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Abstract—Real-world sounds are often interrupted by various
kinds of noise. The target signal of the mixture sounds is often
degraded or lost. While the human auditory system can extract
the target signal from the mixture and restore the degraded or
lost parts simultaneously, current computational models often
simplify the complex scenarios, which leads to two individual
tasks, audio inpainting and speech enhancement. In this work,
we take a pioneering step towards modeling auditory restoration,
that is to restore the target speech signal, in which there are miss-
ing parts in the target signal and the target signal is interfered
by background noise. Different from the speech enhancement
task, we attempt to fill in the missing gaps with the existence of
background noise. Different from the auditory inpainting task,
there is some noise in our input signal and the positions of the
missing gaps are unknown. In other words, we attempt to reduce
interference and restore missing gaps simultaneously. We propose
Hourglass-shaped Convolutional Recurrent Network (HCRN)
trained with Spectro-Temporal loss to restore the target signal
from the incomplete noisy mixture. Moreover, instead of restoring
non-human sounds, we focus on speech restoration, which poses
more challenges on reconstruction. Both the quantitative and
qualitative performance show that our proposed method can
suppress the background noise, identify and restore the missing
gaps of the salient signal with the unreliable context information.
Our code is available in https://github.com/aispeech-lab/HCRN.

Index Terms—auditory restoration, audio inpainting, speech
enhancement

I. INTRODUCTION

Everyday communication often occurs in noisy environ-

ments. The human auditory system is robust enough to filter

the target sound from the mixture. In some situations, besides

extracting the target signal from the mixture, we also have

to fill in the missing parts or greatly distorted parts of the

target signal. The latter phenomenon is known as auditory

restoration or induction [1]. However, there are few attempts to

model auditory restoration formally. Early years, research was

concerned with modeling phonemic restoration, an example

of auditory restoration [2]–[4]. Recent research that is most

related to auditory restoration is auditory inpainting [5] and

speech enhancement [6]. Audio inpainting is a concept that

borrows from image inpainting [7]–[9] in computer vision,

whose aim is to recover the missing parts of a given image.

Traditional methods that model audio inpainting often work in

¶ Corresponding author.

real-time settings and predict the current lost frame depending

on the preceding frames, like Linear Predictive Coding (LPC)

[10]. These methods work well when recovering short gaps

(10-20 ms), but can not achieve satisfying performance when

it comes to long audio inpainting. With the rapid develop-

ments of deep learning, deep neural networks are applied

to audio inpainting tasks. [11], [12] applied encoder-decoder

structure and transformed the audio into Time-Frequency (T-

F) spectrogram using Short-Time Fourier Transform (STFT)

to recover the missing gaps using the context information. [13]

used a similar approach and introduced both the spectrogram

inpainting model and waveform inpainting model to tackle the

long audio inpainting problem. However, it is worth noting

that they performed the quantitative and qualitative tasks on

sound classification task, which is not very straightforward to

evaluate the performance of audio inpainting results. Similarly,

[14] used a U-Net [15] structure to recover the corrupted

spectrograms and trained the network using deep feature

losses by employing a VGG feature extractor network [16].

The research mentioned above often assumes that the input

signal is not contaminated by noise, and the positions of

the missing gaps are provided to the algorithm as a prior,

which is non-blind [12], [17]. On the other hand, the modern

speech enhancement task doesn’t consider the cases in which

missing parts exist. Most of the existing speech enhancement

approaches that aim to estimate T-F representations of the

target speech are divided into two groups: masking-based

methods and mapping-based methods. The masking-based

methods, which are the more popular choice, predict a mask

and use the mask to filter the target signal from the mixture

[6], which can not recover the missing gaps of the mixture.

The mapping-based methods predict the clean spectral features

from the noisy features directly [18], [19]. Tan and Wang [18],

[19] proposed to use Convolutional Recurrent Network (CRN)

to do spectral mapping. In our practice of doing multi-speaker

speech separation in a noisy environment, which is also known

as the ”Cocktail Party Problem” [20], there are some occasions

that some phonemes are greatly corrupted and the target signal

is degraded by noise to some extent. In this situation, the

target signal tends to be salient while the background noise is

unsalient, and the context information of the lost or degraded

parts are unreliable.
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In this work, we take a pioneering step towards modeling

auditory restoration, in which the target signal is contaminated

by noise and the positions of the missing gaps are unknown.

In other words, local audio information near the missing gaps

is unreliable and we need to jointly reduce the interference

signal and restore the target signal. Moreover, instead of

restoring non-human sounds, we focus on speech restoration,

which poses more challenges on reconstruction. We study

the ability of a U-Net-like neural network to model auditory

restoration, attempting to enhance the target signal and fill in

the missing gaps of the target signal. We propose Hourglass-

shaped Convolutional Recurrent Network (HCRN) to model

auditory restoration, which is based on Hourglass structure

[21] and combined with a Bidirectional Long Short-Term

Memory (BLSTM) network [22] for temporal modeling. We

propose to add the loss in the time domain between the

target signal and the predicted signal as a normalization term

while training our model, leading to better performance. We

conduct quantitative and qualitative evaluations to evaluate

the effectiveness of our proposed method. To the best of

our knowledge, we are the first to model auditory restoration

with a large gap size and the intrusion of background noise.

Following the current training procedure in our work, our

proposed model can perform auditory restoration at different

Signal-to-Noise Ratio (SNR) levels and with different gap

sizes.

II. MODELLING AUDITORY RESTORATION

In this section, we first give a simple definition of the

auditory restoration task. Then we describe our proposed

model for solving the task and our proposed loss function

for training.

A. Auditory Restoration

In this paper, we attempt to tackle the problem of auditory

restoration with large gap size and the intrusion of background

noise. Specifically, the input signal is the mixture of the target

speech signal and interference signal at some SNR level, where

some parts of the mixture are lost or degraded. Different from

non-blind auditory inpainting [5], [12], [14], [17], [23], we

assume that the positions of the missing gaps are unknown.

Moreover, the target signal is interfered by noise, but the target

signal is the salient signal in the mixture. In other words, we

treat the salient sound as our target signal, and thus our goal

is to enhance the target signal from the interference of noise

and fill in the missing gaps of the salient sound.

B. Hourglass-shaped Convolutional Recurrent Network

We propose Hourglass-shaped Convolutional Recurrent Net-

work (HCRN) to recover the spectrogram of the target signal.

We only consider the spectrogram-based methods instead of

waveform-based methods, because, in our preliminary exper-

iments, we failed to use waveform-based methods, such as

Demucs [24], to recover the lost parts of the target waveform.

Demucs is only able to reduce the interference signal and en-

hance the target signal, but is not able to fill in the gaps. Thus,

Fig. 1: Our proposed HCRN for auditory restoration. The

normalized noisy incomplete spectrograms are served as input.

The convolutional block in the dashed blue box is stacked 3

times in our proposed network. A 2-layer BLSTM is inserted

at the bottom of the network to leverage longer-term context

both from the past and the future. The output of the first

convolutional block along the top-down stream is concatenated

with the input magnitude spectrogram to feed into another

residual module, followed by another convolutional layer and

a sigmoid function to generate the final output.

in this work, we focus on the enhancement and reconstruction

of the corrupted spectrograms.

HCRN is based on a U-Net-like Hourglass structure [21]

to estimate and restore the target magnitude spectrogram.

Figure 1 shows an overview of its structure. The U-Net-like

Hourglass encoder-decoder structure can learn and integrate

features at different scales. Our proposed network comprises

3 convolutional blocks, as depicted in the dashed blue block in

Figure 1. The convolutional block is composed of 3 residual

modules, a max pooling layer, and an upsampling layer. The

residual module is a 3-layer convolutional network, as shown

in Figure 2. To leverage longer context, in the residual module,

two 7 × 7 convolutional layers with a stride of 1 and a filter

size of 32 are followed by a 1 × 1 convolutional layer with

a filter size of 64, leading to feature maps of the same size.

Batch Normalization [25] and Rectified Linear Unit (ReLU)

activation are applied before each convolutional layer. Residual

learning [26] is enforced in the network. To be specific, a
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Fig. 2: The residual module used in our proposed HCRN.

(Channel, kernel) of the convolutional layer is denoted. Batch

Normalization (BN) and ReLU are applied before each convo-

lutional (Conv) layer. Identity connection or 1×1 convolution

is applied to enforce residual learning.

1 × 1 convolutional layer is added to change the channel

number of input before doing element-wise addition if the

channel number of input and output differ, otherwise we

directly do element-wise addition of the two feature sets. The

convolutional block performs the following computation:

X
bottom
i = Resbottomi (Pool(Xbottom

i−1 )) (1)

X
top
i−1 = Resinteri (Xbottom

i−1 )+Upsample(Restopi (Xtop
i )) (2)

Here, Resbottomi , Restopi and Resinteri represent the residual

module at the bottom-up stream, the residual module at the

top-down stream and the residual module that interacts the

bottom-up stream and the top-down stream in the ith convolu-

tional block, respectively. Xbottom
i−1 and X

bottom
i denote the in-

put and output at the bottom-up stream of the ith convolutional

block, respectively. X
top
i and X

top
i−1 stand for the input and

output at the top-down stream of the ith convolutional block,

respectively. Note that the Hourglass structure differs from U-

Net [27] in interacting the bottom-up stream and top-down

stream. The U-Net structure directly concatenates the feature

maps from the bottom-up stream with the feature maps at

the corresponding layer from the top-down stream to integrate

information across scales. The Hourglass structure applies

more convolutions to the feature maps from the bottom-up

stream and does element-wise addition of the two feature sets.

These manipulations provide more non-linearity compared to

concatenation.

We adopt a 2-layer stacked Bidirectional Long Short-Term

Memory (BLSTM) network [22] with a hidden size of 512

at the bottom of our proposed network to capture temporal

dynamics of speech in both directions. By using a BLSTM,

long-term context from the past and the future are leveraged

to convolutional neural networks.

As shown in Figure 1, for feature map X
bottom
3 ∈ R

C×T×F

from the third convolutional block, C, T, F denote channel

dimension, time dimension and frequency dimension, respec-

tively. We transpose time dimension and channel dimension

of Xbottom
3 , then flatten the channel dimension and frequency

dimension, leading to X̂
bottom
3 ∈ R

T×(C·F ), which can be

treated as a sequence X̂
bottom
3 = [x1,x2, ...,xT ],xt ∈ R

C·F

and fed to the BLSTM network. The hidden states from the

last layer of BLSTM of both directions are concatenated as

ht = [
→

ht,
←

ht]. The output sequences are then reshaped back

to fit the convolutional network and serve as input to the third

convolutional block along the top-down stream.

The normalized linear magnitude spectrograms S
mix(t, f)

with missing gaps are extracted as the input and fed to

the network. X
top
0 is concatenated with the input magnitude

spectrogram, followed by another residual module, a 3×3 con-

volutional layer, and a sigmoid function to generate the final

output. In this work, we leave the task of phase reconstruction

for future research and the original complete phase information

of the mixture is used in inverse Short-Time Fourier Transform

(iSTFT) to reconstruct the time-domain signal from the esti-

mated magnitude. Though previous research often uses Griffin-

Lim algorithm [28] to reconstruct the phase [13], [14], there is

a big difference between our experimental settings and theirs.

In our work, the non-loss parts of our corrupted incomplete

spectrogram are interfered by noise almost everywhere, while

the non-loss parts of their input are clean and reliable. We

find that Griffin-Lim algorithm doesn’t perform well when it

comes to the enhanced spectrogram. In practice, most of the

time phase information of the audio clips are available and

the reconstruction of the spectrogram is not very sensitive to

noisy phase. Therefore, we used the mixture phase for iSTFT

here.

C. Considering Loss in Time Domain

We use L1 loss to compute the loss in the frequency do-

main. Since spectrograms are lossy compared to time-domain

signals, besides computing L1 loss between the estimated

magnitude and the target magnitude, we also consider L1

loss of the estimated waveform and the target waveform. The

motivation is that by considering the loss in the time-domain

waveform, the phase information of the mixture is combined

to recover the time-domain signals from spectrograms, which

exposes more temporal information when training the model.

The loss of auditory restoration task is therefore formulated

as Eq. 3 in our work,

L = L1(S
est(t, f),Sgt(t, f)) + αL1(s

est(t), sgt(t)) (3)

where S
est(t, f), S

gt(t, f), sest(t) and sgt(t) denote esti-

mated spectrogram, target spectrogram, estimated waveform

and target waveform, respectively. α is a hyperparameter that

balances the two terms. To be specific, we use the phase of

the mixture signal to reconstruct the predicted waveform. The

second term of Eq. 3 can be considered as a normalization

term. For simplicity, we refer to Eq. 3 as Spectro-Temporal

loss and refer to the loss in the frequency domain as Spectrum

loss, which is the first term in Eq. 3.
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TABLE I: Improvements of SDR, PESQ and STOI results on test set. The evaluation scores listed here are all the higher, the

better. The best score for each metric is denoted in bold.

SNR/gap size
5 dB/ 0 ms 10 dB/ 0 ms 15 dB/ 0 ms

SDR PESQ STOI SDR PESQ STOI SDR PESQ STOI

Unprocessed 3.12 1.94 0.85 7.75 2.25 0.91 12.63 2.62 0.95

Model SDRi PESQi STOIi SDRi PESQi STOIi SDRi PESQi STOIi

U-Net 4.28 0.19 0.02 2.91 0.21 0.02 0.36 0.13 0.01

HCRN (Spectrum loss) 6.95 0.64 0.05 6.16 0.79 0.04 4.20 0.76 0.03

HCRN (Spectro-Temporal loss) 8.07 0.68 0.06 7.49 0.81 0.05 5.87 0.77 0.03

SNR/gap size
5 dB/ 96 ms 10 dB/ 96 ms 15 dB/ 96 ms

SDR PESQ STOI SDR PESQ STOI SDR PESQ STOI

Unprocessed 2.35 1.54 0.81 6.28 1.70 0.87 9.80 1.89 0.91

Model SDRi PESQi STOIi SDRi PESQi STOIi SDRi PESQi STOIi

U-Net 3.94 0.42 0.03 2.84 0.53 0.03 1.14 0.57 0.02

HCRN (Spectrum loss) 6.75 0.90 0.08 6.02 1.12 0.07 4.66 1.22 0.05

HCRN (Spectro-Temporal loss) 7.77 0.91 0.08 7.09 1.14 0.07 5.79 1.23 0.05

SNR/gap size
5 dB/ 176 ms 10 dB/ 176 ms 15 dB/ 176 ms

SDR PESQ STOI SDR PESQ STOI SDR PESQ STOI

Unprocessed 1.81 1.46 0.78 5.36 1.58 0.83 8.32 1.73 0.87

Model SDRi PESQi STOIi SDRi PESQi STOIi SDRi PESQi STOIi

U-Net 3.94 0.41 0.04 2.91 0.51 0.04 1.47 0.55 0.03

HCRN (Spectrum loss) 6.28 0.81 0.09 5.42 1.00 0.09 4.05 1.09 0.07

HCRN (Spectro-Temporal loss) 7.12 0.81 0.09 6.22 1.01 0.09 4.83 1.10 0.07

III. EXPERIMENTS

A. Datasets

In our experiments, the Wall Street Journal (WSJ) speech

corpus1, Environmental Sound Classification (ESC-50) dataset

[29], and AudioSet [30] are used to generate the mixture. We

randomly choose a sample from WSJ dataset to act as the

target signal, and randomly choose another sample from ESC-

50 dataset, AudioSet, and WSJ dataset with equal opportunity

as the interference signal, to generate the mixture input. All

audio clips are sampled at 8 kHz.

WSJ corpus is a well-known English corpus of reading

sentences from the Wall Street Journal, recorded by different

speakers under clean conditions. The split of training set

si284 (37416 utterances, 81 hours), validation set dev93 (503

utterances) and test set eval92 (333 utterances) of WSJ is

according to the official split. We use WSJ corpus to mimic

the salient speech signal as target and the unsalient speech as

background noise.

ESC-50 and AudioSet are used to mimic the unsalient non-

speech background noise. ESC-50 has 2000 5-second-long

environmental audio recordings of 50 classes. In our work,

90% of ESC-50 dataset is used for training and validation,

while 10% is used for the test set. AudioSet is a large-scale

collection of human-labeled sound clips drawn from YouTube

videos. In our experiments, we used the inside-small-room

subset of AudioSet, which are sounds that appear to have been

recorded within a small room. The unbalanced train set of the

subset is used as the training set, the balanced train set is used

as the validation set and the balanced evaluation set is used

as the test set.

1Obtained from LDC under the catalog numbers LDC93S6B and
LDC94S13B.

B. Baseline

As a baseline, we train a U-Net model based on [27], but

both the encoder and decoder in our U-Net have one less layer

overall, as our input is of a lower resolution. Since there are

missing gaps in our input, we use the baseline U-Net model

to predict the magnitude instead of a mask.

C. Experimental Setups

In the training process, we generate the training samples

on the fly. To make the noisy training set, we randomly

select a sample from the WSJ corpus as the target signal.

With a probability of 1/3, we randomly select another sample

from WSJ, ESC-50, or AudioSet as the interference signal, to

generate the mixture. We mix the target speech signal and the

interference signal at a random SNR level ranging from 0 to 15

dB so that the target speech is the salient signal. STFT is used

to generate the input magnitude spectrogram. The window size

is 32 ms and the hop size is 16 ms, resulting in 128 frequency

bins. The magnitude spectrograms are normalized to the range

[0,1]. We segment a sample to several 128-frame patches and

randomly delete consecutive 10 frames (176 ms) from every

patch to mimic the lost parts of the input signal. The resulted

segmented spectrograms are fed to the networks. To investigate

the influence of the loss term in the time domain, we also

train our proposed HCRN with Spectrum loss. All the models

are trained with Adam optimizer [31] and an initial learning

rate of 0.0002. We train the models for 30 epochs. α in Eq.

3 is 0.025. Finally, we use the complete mixture phase to

recover the time-domain signal from estimated spectrograms

using iSTFT.

To generate the test set, we use the same strategy as in

the training process to randomly select a noise list of 333

samples. And then the noise is added to the WSJ eval92 set

under 3 SNR conditions: 5 dB, 10 dB, and 15 dB. Afterward,

we delete n (n = 0, 5, 10) consecutive frames every 128-frame
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patch at the same randomly selected starting position in each

condition, which are no missing gap, 96-ms missing gap, and

176-ms missing gap, respectively. The resulted test set has 333

utterances on each occasion. Note that there will be multiple

missing gaps in a sample according to the length of the target

signal.

IV. RESULTS

A. Quantitative Performance

In this study, we use Signal-to-Distortion Ratio (SDR) [32],

Perceptual Evaluation of Speech Quality score (PESQ, ranging

from 1 to 5) [33] and Short-Time Objective Intelligibility

(STOI, ranging from 0 to 1) [34] to evaluate the improvements

of applying auditory restoration. We define SDR improvement

(SDRi), PESQ improvement (PESQi), and STOI improvement

(STOIi) as the difference of the corresponding metric between

the processed audio and the unprocessed audio, respectively.

All the evaluation metrics used here are the higher, the better.

Note that all the models are only trained once as described

in Section III-C, but the models are supposed to be able to

process missing gaps shorter than the gap size used in the

training process. We can see from Table I that HCRN (Spectro-

Temporal loss) achieves the best performance compared to

HCRN (Spectrum loss) and the baseline U-Net in all metrics

and has the ability to restore the missing gaps. It is worth

noting that with the increment of the length of missing gaps,

the intelligibility of speech decreases, and it’s harder to restore

the missing gaps at a lower SNR level. At the SNR level

of 5 dB, HCRN (Spectro-Temporal loss) achieves a 35.05%

PESQ improvement and a 7.06% STOI improvement over the

noisy input when there is no missing gap, and a 55.48% PESQ

improvement and an 11.54% improvement over the noisy in-

complete input when the missing gaps are 176 ms; while at the

SNR level of 15 dB, HCRN (Spectro-Temporal loss) achieves

a 29.39% PESQ improvement and a 3.16% STOI improvement

over the noisy input when there is no missing gap, and a

63.58% PESQ improvement and an 8.05% improvement over

the noisy incomplete input when the missing gaps are 176 ms.

These results demonstrate that the improvements are not only

due to suppressing the background noise, but also restoring

the missing gaps. In other words, our proposed method has

the capability of restoring the gaps with the unreliable context

information.

Comparing HCRN (Spectro-Temporal loss) and HCRN

(Spectrum loss), the former outperforms the latter in SDRi to

a margin. By introducing L1 loss in the time domain, HCRN

(Spectro-Temporal loss) provides 0.78 to 1.67 SDR improve-

ment over HCRN (Spectrum loss), which demonstrates the

effectiveness of Spectro-Temporal loss to suppress background

noise and improve the SDR metric. PESQ and STOI metrics

of HCRN (Spectrum loss) and HCRN (Spectro-Temporal loss)

don’t make a big difference in most cases.

B. Qualitative Performance

For qualitative performance, spectrograms from two audio

clips of two test samples are visualized in Figure 3. Here, the

(a) Input

(b) Target

(c) HCRN (Spectro-Temporal loss)

(d) HCRN (Spectrum loss)

(e) U-Net

Fig. 3: Spectrograms of audio clips from test samples mixed

at a SNR level of 5dB. The gap size is 176 ms. Each column

represents an audio clip from a test sample.
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test set is mixed at an SNR level of 5 dB and the consecutive

missing gap size is 176 ms. We can see from the first column

that HCRN (Spectro-Temporal loss) and HCRN (Spectrum

loss) don’t show a lot of differences in restoring the missing

gap. They both fill in the missing gap naturally and close to the

target, at the same time, suppress the noise in the mixture to

some extent. However, the spectrogram of HCRN (Spectrum

loss) is noisier than that of HCRN (Spectro-Temporal loss),

which implies that Spectro-Temporal loss helps the model

suppress the background noise. Whereas, the baseline U-Net

model does a worse job in both aspects. Interestingly, we can

see from the second sample that, under the current training

procedure, all the models are capable of only restoring the

salient signal and ignoring the lost parts of the unsalient signal.

V. DISCUSSION

A. Differences between Our Work and Previous Research

To the best of our knowledge, we are the first to inves-

tigate the task of auditory restoration with large gap size

and the intrusion of background noise. The scenarios of

our experimental settings are more practical and closer to

real-world scenarios compared to previous research in the

following four aspects: 1) The missing gaps and the noise

exist simultaneously in our mixture signal. And our goal is to

jointly reduce the background noise and restore the missing

parts of the input depending on the unreliable contents, which

is more challenging compared to performing speech enhance-

ment or audio inpainting individually. 2) Besides, the size of

the missing gaps is quite large in our experiments, which

further poses challenges for restoring the target signal from

the noisy mixture input. 3) The positions of the missing gaps

are unknown in our experimental settings. 4) The target signal

we used to generate the mixture is a speech from multiple

speakers, which is more difficult than the sounds of musical

instruments or simple notes.

B. Inspiration from Image Inpainting

The task of image inpainting is to recover the lost part of

a given image and there is an abundance of research on the

task [7]–[9]. Audio inpainting often views T-F spectrograms as

images, and therefore it’s very natural to get inspiration from

the literature on image inpainting. In image inpainting liter-

ature, generative adversarial networks [35] are often applied

in general image inpainting configurations. However, in our

preliminary experiments, the application of GAN doesn’t make

a difference. It is worth further investigating the similarity

and the difference between the image inpainting task and the

auditory restoration task and find if other techniques in image

inpainting can play a role in auditory restoration. It’s hopeful

that inspiration from image inspiration may shed light on the

research of auditory restoration.

C. Future Work

Since only time gaps are considered in this work, frequency

gaps and irregular gaps should be considered in future exper-

iments. What’s more, we only focus on the reconstruction of

the spectrograms and don’t consider phase reconstruction in

this work. Though in previous audio inpainting methods, the

recovered spectrograms are transformed to waveform using

Griffin-Lim algorithm or a WaveNet decoder [36], we don’t

follow them for the following two reasons: 1) We find in

our preliminary experiments that Griffin-Lim algorithm causes

great performance degradation for enhanced signals. 2) It

is difficult to get a publicly available pre-trained WaveNet

decoder for multiple speakers. Meanwhile, it is cumbersome

to train such a satisfying WaveNet decoder by ourselves.

Therefore, phase reconstruction in spectrogram-based auditory

restoration is another problem we plan to investigate in the

future.

VI. CONCLUSION

This work explored the pioneering task of auditory restora-

tion with large gap size and the intrusion of background noise.

We propose Hourglass-shaped Convolutional Recurrent Net-

work (HCRN) and Spectro-Temporal loss function to train the

model, which helps the model improve the SDR metric. Our

experiments give some promising results. Both the quantitative

and qualitative performance show that our proposed method

can suppress the background noise to some extent, at the

same time, identify and restore the missing gaps of the salient

signal with the unreliable context information. The model

has the ability of processing missing gaps shorter than the

gaps used during training. Moreover, with the current training

procedure, the proposed model tends to ignore missing gaps

of the unsalient signal and doesn’t restore them. We hope the

application of the auditory restoration task can serve as an

extension of modern source separation frameworks, leading

to a general-purpose source separation model solving the

”Cocktail Party Problem”.
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