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ABSTRACT

Recently, end-to-end (E2E) models become a competitive al-
ternative to the conventional hybrid automatic speech recog-
nition (ASR) systems. However, they still suffer from speaker
mismatch in training and testing condition. In this paper, we
use Speech-Transformer (ST) as the study platform to inves-
tigate speaker aware training of E2E models. We propose
a model called Speaker-Aware Speech-Transformer (SAST),
which is a standard ST equipped with a speaker attention
module (SAM). The SAM has a static speaker knowledge
block (SKB) that is made of i-vectors. At each time step,
the encoder output attends to the i-vectors in the block, and
generates a weighted combined speaker embedding vector,
which helps the model to normalize the speaker variations.
The SAST model trained in this way becomes independent
of specific training speakers and thus generalizes better to
unseen testing speakers. We investigate different factors of
SAM. Experimental results on the AISHELL-1 task show that
SAST achieves a relative 6.5% CER reduction (CERR) over
the speaker-independent (SI) baseline. Moreover, we demon-
strate that SAST still works quite well even if the i-vectors
in SKB all come from a different data source other than the
acoustic training set.

Index Terms— Speech-Transformer, speaker adapta-
tion, end-to-end speech recognition, speaker aware training,
i-vector

1. INTRODUCTION

There have been growing interests in building an E2E speech
recognition system, which directly transduces an input se-
quence of acoustic features to an output sequence of tokens.
Comparing to a conventional hybrid system, such an E2E
system typically has several advantages, including a simpler
training process, allowing a joint optimization among compo-
nents, and a compact model size. Prominent E2E approaches
include: (a) connectionist temporal classification (CTC) [1]
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[2], (b) attention based encoder-decoder networks [3–7], and
(c) recurrent neural network transducer (RNN-T) [8]. The
above approaches have been successfully applied to large-
scale ASR tasks [9–13].

Speaker adaptation is an essential component of state-
of-the-art hybrid systems, and a variety of adaptation meth-
ods have been developed, which can be divided into three
categories [9]. The first kind of method, also the most
straightforward one, is model re-training. The certain lay-
ers or even the whole layers of speaker independent (SI)
model are re-updated using the adaptation data of each testing
speaker [14, 15]. To avoid overfitting, L2 regularization [14]
and Kullback-Leibler divergence (KLD) regularization [15]
were applied. The second category is transformation based.
Speaker dependent (SD) transformations were used to convert
a SI model to a SD model [9]. The third one is speaker-aware
training. The acoustic models are trained with speaker auxil-
iary vectors, such as i-vectors [16,17], speaker code [18], and
speaker embedding [19], to facilitate the models to normalize
the speaker variations.

The aforementioned adaptation methods are mainly in-
vestigated in the hybrid systems. Their effectiveness for E2E
systems is still not fully studied. In this work, we focus
on the speaker-aware training (the third category of method
mentioned above) for E2E systems. The study platform that
we used is Speech-Transformer (ST), but the methods pro-
posed in this work can be easily generalized to other types of
E2E systems, for example, the popular listen, attend and spell
(LAS) model [20, 21].

Speech-Transformer, which is based on the Transformer
from machine translation task [7], was first proposed in [10]
and then developed in [12, 13]. Recently, it was further op-
timized in [11] and showed a superior performance over a
strong hybrid TDNN-LSTM system on a large-scale ASR
task. The most straightforward way to do speaker-aware
training of ST model is to attach speaker auxiliary vectors
(i-vectors in this work) to the input of the model. However,
it just brings quite limited performance benefits in our study.
It is possibly because the self-attention mechanism makes the
encoder more powerful to capture and normalize long-range
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speaker characteristics.
In this work, we propose a model called Speaker-Aware

Speech-Transformer (SAST), which is more effective than
simply sending i-vectors to the model directly. SAST contains
two parts: the main transformer part and the Speaker Atten-
tion Module (SAM). The SAM is trained to generate a soft
speaker embedding, which makes the main transformer part
become independent of specific training speakers and thus
generalize better to unseen testing ones. We investigate dif-
ferent factors of SAM: the number of i-vectors in SKB, the lo-
cation of SAM in the model, and the level of soft speaker em-
bedding. Experimental results on the AISHELL-1 task show
that SAST achieves a relative 6.5% CER reduction (CERR)
over SI baseline. What’s more, we show that the speakers
in the knowledge block can be different from those used for
acoustic model training. This finding further verifies our as-
sumption and provides new clues to the adaptation method of
attention-based E2E models.

2. RELATED WORK

There have been few efforts on the adaptation of the E2E
systems. [22] proposed a multi-path adaptation scheme for
end-to-end multichannel ASR. In [23], the authors addressed
the data sparsity issue by formulating Kullback-Leibler di-
vergence (KLD) regularization and multi-task learning ap-
proaches for speaker adaptation of CTC models. The methods
investigated in these two works fall in the category of model
re-training adaptation, which needs extra training data and
parameter storage space for each test speaker. The work [24]
explored different feature-space adaptation approaches for
bidirectional long short-term memory (BLSTM)-CTC mod-
els. Although some of them are effective, they need an extra
second-pass decoding. The authors in [25] employed a se-
quence summary network to compute auxiliary features in
the input layer of an attention-based E2E model.

The most similar idea to our SAST model is [26], where
attention mechanism is used to select the most relevant
speaker i-vectors to the current speech segment from the
memory. The biggest difference lies in the framework: hy-
brid system in [26] while E2E in this work. Besides, we
investigate different factors of SAM, including the number of
i-vectors in SKB, the location of SAM in the encoder, and the
level of speaker embedding. We also discuss the difference
between the soft and hard speaker embedding.

3. BACKGROUND

3.1. Multi-head Attention

Self-attention, a mechanism that relates different positions of
input sequences to compute representations for the inputs. A
self-attention layer receives the tuple of query, key and value,

and outputs the weighted sum of the value. The weight as-
signed to each value is computed by a compatibility function
of the query with the corresponding key. The outputs of self-
attention are computed as:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

A multi-head attention (MHA) layer projects the queries,
keys and values to dq , dkv and dkv demensions h times
with different trainable projections. And on each version of
queries, keys and values, attention function described above
is performed in parallel. Then their outputs are concatenated
and fed into another linear projection to obtain the final di-
mension dmodel with WO. Formally, the multi-head attention
layer is computed as:

MHA(Q,K, V ) = Concat(head1, .., headh)WO (2)

headi = Attention(QWQ
i ,KW

K
i , V WV

i ) (3)

Where the parameter matrices WQ
i ∈ Rdmodel×dq , WK

i ∈
Rdmodel×dkv , WV

i ∈ Rdmodel×dkv and WO ∈ Rhdkv×dmodel ,
h is the number of heads, and dmodel is the model dimension.

3.2. Position-wise Feed-Forward Networks

A position-wise feed-forward network (FFN) stacks two ful-
lly connected layers with activation function. Different from
[7], we use Gated Linear Units (GLU) instead of Rectified
Linear Unit (ReLU) as activation function. The dimension of
input and output is dmodel, and the inner layer has dimension
dff .

FFN(x) = GLU(xW1 + b1)W2 + b2 (4)

Where the weight W1 ∈ Rdmodel×dff , W2 ∈ Rdff×dmodel

and the biases b1 ∈ Rdff , b2 ∈ Rdmodel .

3.3. Speech-Transformer

Just like most E2E systems [1, 20], Speech-Transformer (ST)
has an attention-based encoder-decoder structure. The en-
coder transforms a speech feature sequence x = (x1, ...xT ) to
a continuous representations z = (z1, ...zT ). Given z, the de-
coder then generates an output sequence y = (y1, ...yU ) one
character at a time step.

The encoder of ST is composed of a stack of Ne identical
blocks, and each one has two sub-layers. The first sub-layer is
a MHA, and the second is a position-wise feed-forward net-
work. Residual connections are employed around each of the
two sub-layers, followed by a layer normalization. The de-
coder composed of a stack of Nd identical blocks is similar
to the encoder except inserting a third sub-layer to perform
multi-head attention over the output of the encoder stack. To
prevent leftward information from flowing and preserve the
auto-regressive property in the decoder, all values correspond-
ing to illegal connections are masked in the self-attention sub-
layers of decoder. Since no recurrence and no convolution are
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Fig. 2. A schematic representation of the proposed speaker
aware speech transformer (SAST)

contained in the model, additional positional encodings are
added to the input embeddings at the bottoms of the encoder
and decoder stacks to inject some information about the rel-
ative or absolute position in the sequence. For more details
about ST, we refer the readers to [7, 13].

4. PROPOSED METHOD

4.1. Speaker Embedding: Soft vs. Hard

The speaker-aware training methods proposed in [16–19]
trained the acoustic models with speaker vectors as auxil-
iary features. These methods are effective to facilitate the
models to normalize the speaker variations. However, each
speaker vector used in the testing condition is still unseen
for the acoustic model. In this work, we treat these speaker
vectors as hard speaker embedding, where hard means that
for each particular speaker, the speaker representation only
depends on the corresponding acoustic information and has
no relations with other speakers.

On the contrary, the Speaker Attention Module (SAM)
proposed in this paper can produce relatively soft speaker em-
bedding for each speaker. We assume that there are similari-
ties among different speakers and each speaker vector can be
represented as a linear combination of a set of basic speaker
representations. Fig. 1 gives an illustration of the soft speaker
embedding, where i-vectors from the group of basic speak-
ers form a speaker space. Given an acoustic feature vector
of one speaker, the similarity of this acoustic vector and each
basic i-vector in the speaker space is calculated with the atten-
tion mechanism to get the weight for each basic i-vector (the
float number under the black bar in Fig. 1). Finally, the soft
speaker embedding (the green bar in the figure) is obtained as
the weighted sum of the basic i-vectors.

There are mainly two advantages of the soft speaker em-
bedding compared with the hard ones. The first one is gener-
alization. In the decoding condition, the model trained with
soft embedding has the ability to get reasonable weighted
combination of the basic speaker representations for each un-
seen speaker. However, for the hard ones, the embedding of

unseen speaker is totally new for the trained model. The sec-
ond advantage is that there is no need to compute the i-vector
of each testing speaker for soft embedding model, since only
the general acoustic features are needed for decoding. This
makes the feature front-end simpler than the hard one.

4.2. Speaker-Aware Speech-Transformer

The model proposed in this work is Speaker-Aware Speech-
Transformer (SAST), which is a standard Speech-Transformer
(ST) equipped with a Speaker Attention Module (SAM). The
structure of ST is similar to [11, 13] and we mainly focus on
the details of SAM in this part.

Fig. 2 shows the architecture of SAST, where the dashed
box illustrates the structure of SAM. SAM mainly consists
of two parts: the Speaker Knowledge Block (SKB), and
the multi-head attention layer. The SKB is a static memory
which is made of i-vectors from a group of basic speakers.
These i-vectors form the speaker space and are denoted as
m = (m1, ...,mN ), whereN is the number of i-vectors in the
knowledge block. The second part of SAM is a MHA layer,
of which the query is the encoder output z = (z1, ..., zT ), and
the key and value are the basic i-vectors m = (m1, ...,mN ).
The computation of multi-head attention is same as Eq. (2).
To make it clear in SAM, we unfold this process as follows:

For the i-th head, the first step is projection:

zit =W i
qzt (5)

mi
n =W i

kvmn (6)

where zt and mn are projected to dimension dq and dkv re-
spectively, where dq equals with dkv . The second step is to
compute the similarity between the encoder output and the
speaker vector, with scaled dot-product attention:

uint = softmax(
mi

nz
i
t√

dq
) (7)

where the scalar 1/
√
dq is used to prevent softmax from

falling into regions with very small gradients. Then uint is
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used to summarize m at time step t:

eit =

N∑
n=1

uintm
i
n (8)

where eit is the soft speaker embedding at time step t for the
i-th head. Finally, the speaker embedding at time step t is
obtained by concatenating eit from h heads:

et = [e1t ; ...; e
h
t ] (9)

It should be noted that the speaker embedding vector et
in Eq. (9) is time step dependent, i.e., there is a different em-
bedding vector for each frame. Another choice is doing at
utterance level, that is, generating only one speaker vector for
each utterance. We believe that the frame-level embedding is
more effective since it’s more powerful to capture the vari-
ation in one utterance over time, including the speed, mood
and tone, etc.

The symbol +© in Fig. 2 denotes a concatenate operation.
The encoder output and the speaker embedding vector at each
time step are attached together:

z∗t = [zt; et] (10)

Compared to the speaker-independent (SI) ST, the de-
coder in SAST receives additional soft speaker embedding
vectors as inputs, making the model more robust to the
speaker variations.

5. EXPERIMENTS

We conduct five experiments to investigate the proposed
speaker attention module. The first three focus on three fac-
tors of SAM: the number of basic i-vectors in the knowledge
block, the location of SAM in the encoder, and the level of
soft speaker embedding (frame-level or utterance-level). The
fourth experiment is designed to compare the performance of
soft and hard speaker embedding. In the last one, we study
whether or not the i-vectors in the knowledge block have to
come from the same dataset used for acoustic training.

5.1. Data Set

Experiments are mainly executed with AISHELL-1 data set
[27], which is a Chinese Mandarin speech corpus with 178
hours data. It is recorded by 400 speakers from different ac-
cent areas in China and is divided into training, development
and test set with 340, 40 and 20 speakers respectively, without
speaker overlapping. The development and test set are used
to evaluate the model performance, which contains 14, 326
utterances (about 10 hours) and 7, 176 utterances (about 5
hours), respectively.

The 5-th experiment and the training of i-vector estimator
utilize AISHELL-2 [28]. It contains about 1000 hours Chi-
nese Mandarin speech data, with 1991 speakers in total. It
should be noted that AISHELL-1 is a subset of AISHELL-2
data set.

5.2. I-vector Estimator

In order to get high quality i-vectors, the i-vector estimator
is trained with all the training data of AISHELL-2 (instead
of AISHELL-1). The training process follows the SRE08
recipe in Kaldi toolkit. A 2048 diagonal component univer-
sal background model (UBM) is first trained, and then 200-
dimensional i-vectors are extracted and further compressed
to 100 dimension by linear discriminant analysis (LDA) fol-
lowed by length normalization.

5.3. Experimental Setup

All the acoustic models are trained with 80-dimensional
log-Mel filter-bank features, computed with a 25ms win-
dow and shifted every 10ms. The raw features are normal-
ized via mean subtraction and variance normalization per
speaker side. Before sending into the transformer, the fea-
tures are firstly stacked with 3 frames to the left and then
down-sampled to 33.3 Hz frame rate.

Both the baseline ST and the proposed SAST contain 6
encoder and 6 decoder blocks, with a per-block configuration
of dmodel = 512, 16 attention heads, and 2048 feed forward
inner-layer dimension. The MHA layer in the speaker atten-
tion module of SAST also has 16 heads, with dq and dkv be-
ing 32 for each head. There are 4234 output units in total, in-
cluding 4230 Chinese characters, plus 4 extra tokens, i.e., an
unknown token (<UNK>), a padding token (<PAD>), and
sentence start and end tokens (<S>/<\S>). During train-
ing, the samples are shuffled randomly and then batched to-
gether with 256 batch size. We use the Adam optimizer with
β1 = 0.9, β2 = 0.98, ε = 10−9 and alter the learning rate
over the course of training. During training, the label smooth-
ing of value εls = 0.1 is employed [29]. All the models are
trained for 60 epochs, and are evaluated every 2 epochs on the
development set of AISHELL-1. The model that performs
best on the development set is chosen, and 5 model check-
points before it are averaged to get the final model, which is
then used to decode the test sets. For evaluation, we use beam
search with a beam size of 5 and length penalty α = 0.6. No
external language model is used in this work.

The first baseline we consider is chain model, which ob-
tains 7.46% CER on the test set of AISHELL-1, according
to the results in Kaldi toolkit [30]. The second one is LAS
model [21] achieving 10.56% CER (without any external lan-
guage model) on this task. Our ST baseline get 8.36% CER,
which performs much better than LAS model, meaning that
our baseline is competitive.

5.4. Experimental Results

5.4.1. The Number of Basic I-vectors in SKB

The first problem about SAM is how many basic i-vectors
there should be in the speaker knowledge block (SKB). We
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Fig. 3. CER[%] of ST baseline and SAST models with differ-
ent numbers of i-vectors in SKB on development and test set
of AISHELL-1.

randomly select different numbers of speakers from the train-
ing set of AISHELL-1 (totally 340 speakers), ranging from
30 to 340, extract the corresponding i-vectors and put them
in the SKB. Several SAST models with different SKB are
trained with the same whole AISHELL-1 training set. Please
note that gender balancing is considered when choosing these
speakers, i.e., half of speakers are male and half are female.

For experiments in this subsection, the speaker attention
module is placed on the highest block (the 6th block) of the
encoder in SAST, that is, zt in Eq. (5) is the output of the
6-th encoder block. Besides, the soft speaker embedding is
performed at the frame-level, just following Eq. (8).

Performance of different SAST models, as well as the
baseline ST, is presented in Fig. 3. It shows clearly two U-
shaped CER curves for the development and test set when the
number of i-vectors in SKB is increased from 30 to 340. The
best SAST model is obtained when 100 i-vectors are provided
in SKB, with CER of 7.59 on development set and CER of
7.82 on test set, which is 4.3% and 6.5% relative CER reduc-
tion over baseline ST.

When SKB contains too few i-vectors, e.g. only 30, the
SAST model performs worse than the baseline ST. It’s easy
to understand since these few i-vectors can not represent the
speaker space quite well. On the other hand, the perfor-
mance of SAST is also not good when all the 340 i-vectors
of AISHELL-1 training data are offered to SKB. This is be-
cause for each training utterance, there exists a corresponding
speaker i-vector in SKB and the SAM can easily find it. The
model has no opportunity to learn how to obtain the soft
speaker embedding for unseen speakers by combining the
basic i-vectors, which can limit the model’s generalization.
By contrast, when SKB has only 100 i-vectors, the model is
forced to generate suitable soft speaker embedding for acous-
tic frames belonging to the rest 240 speakers during training,
making the model generalize better for unseen speakers.

5.4.2. The Location of SAM in the Encoder

The second factor that we focus on is the location of SAM
in the encoder. In our previous experiments of Sec.5.4.1, the

Table 1. CER[%] of SAST models with different locations of
SAM. Gains are relative to our ST baselilne on test set.

Layer Dev Test Gain
2-th 8.02 8.30 0.7%
4-th 7.97 8.13 2.8%
6-th 7.59 7.82 6.5%

speaker attention module is located at the 6-th (highest) block
of encoder in SAST model. In this subsection, another two
SAST models are trained with SAM settled on the 2-th or the
4-th encoder block, respectively. The implementation details
of SAM are slightly different when located at lower blocks.
The query vector zt in Eq. (5) is the output of lower block,
but when concatenating with the speaker vector et in Eq. (10),
zt is the output of highest encoder block instead of the lower
one. By doing so, the speaker embedding is expected to influ-
ence the decoder more directly.

The number of i-vectors in SKB is 100, and the speaker
embedding is performed at the frame-level, following the
Sec.5.4.1. Results are shown in Table 1. It’s clear that higher
level acoustic representation is more helpful for SAM to cal-
culate the soft speaker embedding vector. It’s in line with
our expectations since higher encoder block outputs more
abstract features. In the following experiments, the speaker
attention module is located at the highest block of encoder.

5.4.3. The Level of Speaker Embedding in SAM

In this part, we investigate whether we should obtain the
speaker embedding vector per frame or per utterance. We
argue that frame-level embedding is more effective since it
can capture the variance over time in one utterance in Sec.4.2.
All our previous experiments are executed with frame-level
speaker embedding. Now we will compare the performance
of these two embedding methods.

Eq. (5) ∼ Eq. (10) in the Sec.4.2 show the process of
speaker embedding at the frame level. As for utterance-level
embedding, we average the output of encoder along the time
steps, thus zt in Eq. (5) now becomes:

z =
1

T

T∑
t=1

zt (11)

where T is the total time steps in one utterance. z is time
step independent and is used to compute the utterance-level
speaker embedding for one utterance.

We tried three different settings for the number of i-
vectors in SKB: 50, 100, and 200. The results are shown
in Table 2 (CER of frame-level models comes from Fig. 3).
It’s obvious that the utterance-level speaker embedding per-
forms worse than the frame-level one for all the three settings.
This is consistent with our intuition. Speaker’s mood, speed
or tone can not keep constant over time in one utterance.
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Table 2. CER[%] for frame-level and utterance-level soft
speaker embedding on test set of AISHELL-1.

#I-vectors frame-level utterance-level
50 8.04 8.23

100 7.82 8.14
200 8.07 8.23

Frame-level speaker embedding is able to calculate a rea-
sonable speaker vector according to the acoustic features of
current time step, thus it’s more effective than utterance-level
embedding to catch the variations over time.

5.4.4. Hard and Soft Speaker Embedding

We discussed soft and hard speaker embedding in Sec.4.1 and
hold the view that soft speaker embedding performed by SAM
is more effective than the hard one. In this subsection, we
compare them quantitatively.

For soft speaker embedding (SAST model), we choose
the best settings according to the findings in previous three
experiments: the number of i-vectors in SKB is 100, SAM is
located at the highest encoder block, and speaker embedding
is performed at the frame-level. As for the hard embedding,
two approaches are tried. The first method is named as input
of ST +© i-vector (in Table 3), which concatenates the i-vector
for a given speaker to every frame belonging to that speaker,
and sends the resulting feature to the input of ST model. The
second one is called output of encoder +© i-vector, in which
the output of highest encoder block at each time step is spliced
with the i-vector of the corresponding speaker.

Table 3. CER[%] for ST, SAST with 100 i-vectors in
AISHELL-1 and attaching i-vector to model (input or output
of encoder) directly. Gains are relative to our ST baselilne on
test set.

Models Dev Test Gain

ST baseline 7.93 8.36 -
+ input of ST +© i-vector 7.85 8.22 1.7%

+ output of encoder +© i-vector 8.21 8.52 -
SAST 7.59 7.82 6.5%

According to Table 3, both of the two hard speaker em-
bedding methods perform worse than the soft one, i.e., SAST
model proposed in this work. Compared with hard embed-
ding, the soft speaker embedding performed by SAM empow-
ers SAST to generalize better to unseen speakers.

5.4.5. Source of I-vectors in SKB

In aforementioned experiments, i-vectors in the SKB are ex-
tracted from speakers in the training set of AISHELL-1, the

Table 4. CER[%] for SAST with access to different num-
ber of i-vectors in AISHELL-2. Gains are relative to our ST
baselilne on test set.

#I-vectors Dev Test Gain
50 7.75 8.21 1.8%

100 7.80 8.19 2.0%
200 7.87 8.19 2.0%
300 7.78 7.97 4.7%
400 7.79 8.15 2.5%

acoustic data of them is also used to train SAST models.
Thus, there are overlaps of speakers used in SKB and SAST
training. In this subsection, we are interested in a ques-
tion, that is, whether or not the i-vectors in the knowledge
block have to come from the same dataset used for acoustic
model training. We design the following experiments with
AISHELL-2 as the additional resource. First we exclude
the 400 speakers of AISHELL-1 from all the 1991 speak-
ers in AISHELL-2 (noting that AISHELL-1 is a subset of
AISHELL-2). Then we randomly select different numbers of
speakers from the remaining 1591 speakers of AISHELL-2
(gender balancing is also considered), extract the correspond-
ing i-vectors, and put them in SKB. All the SAST models are
trained with the training set of AISHELL-1, so there are no
speaker overlaps in SKB and acoustic model training.

Model performances on the development and test set of
AISHELL-1 are presented in Table 4. We can see that the
proposed SAST still works quite well even if the i-vectors
in SKB all comes from a different data source other than the
acoustic training set. We think that this can be attributed to the
power of soft speaker embedding. The i-vectors in SKB form
a speaker space, and the SAST model is trained to represent
each speaker as the combination of data points in this space,
even for speakers not belonging to SKB.

6. CONCLUSIONS

In this paper, we propose a model called Speaker-Aware
Speech-Transformer (SAST), which is a standard speech-
transformer equipped with speaker attention module (SAM).
SAM has a speaker knowledge block (SKB) that is a group of
i-vectors, and is trained to produce a soft speaker embedding
for each acoustic frame, which helps the SAST model to nor-
malize the speaker variations. We investigate different factors
of SAM: the number of i-vectors in SKB, the location of
SAM in the model, and the level of soft speaker embedding.
On AISHELL-1 test set, the proposed SAST gives a 6.5%
relative CER reduction over the baseline ST. What’s more,
we also demonstrate that soft speaker embedding is superior
to the hard one, and the i-vectors in SKB do not have to come
from the same dataset used for acoustic training.
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