the forward pass and additionally approxi-
mate the gradients in the backward pass, since the quantization
operators are non-differentiable. As a result, the use of different
approximations in the forward pass and the backward pass causes
a gradient mismatch problem, which may make the training
procedure of an ultra-low bit network unstable. In order to avoid
the approximation of gradients, loss-aware-based methods incor-
porate the loss of the neural networks and directly formulate
quantization as an optimization problem, which aims to mini-
mize the training loss. However, loss-aware-based methods are
only suitable for quantizing weights, but not for activations, and
suffer from high computation costs during training. To allevi-
ate the problems mentioned above, Yang et al. (2019) reformu-
late the quantization operation as a simple non-linear function,
termed quantization function, so that quantization functions can
be learned like activation functions in an end-to-end way. The
work mentioned above mainly focuses on the image classification
task and few researchers apply ultra-low bit quantization meth-
ods to the speech separation task, which is a regression task other
than a classification task.

2.2. Model compression for speaker extraction

Speech separation/speaker extraction models based on deep
learning have achieved impressive performance on the stan-
dard datasets, but they require high hardware storage space and
computing power. Recently, some studies have focused on the
compression techniques of the speech separation model for reso-
urce-constrained devices. Wang et al. (2020) propose a lightwei-
ght model, Voicefilter-lite. However, the aim of their work is
to improve the performance of automatic speech recognition,
which serves as the backend of the standard speech processing
pipeline, and they only report the performance of automatic
speech recognition, lacking the speech separation metrics. But
there are some situations where users care more about the qual-
ity of the separated speech rather than the recognition results of
the speech. For example, people wearing hearing aids may need
the speech separation algorithm to help them separate the target
speech from the noisy mixture. In addition, Voicefilter-lite only
performs 8-bit post-training quantization and does not further
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xplore the limit of the trade-off between the quantization bits
nd the performance. Tuan, Wu, Lee, and Tsao (2019) study
he performance of parameter sharing strategies on TasNet. The
esults show that with parameter sharing strategy along the stack
imension, TasNet could achieve a compression ratio of 26.7%
t the cost of less than 1 point of performance degradation on
SJ0-2mix dataset (Hershey et al., 2016). Chen, Liu, Shi, Xu, and
u (2018) integrate knowledge distillation into the Binary Neural
etwork (BNN) training phase and achieve performance improve-
ents. This is the first time that both of knowledge distillation
nd binarization have been used in speech separation. In addition
o general compression techniques, some research focuses on the
esign of the architecture of lightweight models. Luo, Han, and
esgarani (2021) propose Group Communication with Context
odec (GC3). The main idea of GC3 is to repeatedly use group
ommunication modules to divide the high-dimensional features
nto low-dimensional groups, and use a small shared module
o process low-dimensional features. For a sequence of features

∈ RN×T , where N denotes the encoding dimension and T
enotes the number of time steps, they split H in both the feature
imension and the temporal dimension. However, in order to get
comparable performance, the model architecture of GC3-based
odels needs to be carefully adjusted.
In this work, we use quantization functions to quantize the

eights to ultra-low bits and use min–max linear quantization
o quantize the activations to 8 bits, and combine knowledge
istillation techniques to further improve the performance of
peaker extraction. Similarly, Polino, Pascanu, and Alistarh (2018)
nvestigate the grouping effects of quantization and knowledge
istillation in image classification and machine translation. Our
ork is different from Polino et al. (2018) mainly in two aspects:

• We investigate the effects of the combination of ultra-low
bit quantization-aware training and knowledge distillation
in the speaker extraction task, which is a regression task
rather than a classification task. To the best of our knowl-
edge, this is the first time that the effects of ultra-low bit
quantization and knowledge distillation have been studied
in speaker extraction.

• We study the quantization scheme that not only quantizes
the weights but also the activations while Polino et al.
(2018) only focus on quantizing the weights. Since our ex-
periments are based on a vanilla convolutional neural net-
work (CNN) model, the combination and optimization of
multiple compression techniques could provide reference
and enlightenment for other CNN-based speaker extraction
models.

. WASE recap

In this section, we give a brief review of our previously pro-
osed WASE (learning When to Attend for Speaker Extraction)
odel, which uses voiceprint and onset clues to extract the
peech of the target speaker.
WASE contains five modules, namely encoder, decoder,

oiceprint extractor, modulation module and speaker extraction
odule, as shown in Fig. 1. WASE adopts a common time-domain
asking-based approach. Specifically, the mixture is encoded by

he encoder to obtain the spectrum in the time domain. Then
he speaker extraction modulator utilizes voiceprint and onset
lues extracted from the reference utterance as the guide signal
o generate the target speaker mask. Finally, the decoder decodes
he masked spectrum to output the target speech.

We assume voiceprint, a vector describing the speaker’s char-
cteristics, is available at runtime without additional computation
osts. In practice, there is usually an enrollment process before
nabling a speaker extraction application. The voiceprint vector
15
is computed from the target user’s recordings and stored on
the device in advance. In this paper, the voiceprint vector is
computed from a voiceprint extractor, which is composed of
a 1-dimensional (1-D) convolutional layer, a two-layer Bidirec-
tional Long Short-Term Memory (BLSTM), a linear layer and a
mean pooling layer in series. The voiceprint extractor processes
the enrolled utterance of the target speaker and outputs the
voiceprint.

For the main part of WASE network, as shown in Fig. 1, the
encoder consists of a 1-D convolutional layer, and the decoder
consists of a 1-D transpose convolutional layer. In the modu-
lation module, the voiceprint first modulates the intermediate
feature in the frequency domain, and then the onset clue vector
modulates the intermediate feature in the time domain again.
The modulated feature is further processed by the Temporal
Convolutional Network (TCN) blocks in the speaker extraction
module. The TCN block repeats R times and each repeat contains
X 1-D convolutional blocks. The dilation factors of the convolu-
tional blocks in each repeat increase exponentially by 2. Each 1-D
convolutional block has two output paths, one path for the next
1-D convolutional block and the other for mask generation.

WASE takes a multi-task learning strategy to train the model.
The main task of WASE is to separate the target signal from the
mixture, which is supervised by Scale-Invariant Source-to-Noise
Ratio (SI-SNR) between the predicted wave xpred and the target
clean wave x. We define the construction loss as Eq. (2):⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Lconstruct = −SI-SNR(xpred, x),

SI-SNR(xpred, x) = 10 log10
∥xtarget∥

2

∥enoise∥2
,

xtarget =
⟨xpred,x⟩x

∥x∥2
,

enoise = xpred − xtarget .

(2)

Another task of WASE is onset detection, which uses the Cross-
Entropy (CE) loss between the predicted onset vector ppred and the
target oracle onset vector ptarget .

Lce = CE(ppred, ptarget ). (3)

The loss function of WASE is defined as Eq. (4):

L = Lconstruct + λLce, (4)

where λ balances the construction loss and the CE loss.

4. Model compression for speaker extraction

In this section, we explore model compression techniques for
speaker extraction. We propose Distillation-aware Quantization
in this section, and refer to the compressed WASE model as
TinyWASE for simplicity. To further increase compression ratio,
we explore to apply the parameter sharing strategy to the model.

4.1. Quantization

In this section, we introduce the quantization methods used
in this paper.

4.1.1. Weight quantization
For weight quantization, we explore the quantization func-

tion (Yang et al., 2019) to quantize weights to ultra-low bits (e.g. 3
bits) so that we can train the low-bit neural network efficiently in
an end-to-end way. The main idea of the quantization function is
to reformulate the quantization operation using a linear combi-
nation of several simple functions and gradually approximate the
quantization operation using a soft quantization function by con-
trolling the temperature parameter during training. The low-bit
quantization operation can be reformulated as a combination of
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Fig. 1. An illustration of WASE model. (a) The overall architecture of WASE. (b) Details of 1-D convolutional blocks used in a TCN block. ‘‘D-Conv’’ indicates a
depthwise convolution. (c) The structure of the modulator.
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several unit step functions, termed as ideal quantization function.
The ideal quantization function is non-differentiable due to the
use of the unit step function. Suppose that x is the full-precision
value to be quantized, y is the quantized integer constrained to a
predefined set Y = {Y1,Y2, . . . ,Yn+1}. For example, if we do 3-
bit quantization, Y can be defined as Y = {−3, −2, −1, 0, 1, 2, 3}.
The ideal quantization function is formulated as Eq. (5):

y =

n∑
i=1

siA(βx − bi) − o, (5)

A(x) =

{
1 x ≥ 0,
0 x < 0, (6)

where n = |Y|−1, β is the scale factor of the input. Eq. (6) defines
the unit step function, where si = Yi+1 − Yi and bi is the bias for
the unit step function. The global offset is defined as o =

1
2

∑n
i si.

By replacing the non-differentiable unit step function with
igmoid function, the ideal quantization function is transferred
o a differentiable soft quantization function in the training pro-
edure, which can be learned like an activation function in an
nd-to-end way, as shown in Eq. (7):

= Q(x) = α(
n∑

i=1

siσ (T (βxd − bi)) − o), (7)

(Tx) =
1

1 + exp(−Tx)
, (8)

where β and α are learnable scale factors of the input and the
output, respectively. In the inference phase, the ideal quantization
function Eq. (5) is used instead. The use of different quantiza-
tion functions in the training phase and inference phase may
cause performance degradation. To narrow the performance gap,
temperature T is introduced to the sigmoid function. The gap
between the soft quantization function and the ideal quantization
is small when the temperature T is large and vice versa. If we
use a large fixed T while training, the learning capacity of the
model is constrained, as the gradients are zeros in most cases,
which may fail to converge to a satisfactory solution. Thus, it is
always a good practice to start from a small temperature T and
radually increase the temperature so that the quantized neural
etworks can be well learned and the gap between the training
hase and the inference phase can be ignored at the end of the
raining procedure (Yang et al., 2019).

In this paper, we perform layer-wise non-uniform quantiza-
ion. Weights from different layers use different quantization
16
functions. Following the previous work (Yang et al., 2019), we do
not quantize the first convolutional layer and the last transpose
convolutional layer. We also do not quantize the PReLU function
and the layer normalization function, as quantizing them would
result in performance degradation and the number of parameters
in these layers is negligible. Note that we assume that voiceprint
vectors do not require additional computation costs and do not
consider the quantization of the voiceprint extractor. In order to
perform non-uniform quantization, we perform K-means cluster-
ing on the full-precision weights and get n + 1 ranked centers
of clusters, c1, c2, . . . , cn+1 in the ascending order. The bias bi
is initialized as bi =

ci+ci+1
2 and gets fixed during training,

ince it does not make much difference in learning biases in the
uantization function.

.1.2. Activation quantization
We also quantize activations to make the most expensive ma-

rix multiplication faster. Different from the non-uniform weight
uantization to ultra-low bits, we simply quantize the activations
o 8 bits. We use the most commonly used 8-bit min–max linear
uantization (Krishnamoorthi, 2018), which is defined as:

(x) = round(
x − xmin

s
), (9)

s =
xmax − xmin

2p − 1
, (10)

where x is the tensor to be quantized, x is the element in x
and p = 8 for 8-bit quantization. Straight-Through Estima-
tor (STE) (Courbariaux, Bengio, & David, 2015) is used to back-
propagate the gradients through quantized activations.

4.2. Distillation-aware quantization

Due to the relatively low capacity of low-bit quantized net-
works, there will be some performance degradation compared
with the full-precision network of the same model structure. To
further improve the performance of the quantized model, we
incorporate the knowledge distillation technique in the training
procedure. The framework of our proposed method is shown in
Fig. 2. In our experiments, the full-precision WASE model acts as
the teacher model and the quantized TinyWASE model acts as the
student model so that the student attempts to learn the behaviors
of the teacher model. To be specific, the distillation loss is defined
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Fig. 2. The proposed procedure of quantization-aware training and knowledge distillation.
as the SI-SNR loss between the output of the teacher model xteacher
nd the output of the student model x, as shown in Eq. (11):

Ldistill = −SI-SNR(xteacher , x). (11)

hus, the loss function of TinyWASE model totally consists of
hree parts, which is defined as:

= Lconstruct + λ1LCE + λ2Ldistill, (12)

here λ1 and λ2 are the hyperparameters balancing the losses.
e use the full-precision WASE model to initialize our quan-

ized student model. The whole training procedure is shown in
lgorithm 1, termed as Distillation-aware Quantization.

.3. Parameter sharing

To further increase the compression ratio, inspired by Tuan
t al. (2019), we explore to apply parameter sharing strategy to
inyWASE. To be specific, the parameters are shared between R
CN blocks in the speaker extraction module and each TCN block
ontains X 1-D convolutional blocks. We first train a full-precision
arameter-sharing model, then the weights of the pretrained
odel is loaded into the low-bit parameter-sharing model to

nitialize the weights. After that, Distillation-aware Quantization
s performed.

. Experiments

.1. Experimental settings

We choose WASE with onset clue and voiceprint clue as our
aseline model. The hyperparameters of voiceprint encoder and
odulation modules are stated in Section 3, which are the same

or all the models in our experiments. For convolutional encoder
nd decoder, a 50% stride size is used. Other hyperparameters of
he network are shown in Table 1. The code for our experiments is
ublicly available at https://github.com/aispeech-lab/TinyWASE.
We perform experiments on speech separation and speaker

xtraction benchmark dataset WSJ0-2mix (Hershey et al., 2016).
here are 101 speakers in the training set and 18 unseen speakers
n the test set. The total length of training set, validation set and
17
Algorithm 1 Distillation-aware Quantization based on quantiza-
tion functions
Input: A fixed teacher model; training dataset; network with

M modules and their corresponding inputs/activations and
trainable weights to be quantized.

Output: Quantized networks.
1: Initialize the weights of the quantized student model using

the full-precision pretrained model.
2: for m = 1, ...,M do
3: Initialize the biases of the quantization function.
4: end for
5: for t = 1, ..., Tmax do
6: Get next mini-batch of data.
7: for m = 1, ...,M do
8: Apply soft quantization function Eq. (7) to the weights of

module m.
9: Apply min-max linear quantization Eq. (9) to the

inputs/activations of module m.
10: Feedforward module m with the quantized weights and

activations.
11: Compute the loss function in Eq. (12).
12: Backpropagate the gradients and train the parameters

with gradually increasing temperature T.
13: end for
14: end for
15: for m = 1, ...,M do
16: Replace the soft quantization function Eq. (7) with ideal

quantization function Eq. (5) for inference.
17: end for

test set are 30 h, 10 h and 5 h, respectively. All samples are
downsampled to 8 kHz.

Two speakers are randomly selected from the training set. We
regard one as the target speaker and the other as the interference
speaker. We generate the noisy training samples on the fly by
mixing the clean utterance and the interference utterance at a
random Signal-to-Noise Ratio (SNR) between −5 dB and 5 dB,
and limit the length to 4 s. All the inputs are normalized using

https://github.com/aispeech-lab/TinyWASE
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Table 1
Hyperparameters of TinyWASE. X and R will be specified in the different experimental settings in Section 5.2.
Symbol Description Value

N Number of filters in mixture encoder/decoder 512
L Length of the filters (in samples) 16
B Number of channels in bottleneck and the residual paths’ 1 × 1-conv blocks 128
SC Number of channels in skip-connection paths’ 1 × 1-conv blocks 512
H Number of channels in convolutional blocks 128
P Kernel size in convolutional blocks 3
X Number of convolutional blocks in each repeat –
R Number of repeats –
the computed mean value and the standard deviation. The scale
of the normalized inputs is [0, 1]. In the test phase, we set one of
he two speakers in the original test set as the target speaker in
urn and finally obtain 6000 samples, which is twice the number
f the original test set.
Adam optimizer (Kingma & Ba, 2015) with an original learning

ate of 1e−3 is used to train the full-precision WASE. To train Tiny-
ASE, we first load the weights of the pretrained full-precision
odel to get a good starting point, then use Adam optimizer with
learning rate of 5e−4 to train TinyWASE for 50 epochs. Gradient
lipping with maximum L2-norm of 5 is applied during training.
1 and λ2 in Eq. (12) are 1 and 0.2, respectively. The temperature
in Eq. (8) is set to 10 in the beginning and we increase T linearly
ith respect to the training epoch, which is T = epoch × 10.

.2. Effects of distillation-aware quantization

We quantize the weights of our networks to 3 bits and 4 bits,
nd quantize the activations of each layer to 8 bits. The teacher
odel is the full-precision WASE model with 3 TCN blocks and

here are 8 1-D convolutional blocks in each TCN block, dubbed
s 3 × 8 WASE model. The student model is the low-precision
inyWASE. We conduct experiments on student models with
ifferent model structures, namely the 3 × 8 TinyWASE model
nd the 3 × 4 TinyWASE model. We also explore to quantize the
odel without using knowledge distillation. The results are listed

n Table 2. For both the 3 × 8 and the 3 × 4 TinyWASE model,
odels trained with knowledge distillation perform slightly bet-

er than those without knowledge distillation. Especially for the
× 4 TinyWASE model with 4-bit weights and 8-bit activations,

he performance is almost the same as the full-precision 3 × 4
ASE model.
As shown in Table 3, for the space complexity of our model,

e report the parameter numbers, the model size and the com-
ression ratio of TinyWASE. Note that we do not consider the
oiceprint extractor here, since we assume the voiceprint clue
oes not require extra computation costs as stated in Section 3.
ombined with Table 2, we can conclude that TinyWASE achieves
omparable results as full-precision models with a much smaller
odel size.

.3. Effects of parameter sharing

To further compress the model size, we investigate the effects
f parameter sharing. We quantize the weights to 3 bits and the
ctivations to 8 bits. The parameters of the three TCN blocks
re shared in this experiment. The results are listed in Table 4.
e can see from the table that by combining parameter sharing,
inyWASE can achieve a larger compression ratio with some
erformance degradation. The performance degradation is largely
ue to parameter sharing but not Distillation-aware Quantization.
18
Table 2
Test set results of the proposed TinyWASE under different configurations on
WSJ0-2mix dataset. ‘‘W’’ and ‘‘A’’ represent the quantization bits of the weights
and the activations, respectively. -kd means that we train the model without
using knowledge distillation.
Model (R, X) W-A SDR (dB) SDRi (dB)

WASE (3, 8) 32-32 17.12 16.99
TinyWASE (3, 8) 4-8 16.65 16.52
TinyWASE (3, 8)-kd 4-8 16.60 16.47
TinyWASE (3, 8) 3-8 16.18 16.00
TinyWASE (3, 8)-kd 3-8 16.05 15.92
WASE (3, 4) 32-32 13.24 13.11
TinyWASE (3, 4) 4-8 13.23 13.09
TinyWASE (3, 4)-kd 4-8 13.11 12.98
TinyWASE (3, 4) 3-8 13.11 12.97
TinyWASE (3, 4)-kd 3-8 12.97 12.83

Table 3
Number of parameters and model size (× compression ratio) of TinyWASE.
Model (R, X) W-A #Params Size (×ratio)

TinyWASE (3, 8) 3-8 5.05M 2.15 (×8.97)
4-8 5.05M 2.74 (×7.04)

TinyWASE (3, 4) 3-8 2.63M 1.15 (×8.77)
4-8 2.63M 1.45 (×6.92)

Table 4
Effects of weight sharing. ‘‘W’’ and ‘‘A’’ represent the quantization bits of the
weights and activations, respectively. The number of parameters, the model size
(× compression ratio), SDR and SDRi are listed in the table. WS means weight
sharing, SDR and SDRi are measured with dB.
Model (R, X) WS W-A #Params Size (×ratio) SDR SDRi

WASE (3,8) No 32-32 5.05M 19.29 17.12 16.99
TinyWASE (3,8) No 3-8 5.05M 2.15 (×8.97) 16.18 16.00
WASE (3,8) Yes 32-32 1.83M 6.97 (×2.77) 14.81 14.68
TinyWASE (3,8) Yes 3-8 1.83M 0.81 (×23.81) 14.29 14.16
WASE (3,4) No 32-32 2.63M 10.04 13.24 13.11
TinyWASE (3,4) No 3-8 2.63M 1.15 (×8.77) 13.23 13.09
WASE (3,4) Yes 32-32 1.02M 3.90 (×2.58) 12.66 12.52
TinyWASE (3,4) Yes 3-8 1.02M 0.48 (×20.93) 12.04 11.92

5.4. Comparison with post-training quantization

We compare our proposed method with the most commonly
used linear quantization method (Krishnamoorthi, 2018), which
is a post-training quantization method, onWSJ0-2mix. The results
are listed in Table 5. We can see from Table 5 that Distillation-
aware Quantization performs much better than the baseline over
all experimental configurations, especially under low bits. There
is a huge performance gap for the baseline post-training linear
quantization method between 4 bits and 3 bits, whereas there is
only a performance drop of about 0.5 between 4 bits and 3 bits
for Distillation-aware Quantization.



Y. Huang, Y. Hao, J. Xu et al. Neural Networks 154 (2022) 13–21

T
w
a
t
m

5

c
w
T

5

w
f
p
A
o

5

l
u
t
s
q
M
t

Fig. 3. The weight distributions of the convolutional layers of the full-precision
3 × 8 WASE model. (a), (b) and (c) are the distributions of the first convolutional
layers from the first TCN block, the second TCN block and the third TCN block
before quantization, respectively. The red lines denote the n + 1 clustering
centroids of K-Means clustering when the network is quantized to 3 bits. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

5.5. Results on GRID-mix

We also evaluate our system on another 2-mixture speech
separation dataset GRID-mix dataset generated by GRID (Cooke,
Barker, Cunningham, & Shao, 2006). GRID contains 3-second
videos of 18 male speakers and 15 female speakers. We randomly
 q
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Table 5
Comparison of our proposed Distillation-aware Quantization and post-training
linear quantization on WSJ0-2mix. ‘‘W’’ and ‘‘A’’ represent the quantization bits
of the weights and the activations, respectively. The model has 3 TCN blocks
and there are 8 convolutional blocks in each TCN block.
Quantization methods W-A SDR (dB) SDRi (dB)

Distillation-aware Quantization

3-8 16.18 16.00
4-8 16.65 16.52
6-8 16.82 16.68
8-8 16.93 16.80

Post-training linear quantization

3-8 4.88 4.75
4-8 13.79 13.66
6-8 15.67 15.53
8-8 15.86 15.72

Table 6
Test set results of the proposed TinyWASE under different configurations on
GRID-mix dataset. ‘‘W’’ and ‘‘A’’ represent the quantization bits of the weights
and the activations, respectively.
Model (R, X) W-A SDR (dB) SDRi (dB)

WASE (3, 8) 32-32 13.75 12.82
TinyWASE (3, 8) 4-8 13.86 12.93
TinyWASE (3, 8) 3-8 13.71 12.78
WASE (3, 4) 32-32 11.00 10.07
TinyWASE (3, 4) 4-8 10.80 9.87
TinyWASE (3, 4) 3-8 10.33 9.40

select 3 males and 3 females to construct a validation set of 2.5 h
and another 3 males and 3 females for a test set of 2.5 h. The
rest of the speakers form the training set of 30 h. To construct
a 2-speaker mixture, we randomly choose two different speakers
first, randomly select audio from each chosen speaker, and finally
mix two audio clips at a random SNR level between −5 dB and
5 dB.

We conduct experiments on 3 × 8 TinyWASE and 3 × 4
inyWASE. The teacher model is the full-precision WASE model
ith the same model structure as the student model. The results
re listed in Table 6. We can see from Table 6 that TinyWASE has
he ability to achieve performance on par with the full-precision
odel on GRID-mix.

.6. Ablation study

According to the experimental results mentioned above, we
onduct an ablation study on Distillation-aware Quantization
ithout the parameter sharing strategy based on the 3 × 8
inyWASE model.

.6.1. Effect of layer-wise quantization
We adopt layer-wise quantization in this paper because the

eight distributions of the full-precision networks are quite dif-
erent from layer to layer, as shown in Fig. 3. Table 7 compares the
erformance of shared quantization and layer-wise quantization.
ccording to Table 7, layer-wise quantization shows superiority
ver shared quantization in our experiments.

.6.2. Effect of non-uniform quantization
As shown in Fig. 3, the weight distributions of convolutional

ayers are subject to Gaussian distribution. Therefore, instead of
sing the commonly used linear quantization, in which the quan-
ization intervals are equal, we adopt a non-uniform quantization
trategy. The quantization intervals, which are the biases bi in the
uantization function Eq. (7), are initialized as the centroids of K-
eans clustering over the weights, respectively. Table 8 shows

hat non-uniform quantization performs much better than linear

uantization.



Y. Huang, Y. Hao, J. Xu et al. Neural Networks 154 (2022) 13–21

c
l
1
e
t
1
t
e
e
t
r
m
s
t

6

n
D
a
o
a
p
a
W
b
s
f
c
m
s
t
a
a

D

c
t

C

C

C

C

D

E

G

H

H

H

H

H

H

H

H

K

K

Table 7
Ablation study of training the quantization networks with shared quantization
and layer-wise quantization. ‘‘W’’ and ‘‘A’’ represent the quantization bits of the
weights and the activations, respectively.
Quantization methods W-A SDR (dB) SDRi (dB)

Shared 3-8 14.70 14.57
Layer-wise 3-8 16.18 16.00

Table 8
Ablation study of training the quantization networks with linear quantization
and non-uniform quantization. ‘‘W’’ and ‘‘A’’ represent the quantization bits of
the weights and the activations, respectively.
Quantization methods W-A SDR (dB) SDRi (dB)

Linear 3-8 15.65 15.52
Non-uniform 3-8 16.18 16.00

Table 9
Ablation study of training the quantization networks from scratch and from
pretrained model. ‘‘W’’ and ‘‘A’’ represent the quantization bits of the weights
and the activations, respectively.
Quantization methods W-A SDR (dB) SDRi (dB)

From scratch 3-8 9.41 7.28
From pretrained 3-8 16.18 16.00

5.6.3. Effect of training from pretrained model
In our training, we train the quantized model from the well

onverged pretrained full-precision model for 50 epochs and
inearly increase the temperature with respect to epoch (T =

0 × epoch) with a learning rate of 5e−4. To investigate the
ffect of training from pretrained model, we also train a quan-
ized model from scratch. We set the initial learning rate to
e−3 for faster convergence and train for 50 epochs, then reduce
he learning rate to 5e−4 and continue training for another 50
pochs. The temperature is set to T = 5 × epoch so that at the
nd of the experiment, both the model initialized from the pre-
rained full-precision model and the model trained from scratch
each the same temperature. As shown in Table 9, the perfor-
ance of TinyWASE training from pretrained full-precision model
hows significant superiority over the performance of TinyWASE
raining from scratch.

. Conclusions

In this paper, we attempt to quantize the speaker extraction
etwork for resource-constrained devices and propose
istillation-aware Quantization, which combines quantization
nd knowledge distillation techniques. We perform experiments
n our previously proposed speaker extraction model WASE
nd get the quantized version TinyWASE. Our experiments give
romising results, showing that the ultra-low bit TinyWASE can
chieve comparable performance compared with full-precision
ASE without much performance degradation. We further com-
ine Distillation-aware Quantization with parameter sharing
trategy, to achieve a larger compression ratio with some per-
ormance degradation. It is worth noting that it is possible to
ombine our proposed Distillation-aware Quantization with other
odel compression methods. Distillation-aware Quantization is
imple and easy to implement and train, which is not constrained
o our previously proposed WASE model. It is also possible to
pply this method to other speaker extraction models, providing
novel solution towards on-device speaker extraction inference.
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