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Abstract—The attention-based encoder-decoder structure is
popular in automatic speech recognition (ASR). However, it relies
heavily on transcribed data. In this paper, we propose a novel pre-
training strategy for the encoder-decoder sequence-to-sequence
(seq2seq) model by utilizing unpaired speech and transcripts.
The pre-training process consists of two stages, acoustic pre-
training and linguistic pre-training. In the acoustic pre-training
stage, we use a large amount of speech to pre-train the encoder
by predicting masked speech feature chunks with their contexts.
In the linguistic pre-training stage, we first generate synthesized
speech from a large number of transcripts using a text-to-speech
(TTS) system and then use the synthesized paired data to pre-
train the decoder. The two-stage pre-training is conducted on
the AISHELL-2 dataset, and we apply this pre-trained model to
multiple subsets of AISHELL-1 and HKUST for post-training. As
the size of the subset increases, we obtain relative character error
rate reduction (CERR) from 38.24% to 7.88% on AISHELL-1
and from 12.00% to 1.20% on HKUST.

Index Terms—pre-training, speech recognition, encoder-
decoder, sequence-to-sequence

I. INTRODUCTION

There have been growing interests in building an end-to-end

(E2E) speech recognition system, which directly transforms

an input sequence of acoustic features to an output sequence

of tokens. The single all-neural structure makes the E2E

system have several advantages, including a simpler training

process and joint optimization among components. Currently

prominent E2E models include: (a) connectionist temporal

classification (CTC) [1], [2], (b) attention-based encoder-

decoder networks [3]–[7], and (c) recurrent neural network

transducer (RNN-T) [8].

Although E2E models are powerful, they still suffer from

the problem that the training process is very hungry for human-

transcripted supervised data. Unfortunately, the collection of

supervised data is time-consuming and expensive. Comparing

with supervised data, unpaired data (speech and text) is much

easier to collect. One of the solutions to reduce the need

for paired data is to use speech and text respectively. Thus

a lot of unsupervised and semi-supervised methods [9]–[12]

were proposed to ease the dependence. The success of these

unsupervised and semi-supervised methods indicates that there

is useful semantic knowledge in these unpaired speech and

text. They can be used separately.

This work is supported by the Key Research and Development Program of
the Ministry of Science and Technology under No. 2017YFB1002102.

Recently, the release of BERT (Bidirectional Encoder Rep-

resentations from Transformers) [13] provides us a new way to

utilize unpaired data by pre-training. BERT is a bidirectional

variant of Transformer networks trained to jointly predict

a masked word from its context and to classify whether

two sentences are consecutive or not. Then the pre-trained

model can swiftly adapt for downstream tasks by fine-tuning.

It obtains new state-of-the-art results on eleven natural lan-

guage processing tasks. According to [13], BERT can capture

the structural information about language contained in text-

only data by pre-training and this semantic information is

helpful to downstream tasks. Intuitively, as another carrier

of semantic information, speech can be processed similarly.

Recent researches [14]–[16] used BERT-style pre-training for

the ASR system. Jiang et al. [14] proposed Masked Predictive

Coding (MPC), a method utilizing Masked-LM like structure

for Transformer based speech recognition models. Wang et

al. [15] pre-trained bidirectional RNNs for direct use in a

CTC based speech recognizer and explored both time- and

frequency-domain masking. Baevski et al. [16] proposed vq-

wav2vec to learn discrete representations of audio segments

before leveraging BERT-style pre-training. All these works

only focus on how to pre-train the acoustic encoder. For the

encoder-decoder framework, the pre-training of the decoder

also needs consideration.

In this paper, we propose a two-stage pre-training for the

attention-based encoder-decoder framework. Two pre-training

stages are leveraged to extract acoustic and linguistic informa-

tion from speech and transcripts respectively. In the first stage,

we pre-train the encoder with a large amount of unlabeled

speech data. We mask some continuous feature chunks in each

sequence at random and use contexts to predict them. Using

this BERT-style pre-training, we obtain good initial parameters

for the encoder. In the second stage, we first generate the

speech from a large number of transcripts with a trained text-

to-speech (TTS) [17] system and then use these synthesized

data to optimize the whole network. Although the acoustic

information of synthesized data is monotonous, transcripts

contain rich linguistic information, which is useful for the

downstream ASR task.

All of our experiments are conducted on the Transformer

[7], an encoder-decoder framework. After the two-stage pre-

training with AISHELL-2, we fine-tune the pre-trained model

on AISHELL-1 and HKUST during post-training. We use
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multiple subsets of AISHELL-1 or HKUST as paired data

to conduct post-training. As the size of the subset increases,

we obtain relative character error rate reduction (CERR) from

38.24% to 7.88% on the test set of AISHELL-1. For the

HKUST dataset, we obtain relative CERR from 12.00% to

1.20%.

II. RELATED WORK

The most related work to this paper is BERT [7], which is a

bidirectional language representation model. BERT is trained

to capture useful representations by predicting masked tokens

with their context and classifying the relationship between

two sentences. Thus when fine-tuned on downstream tasks,

the model can converge faster and better than initializing with

scratch. As for the ASR task, similarly, we design the first

pre-training stage to capture useful representations contained

in the speech. Our pre-training policy is different from BERT

mainly in two aspects: (i) We mask a continuous feature

vector sequence rather than discrete tokens. Unlike text which

can be broken into character or word units relatively easily,

speech features are continuous, and the neighboring frames

are similar. So only predicting discrete frames is too easy for

neural networks. (ii) We discard the next sentence prediction

mentioned in [7]. Because the relationships between sentences

are not important to the ASR task.

Inspired by BERT, pre-training attracted increasing attention

in the field of speech recognition [14]–[16]. Jiang et al. [14]

verified the effect of BERT-style pre-training on the encoder

of the Transformer. Using tens of thousands of hours of speech

during pre-training, it achieved obvious improvement. In this

paper, we also employ similar BERT-style pre-training for

the encoder. Besides, we use synthesized paired data for pre-

training the decoder in our linguistic pre-training. Wang et al.

[15] investigated the effectiveness of pre-training on phone-

based and character-based CTC systems. And it was the first

to pre-train bidirectional RNNs for the speech recognizer. In

this paper, we use the Transformer, a seq2seq framework, as

the study platform and explore the influence caused by the

size and distribution of data. Baevski et al. [16] pre-trained a

feature extractor with discretized unlabeled speech data. The

extractor is used to generate discretized speech representations,

which are used to train the acoustic model.

III. TWO-STAGE PRE-TRAINING

In this paper, we use the Transformer as the study platform

to investigate our two-stage pre-training method, which con-

sists of acoustic pre-training and linguistic pre-training. And a

post-training is employed to fine-tune the pre-trained model for

the downstream ASR task. The entire training process is shown

in Fig. 1. As an attention-based encoder-decoder model, the

Transformer can be divided into three parts, that is, encoder,

decoder, and cross-attention. The acoustic pre-training aims

to integrate useful representations contained in speech into

the encoder by predicting some masked feature chunks. In

the linguistic pre-training, we use a trained TTS system to

generate speech from a large number of transcripts. Using

these synthesized paired data, the decoder can obtain rich

linguistic information. During post-training, paired data is used

to fine-tune the model. The details are as follows.

A. Acoustic pre-training

The left side of Fig. 1 illustrates the acoustic pre-training.

To pre-train the encoder, we mask some continuous feature

sequences of input x = (x1, x2, ..., xT ) along the time steps,

where T is the length of the input sequence. The width and

position of these masked feature chunks are sampled randomly.

We set the masked value in chunks to zero, and only predict

these masked features rather than reconstruct the entire input.

The details of our mask strategy are shown as follows:

• K masked chunks: Firstly, K time points are chosen

along the time steps (0, T ) as centers of these feature

chunks, denoted as ci. And chunk width w is sampled

from a uniform distribution from 0 to W . Thus 2W + 1
is the max length that can be masked during training.

ci ⇠ uniform(0, T ), i 2 (1, 2, ...,K) (1)

w ⇠ uniform(0,W ) (2)

We denote the time interval of the i-th masked feature

chunk as fi. The si and ei are the start and end of the

i-th chunk respectively.

si = max(0, ci � w), ei = min(ci + w, T ) (3)

fi = [si, ei], i 2 (1, 2, ...,K) (4)

• 80% of the time: For each feature chunk, there is an 80%

chance that values in the chunk are masked to zero.

x0

t = 0, t 2 fi (5)

• 20% of the time: The feature chunks are not always

masked. There is a 20% chance that the values in chunk

stay the same. The purpose of this is to bias the repre-

sentation towards the actual speech feature sequence.

The encoder reads a masked sequence of d-dimensional

feature vector x0 = (x0

1
, x0

2
, ..., x0

T ), and transforms it to

higher-order representations h = (h1, h2, ..., hT ). At the top of

the encoder, an extra linear layer projects hidden features to the

same dimension as input features. This final output sequence

can be regarded as a hypothesis of input feature sequence,

denoted as x̂ = (x̂1, x̂2, ..., x̂T ).

Instead of reconstructing the entire input, we only predict

these masked features. We use mean square error (MSE) loss

to conduct training.

Loss =
1

BK

BX

b=1

KX

i=1

X

t2fi

kxb,t � x̂b,tk
2

(6)

where the subscript (b) indicates the b-th example in a batch

which contains B examples.
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Fig. 1. Overview of our two-stage pre-training method. (a) Acoustic pre-training is applied by predicting masked feature chunks with contexts. (b) TTS system
generates paired data from a large number of transcripts, which is used to conduct linguistic pre-training. (c) A schematic representation of post-training.

B. Linguistic pre-training

ASR is a speech-to-text task and model like the Transformer

usually consists of an encoder and a decoder. Only using our

acoustic pre-training proposed in section III-A to pre-train

encoder is not enough for this encoder-decoder framework.

This section proposes a linguistic pre-training to pre-train the

decoder by using a large number of transcripts.

A common approach to leverage text-only data is training

a language model (LM), and fusing the output of the decoder

and the pre-trained LM. Deep fusion [18] and shallow fusion

[19] are two ways to integrate LM into the E2E system.

Although these fusion approaches have shown improvements

to the E2E system, the drawback is that the extra LM increases

complexity to the system. In this paper, we propose a linguistic

pre-training to integrate linguistic information into the seq2seq

system. Specifically, we use a trained TTS system to generate

speech for a large number of transcripts, which converts text-

only data to paired data. Then we use these synthesized paired

data to train a Transformer whose encoder is initialized with

acoustic pre-training mentioned in section III-A. This train-

ing stage uses cross-entropy (CE) loss, and backpropagation

updates the whole model, including the encoder, the decoder,

and the cross-attention. Although the acoustic information of

these synthesized paired data is monotonous, the linguistic

information contained in these transcripts is rich. This process

is illustrated in the middle of Fig. 1.

Compared with extra LM [18], [19] and BERT [20], using

synthesized paired data to integrate linguistic information has

two advantages: (i) The decoder of Transformer stacks iden-

tity blocks which contain three sublayers, i.e., self-attention,

encoder-decoder attention, and feed-forward network. BERT-

initialized decoder can only initialize two sublayers, and the

encoder-decoder attention is still initialized randomly. How-

ever, the encoder-decoder attention represents the alignment

between speech and text. Fortunately, our method which is

training with synthesized paired data can help the system

to capture both linguistic information and alignment between

speech and text. (ii) The training stage with synthesized paired

data integrates linguistic information into the decoder without

extra LM, which leads to a more simple model structure and

reduces the complexity of the system.

C. Post-training

Using our two-stage pre-training, the seq2seq model extracts

rich acoustic and linguistic representations that are useful for

the downstream ASR task. After the pre-training, an extra

post-training is necessary. The pre-trained model is fine-tuned

with paired data during the post-training. The right side of

Fig. 1 illustrates this process. In this stage, supervised training

is conducted by CE loss, and the model is initialized with

the last checkpoints in linguistic pre-training. The softmax

layer is reinitialized randomly, and the number of output

units depends on the training set. During fine-tuning, we

update the parameters of encoder, decoder, and cross-attention

simultaneously.

IV. EXPERIMENTS

A. Datasets

We experiment on three public ASR datasets includ-

ing AISHELL-2 [21], AISHELL-1 [22], and HKUST [23].

AISHELL-2, a Mandarin ASR dataset, contains about 1000

hours of speech-to-text data. AISHELL-1, a subset of

AISHELL-2, contains about 178 hours of speech. HKUST

is a spontaneous speech corpus (201 hours), whose record-

ing environment and language style are quite different from

AISHELL-2. During the two-stage pre-training, speech and

transcripts of AISHELL-2 are used to conduct the acoustic and

linguistic pre-training respectively. Due to the inclusion rela-

tionship between AISHELL-1 and AISHELL-2, we remove

these sentences appearing in the test set of AISHELL-1 from

AISHELL-2. AISHELL-1 and HKUST are used to fine-tune

the model in the post-training stage. The difference is that the

distribution of AISHELL-1 is consistent with AISHELL-2, but
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HKUST is not. HKUST is used to simulate the scenario that

the distribution of post-training data and pre-training data is

inconsistent.

The synthesized data used in the linguistic pre-training is

generated from 99392 transcripts (remove 7176 transcripts in

the test set of AISHELL-1) in AISHELL-2, and the duration

of synthesized audio is up to 800 hours. The synthesis system

is a Tacotron2 trained with an open high-quality Mandarin

Chinese dataset which consists of about 12 hours of speech

data [24]. The structure and training details of the speech

synthesis system can be found in [17].

B. Modeling and training

All the acoustic features used in this paper are 80-

dimensional log-Mel filter-bank features, computed with a 25

ms window and shifted every 10 ms. The raw features are

normalized via mean subtraction and variance normalization

per speaker. Before flowing into the model, the features are

firstly stacked with 3 frames to the left and then down-

sampled to 33.3 Hz frame rate. Because the length of the

speech feature sequence varies from tens to thousands, we

mask the stacked feature sequence with K = 2 and W = 10.

Efforts on adjusting the two hyperparameters can bring little

improvement. Thus this paper does not discuss how to set K

and W .

Transformer used in this paper contains 6 encoder-blocks

and 6 decoder-blocks, with a per-block configuration of

dmodel = 512, attention heads h = 16, and feed-forward

inner-layer dimension dff = 2048 . In the linguistic pre-

training, we use 3961 characters appearing in the AISHELL-2

and 4 extra tokens, including an unknown token (<UNK>),

a padding token (<PAD>), and sentence start and end tokens

(<S>/<\S>) as output units. In the post-training, the soft-

max layer is reinitialized randomly. We use 4230 and 3896
characters plus 4 extra tokens as output units for AISHELL-1

and HKUST respectively.

During both pre-training and post-training, we use the Adam

optimizer with β1 = 0.9, β2 = 0.98, ε = 10�9 and alter

the learning rate over the course of training according to the

formula:

lrate = k · d�0.5
model ·min(n�0.5, n · warmup�n

�1.5) (7)

where n is the step number, k is a tunable scalar and the

learning rate increases linearly for the first warmup n training

steps and decreases thereafter proportionally to the inverse

square root of the step number. The warmup n steps are

12000 and 8000 for linguistic pre-training and post-training

respectively.

In the linguistic pre-training and post-training, the label

smoothing of value εls = 0.1 is employed [25]. And the last

20 checkpoints are averaged for inference. For evaluation, we

use beam search with a beam size of 13 and length penalty

α = 0.6.

C. Pre-training models

The acoustic pre-training only uses speech of AISHELL-

2 to train the encoder of the Transformer, which is stacked

TABLE I
INSTRUCTIONS OF ALL PRE-TRAINING MODELS USED IN THIS PAPER.

M-a M-al M-l M-sup

acoustic pre-training X X × ×

linguistic pre-training × X X ×

supervised pre-training × × × X

an extra full connected (FC) layer that projects dimension

of features to 320. After the acoustic pre-training stage, we

discard the extra FC layer and only keep the parameters of the

encoder, denoted as M-a. In linguistic pre-training, we use the

transcripts of AISHELL-2 to train a whole Transformer whose

encoder is initialized with M-a. We denote this model as M-al.

To conduct the ablation study in section V-B, we apply our

linguistic pre-training to a Transformer initialized randomly

and denote this model as M-l. In addition, we pre-train a

Transformer initialized randomly with real paired AISHELL-

2, denoted as M-sup. In summary, M-a, M-al, M-l, and

M-sup represent acoustic pre-training model, linguistic pre-

training model, two-stage pre-training model and supervised

pre-training model respectively. All these models and their

corresponding pre-training methods are listed in Table I.

V. RESULTS

A. Results on AISHELL-1

In this section, we evaluate our approach on AISHELL-1,

whose distribution is consistent with AISHELL-2. We use 10

hours, 20 hours, 89 hours and 178 hours of AISHELL-1 as

paired data for post-training respectively. Table II summarizes

the CER on the test set of AISHELL-1. A0 is the baseline

model initialized from scratch. The result of 7.87% (178

hours) shows that our baseline Transformer is competitive.

Initialized with the two-stage pre-trained model (M-al), A1

obtains a relative CERR from 38.24% to 7.88% than the

baseline system (A0) as the size of subsets of AISHELL-1

increase. It indicates that the two-stage pre-training benefits the

downstream ASR task, and the greater the ratio of unpaired

data to paired data, the better the effectiveness of the pre-

training method. When this ratio reaches about one hundred

to one (the case of 10h in the A1), the relative CERR can reach

38.24%, which means our pre-training method is more helpful

to the low-resource scenarios. Besides, models initialized with

the two-stage pre-training method converge consistently faster

than randomly initialized baseline. Fig. 2 illustrates the loss

TABLE II
CER[%] PERFORMANCE OF THE TWO-STAGE PRE-TRAINING METHOD ON

AISHELL-1.

Exp Initial Models 10h 20h 89h 178h

A0 scratch 32.77 21.22 11.04 7.87

A1 M-al 20.24 15.03 8.98 7.25

A2 M-a 25.20 16.59 9.19 7.45

A3 M-l 23.31 16.70 9.43 7.56

A4 M-sup 18.08 13.12 8.16 6.70

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on March 01,2022 at 02:28:10 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2. Loss curve of post-training with or without pre-training when all 178
hours of AISHELL-1 are used.

curve of 178 hours case. The dotted line represents the baseline

and the solid line is initialized with a pre-trained model. In

another three cases, the loss curves show a similar tendency.

Experiments A4 are initialized with a supervised pre-training

model M-sup. A0 and A4 can be regarded as lower and upper

bounds of our pre-training method. Comparing A1 with A4,

we can find that the two-stage pre-training has been pretty

close to the supervised pre-training.

B. Ablation study on AISHELL-1

In this section, we use several ablation studies to demon-

strate the effectiveness of acoustic and linguistic pre-training

respectively. A2 and A3 in Table II ablate linguistic pre-

training and acoustic pre-training respectively. From the results

is Table II, several observations can be found:

1) A2 vs. A0: All the experiments in A2 are initialized

from acoustic pre-training model M-a. As the size of

the subsets of AISHELL-1 increases, A2 obtains relative

CERR from 23.10% to 5.34%. It means that acoustic pre-

training can benefit downstream ASR tasks without the

help of linguistic pre-training. And it shows a similar per-

formance tendency as that in the two-stage pre-training.

2) A3 vs. A0: All the experiments in A3 are initialized from

linguistic pre-training model M-l. A3 obtains relative

CERR from 28.87% to 3.94% with only linguistic pre-

training. It means that linguistic pre-training can also

work independently of acoustic pre-training.

3) A2 vs. A3: When the amount of available paired data for

the ASR task is very small (10 hours), the linguistic pre-

training is more useful than acoustic pre-training. With

the amount of paired data used in post-training increasing,

the acoustic pre-training starts to play a more important

role.

4) A2 and A3 vs. A1: All the experiments in A1 are initial-

ized from two-stage pre-training. A1 obtains more rela-

tive CERR than A2 and A3. It indicates that combining

acoustic and linguistic pre-training can further improve

the performance and these two pre-training stages are

complementary.

C. Results on HKUST

The distribution of AISHELL-1 and AISHELL-2 is similar.

But in some scenarios, the distribution of paired data used in

TABLE III
CER[%] PERFORMANCE OF OUR UNSUPERVISED PRE-TRAINING METHOD

ON HKUST.

Exp Initial Models 1/4 1/2 3/4 ALL

B0 scratch 43.09 33.46 30.18 26.56

B1 M-a 37.92 31.80 29.49 26.24

B2 M-al 38.05 32.07 29.28 26.32

B3 M-l 40.29 33.16 30.10 26.51

post-training is very different from the data used in the pre-

training procedure. In this section, we evaluate our approach

on one quarter, two quarters, three quarters and all of the

HKUST dataset respectively. HKUST is a dataset that is very

different from AISHELL-2 on the sampling rate, recording

environment and language style. AISHELL-2 is a read-speech

dataset, but HKUST is a spontaneous and informal speaking

dataset.

Next, we discuss whether this mismatch will weaken the

effectiveness of our method or not. In Table III, B0 is the

results of our baseline Transformer on HKUST without pre-

training. Comparing B1 with B0, we obtain relative CERR

from 12.00% to 1.20%, which indicates that the acoustic

pre-training boosts the downstream ASR task even if there

is a mismatch between unpaired pre-training data and post-

training data. In other words, the acoustic pre-training is robust

to the change in sampling rate and recording environment.

Comparing B3 with B0, we can find that linguistic pre-training

almost has no benefits to the downstream ASR task when the

language style of data used in pre-training and post-training

is very different. It is intuitive. HKUST contains a lot of

colloquial expressions, many of which do not even conform

to the grammar. However, the transcripts of AISHELL-2 are

more grammatical. The potential language models for the

two datasets are very different. So the linguistic pre-training

with AISHELL-2 can bring little improvement to HKUST.

Furtherly, B2 applies two-stage pre-training to HKUST. Com-

paring B2 with B1, we find that in three cases B1 obtains

better results. Only in the three quarters case, B2 is a little

better than B1. This means that in such a mismatch scenario,

linguistic pre-training brings almost no improvement even if

it is used with acoustic pre-training together. So, the choice

of speech used in acoustic pre-training is more free, and the

distribution of the transcripts used in linguistic pre-training is

best to be consistent with the paired data used in post-training.

VI. CONCLUSION

In this paper, we investigate the usage of unpaired speech

and transcripts to conduct a two-stage pre-training. Experi-

ments demonstrate these models, which leverage large-scale

two-stage pre-training, outperform those that only use paired

data. We obtain relative CERR from 38.24% to 7.88% on the

test set of AISHELL-1 as the paired training set increases. In

other words, the greater the ratio of unpaired data to paired

data, the better the effectiveness of our pre-training method.

Besides, we verify the effectiveness of our approach when

there is a mismatch between pre-training and post-training
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data. We obtain relative CERR from 12.00% to 1.20% on

HKUST as the paired training set increases. It means that

our pre-training method is robust to data mismatches. And

the consistency of data used in pre-training and post-training

can bring more improvements. In the future, we plan to apply

our approach to larger datasets and investigate more efficient

unsupervised pre-training methods.
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