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Sequence-Level Speaker Change Detection With
Difference-Based Continuous Integrate-and-Fire

Zhiyun Fan

Abstract—Speaker change detection is an important task in
multi-party interactions such as meetings and conversations. In
this paper, we address the speaker change detection task from the
perspective of sequence transduction. Specifically, we propose a
novel encoder-decoder framework that directly converts the input
feature sequence to the speaker identity sequence. The difference-
based continuous integrate-and-fire mechanism is designed to sup-
port this framework. It detects speaker changes by integrating the
speaker difference between the encoder outputs frame-by-frame
and transfers encoder outputs to segment-level speaker embed-
dings according to the detected speaker changes. The whole frame-
work is supervised by the speaker identity sequence, a weaker label
than the precise speaker change points. The experiments on the
AMI and DTIHARD-I corpora show that our sequence-level method
consistently outperforms a strong frame-level baseline that uses the
precise speaker change labels.

Index Terms—Difference-based continuous integrate-and-fire,
sequence transduction, speaker change detection.

1. INTRODUCTION

ULTI-PARTY interactions such as meetings and conversations
M are one of the most important scenarios for many speech and
anguage applications [1]. Speaker change detection (SCD), the task
of finding the time points that a new speaker starts to speak, is critical
for such applications and has received increasing attention in recent
years [2]-[5].
SCD is known as an important part of speaker diarization [6], [7].
It was previously modeled with distance-based methods [3], [8], [9],
which segment audio with a sliding window, and the distance of speaker
embedding is used to decide whether a speaker change happens between
the adjacent segments. Since the pitch varies saliently with speaker
changes, some pitch-based methods detect speaker changes with the
change in pitch [10]-[12]. More recently, there are some attempts at
predicting the speaker change at the end of the neural network without
relying on a distance metric [2], [4], [13], [14]. Almost all these end-
to-end systems are based on binary classification (i.e. change or not) to
predict whether a speaker change happens between frames or segments.
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Since these methods rely on the precise speaker change labels, they are
categorized into frame-level models.

Recently, the sequence-level modeling methods have made great
progress in automatic speech recognition (ASR) [15]-[18]. These
models rely on different alignment mechanisms to conduct sequence
transduction and have shown their performance advantages in compar-
ison with the frame-level hybrid models [19]-[21]. The success of the
sequence-level model in ASR inspires us that it may be suitable for the
SCD task.

In this paper, we model the SCD task from the perspective of se-
quence transduction. Specifically, we propose a novel encoder-decoder
model to convert the input feature sequence to the speaker identity
sequence. Inspired by the success of Continuous Integrate-and-fire
(CIF) in the ASR field [22], we design a difference-based continuous
integrate-and-fire (DCIF) mechanism to bridge the encoder and de-
coder. The DCIF performs two functions in the SCD task, including 1)
detecting the speaker changes and splitting the encoded sequence into
segments according to the SCD results, 2) calculating segment-level
speaker embeddings and firing them to the decoder. Then the decoder
predicts the speaker identity. Based on the above framework, our
method processes on the sequence level and removes the need for
frame-level speaker change labels in the training. Besides providing
the model framework, we also present several effective methods used to
complete our sequence-level model, including 1) a DifferNet to estimate
the speaker difference for the DCIF, 2) the length normalization to better
represent the fired speaker embeddings, and 3) a multi-label focal loss
(MLFL) to boost the training.

We evaluate our sequence-level model on a real recording meeting
corpus, AMI [23] and DIHARD-I corpus [24]. After exploring three
important model settings, our method achieves 86.76% and 89.29%
harmonic mean (Hn) of purity and coverage on AMI and DIHARD-I,
respectively, outperforming the Hn of 86.00% and 88.09% from a strong
frame-level baseline [7]. In addition, we provide the ablation study to
evaluate the importance of the applied methods. Our contributions are
summarized as follows: 1) As far as we know, we are the first to address
the SCD task as sequence transduction and propose a sequence-level
SCD framework. 2) We design a DCIF mechanism to detect speaker
changes and automatically calculate segment-level speaker embed-
dings according to the detected results. 3) We demonstrate that our
sequence-level method achieves a better SCD performance with weaker
supervision than a strong frame-level SCD baseline and release our code
at https://github.com/zhiyunfan/SEQ-SCD.

II. RELATED WORK

Most previous SCD methods [2]-[4], [8], [9], [13], [14] detect
speaker changes between frames or fixed-size windows by thresholding
the distance or binary classification. These methods rely on the precise
speaker change labels during training and are categorized into frame-
level methods. In contrast, the sequence-level SCD first proposed in this
paper addresses the SCD task as sequence transduction, which transfers
the input feature sequence to the speaker identification sequence and
predicts speaker changes by the specially designed DCIF. Benefit from
the novel sequence-level model structure, our training process gets rid of
the dependence on precise speaker change labels used in the frame-level
methods.
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Fig. 1.
normalization layer and the encoder are shown in the boxes on both sides.

Our DCIF is inspired by the CIF in a sequence-level ASR model [22].
The CIF uses a pre-computed weight that scales the frame-level acoustic
information contained in each frame to weight the frame-level rep-
resentation and generates label-level representations. Different from
the CIF, the DCIF integrates pre-computed speaker difference between
each frame and its corresponding context instead of speaker information
contained in each frame, and transfers frame-level speaker representa-
tions to segment-level speaker representations. Within the transfer, the
weights of each frame and speaker difference are negatively correlated.

III. SPEAKER CHANGE DETECTION AS A SEQUENCE
TRANSDUCTION TASK

A. Sequence Transduction

We address SCD as a sequence transduction task. The input is a
sequence of features, x = (1, 2, . . ., ©7 ), where T is the total length
of the input sequence. The output is a sequence of speaker identities
y = (y1,Y2,- .-, yu ), where U is the number of segments of the input
sequence after partitioning it on speaker change boundaries. Thus U —1
is the number of speaker change points. An encoder-decoder framework
connected by a dynamic segmentation module is used for the sequence
transduction of SCD. The encoder transforms the input sequence to
the frame-level speaker representations. The dynamic segmentation
module detects speaker changes and splits the encoder outputs into
segments according to the detected speaker change points. The speaker
embeddings of the split segments are sent to the decoder for speaker
classification. The objective is to find a function f : z — y that trans-
forms the input feature sequence into a speaker identity sequence. The
whole framework can be optimized as follow:

U
1 . .
L= i E Classification_loss(f (), Yu) (1)

u=1

B. DCIF in the Sequence Transduction of SCD

We propose a novel DCIF mechanism suitable for the SCD task to
conduct the sequence transduction in Section III-A. It forwardly accu-
mulates the speaker difference and integrates the speaker embedding
simultaneously. Once the accumulated speaker difference reaches a
threshold, the integrated speaker embedding will be fired for further
speaker classification.

The sequence-level SCD model is shown in Fig. 1. The en-
coder and the decoder are connected by the DCIF. The DifferNet
and the length normalization layer are designed to cooperate with
the DCIF. Specifically, the encoder transforms the input feature se-
quence & = (x1,Ta,...,x7) to the frame-level speaker embedding
h = (hy, ha, ..., hy). The DifferNet predicts the speaker difference
d = (dy,d,,...,d}), each of which is a scalar and corresponds to
each encoded frame. The DCIF receives the frame-level speaker em-
bedding h and the speaker difference d'. Then it forwardly accumulates
the speaker difference df and integrates the speaker embedding Ay,
which is an accumulation sum of h; weighted by 1 — d}. Once the
accumulated speaker difference value reaches a threshold /3, a speaker
change point is located. Then the current speaker difference value will
be divided into two parts, one for completing the current integration and

x= (x1,Xp, .., X7)

The architecture of sequence-level SCD model. The main body is in the middle of the diagram, and the details of the DifferNet, the DCIF, the length

Algorithm 1: DCIF in the Sequence-Level SCD.

Input: The encoded frames h = (hy1, ha, .. ., hy), the speaker
difference value d' = (d}, dj, . . ., d/,), the threshold j3;
Output: The fired speaker embeddings e = (e, €3, ..., ep);
1: Initialize u=1, the accumulated speaker difference value
d§=0, the accumulated speaker embedding state h§ = h;

2: fort=1;t<=T';t+ +do
3: // calculate currently accumulated speaker difference value,
and integrated speaker embedding state;
4. df =dy , +d);
50 h¥=h{,+ (1 —d,)x*hy
6: if di > [ then // a speaker change is detected
7: // firing currently integrated speaker embedding state
8: e, =h{; u++;
9: h{ = hy; /] reset integrated speaker embedding state;
10: /I d is divided into two part, the second part d, is used
to reset accumulated speaker difference;
11: dyy =1—d} 15 djy =dy —dyys
12: dy = d,,;
13: end if
14:  end for
15: ey = h{; //save the speaker embedding for the last speaker;
16: returne = (ey,ea,...,ep);

the other for the next integration, and the currently integrated speaker
embedding will be fired for further speaker classification. Until the last
frame, we save the currently integrated speaker embedding for the last
speaker. More details are shown in Algorithm 1.

In the inference stage, we save a mark sequence ¢ = [¢; € {0, 1}t =
1,...,T"] along with the calculation of the DCIF. The ¢, = 1 indicates
that the accumulated difference reaches the threshold at the ¢-th time
step. The mark sequence is used for the calculation of SCD metrics.

IV. MODEL DETAILS

To boost the performance of our sequence-level SCD, we propose
the following three methods:

DifferNet: As shown in Fig. 1, the DifferNet receives the frame-level
speaker embedding h, and predicts speaker difference value d, for each
encoded frame. The speaker difference d; is determined by h, and its
corresponding history chunk.

| et
oh-1 Y @
09 = Wy x ReLU(W1 * [01; hy] 4+ b1) + ba 3)
d; = min(max(0,0),1) 4)

where [ is the length of the history chunk. o, and h, are concatenated and
fed into the two FC layers. h, is used to reduce the interference of silence
and noise in the measure of speaker difference d}. W1, Wa, by, by are
trainable parameters. Equation 4 is the formulation of cReLU [25] with
an upper bound 1. After finishing the calculation of speaker difference
value d, for all encoded frames, the scaling operation is applied during
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training.

d, =rxd, )

k=U-1)/ d ©6)

where U is the length of the speaker identity sequence. The scaling
operation ensures that the sum of d’ is equal to the number of speaker
changes U—1, which could make the number of fired speaker em-
beddings equal to the length of the speaker identity sequence. In the
inference stage, the scaling operation is not used, which means that d,
is identical to d;.

Length Normalization: The speaker embedding e,, fired by the DCIF
is a weighted sum of a varying number of frames (e, is detailed
in Algorithm 1). We use an L2-normalization layer followed by a
scalar [26] to normalize the speaker embedding into a fixed hyper-
space. The normalized embedding ¢/, is eugal to 7 % e,,/||e,||2. 7 is a
hyper-parameter used to scale the unit-length speaker embedding into
a fixed radius.

Loss Function: The loss function is the interpolation of a multi-label
focal loss (MLFL) and a quantity loss [22].

L=\~ ZMLFL pu,yu)+)»2|Ufled/ 7
MLFL puv yu - C Z 1 - pu c yu,clog(pu,c)
7(1 - G)PZ,C(l - yu,C)log(l - pu-,C)) (8)

where y,, = [Yu,c € {0,1}|c=1,...,C], and y,, . = 1 indicates that
the speaker cis presenting at segment u. The p,, predicted by the decoder
is the element-wise sigmoid activation for the C' speakers. MLFL is a
combination of binary cross-entropy (BCE) [27] loss and focal loss [28].
Since y,, may contain multiple speakers, we choose the BCE loss rather
than the softmax. The focal loss makes the model focus on the positive
samples and down-weight the numerous negative samples. The o and
-y are two hyper-parameters.

The second item is a quantity loss which promotes the predicted
firing times of the DCIF closer to the target number of speaker change
points U—1. The A; and A5 are two tunable hyper-parameters.

V. EXPERIMENTS AND RESULTS

A. Experimental Setup

Experiments are performed on AMI [23] and DIHARD-I cor-
pus [24]. The AMLI is areal-recorded 100-hour English meeting corpus.
We use Mix-Headset recordings for our experiments, and the division
of the AMI corpus is consistent with the baseline system [29]. For
DIHARD-I corpus, we split the development set into two parts: 131 files
used as training set and the remaining 33 files used as anew development
set. The new development set is simply referred to development set in
the following. We share the split at https://github.com/zhiyunfan/SEQ-
SCD/tree/master/data/dihard1.

For the model structure, the encoder stacks four Time Delay Neural
Network (TDNN) layers and two Bi-LSTM layers. The details are
shown in the lower right corner of Fig. 1. The two Bi-LSTM layers both
have 256 hidden units. The four TDNN layers have 512 channels with
the context of [—2,—1,0,1,2], which sums up to five frames. The strides
of the TDNN layers change with the number of temporal downsam-
pling. (1,1,1,1), (1,1,1,2), (1,1,2,2), (1,2,2,2) and (2,2,2,2) is for 1/1,
1/2,1/4,1/8,1/16 downsampling, respectively. In the DifferNet, the
length of the history chunk is explored in Section V-B. The two FC
layers are 512- and 1-dimensional, respectively. The hyper-parameter
n follows the best value 12 in [26]. For the DCIF, we set the § to
1.0. The decoder consists of two FC layers. The hidden layer has 256
units with ReLU activation. The output layer has 136 (the number of
speakers in the training set) units with sigmoid activation. The loss
hyper-parameters A; and A5 is set to 50.0 and 1.0. The « and +y in the
MLFL are set to 0.25 and 2, the best value given by Lin er al. [28].
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TABLE I
EVALUATION OF THE SEQUENCE-LEVEL SCD ON THE DEVELOPMENT SET OF
AMI WITH VARIOUS MODEL SETTINGS

‘ Purity Coverage Hn

Is - - -
2s 77.39 90.79 83.55
Size of window 4s 81.39 87.41 84.29
6s 78.18 87.03 82.37
8s 7531 88.91 81.55
171 81.39 87.41 84.29
12 80.77 88.04 84.25
Down-sampling 1/4 82.65 87.17 84.85
178 82.69 87.91 85.22
1716 81.95 87.26 84.52
80 ms 82.87 87.21 84.99
160 ms 82.69 87.91 85.22
Length of history 240ms 80.80 89.70 85.02
320 ms 81.58 88.69 84.99
400 ms 80.43 90.03 84.96

For the online processing, the input batch is randomly sampled from
the raw session audio with a window. Then we apply additive noise
from MUSAN dataset [30] on-the-fly. The SNR values are sampled
from 5 to 20 dBs. Specially, reverberation noise is used in Section V-
C. The room size is ranging from 2 m-1 m-2 m to 10 m-10 m-5 m
(Iength-width-height). The wall absorption coefficient is sampled from
0.2 to 0.9. We extract 59-dimensional MFCC features (19 coefficients
and energy with first- and second-order derivatives) with 25 ms frame
length and 10 ms frame shift. The batch size is 128, and the length of
the window is explored in Section V-B. We use Adam [31] optimizer,
warming up the learning rate for the first 5% of updates to a peak of
1074, and holding on for the next 50%, and then linearly decaying for
the remainder.

During inference, the metrics of all models follow the tool of
Pyannote [7]. Firstly, we split each long test audio into fixed-length
segments as same as training. And there is an 80% overlap between
two adjacent segments. For each frame, the final speaker change score
is the average result of all segments containing this frame. Then the
frames corresponding to prediction scores which are local maxima and
greater than a tunable threshold 6 are marked as speaker change points.
All our experiments are evaluated on the purity, coverage [7] and their
harmonic mean (Hn). The tunable threshold is tuned on the development
set to maximize the Hn.

B. Exploration on Model Settings

Firstly, we explore three model settings in our sequence-level SCD
model, including the size of the window used to sample batch, the
temporal down-sampling in the encoder and the length of the history
chunk used to calculate the speaker difference value. The size of the
window affects the number of speaker change points in the batch.
The temporal down-sampling decides the length of the encoded frame
sequence fed into the DCIF. The length of the history chunk directly
affects the calculation of speaker difference value.

Table I shows the results of our sequence-level model with various
settings on the development set of AMI. In the upper part, we investigate
the size of the window used to sample the batch. We fix a 1/1 temporal
down-sampling of the encoder and 160 ms history chunk. As can be
seen, the 4 s window achieves the best Hn value. Compared with the
2 s window, the 4 s window provides more speaker changes during
training. But the performance degrades when the size of the window
keeps increasing. Then we try to reduce the length through the temporal
down-sampling of the encoder with a 4 s window and 160 ms history
chunk. The results of various temporal down-sampling are shown in the
middle of Table I. As the temporal down-sampling increases, our model
obtains further performance gains. The 1/8 temporal down-sampling
gets the best results. The performance degradation of the 1/16 may be
due to multiple speaker change points covered by one encoded frame
(There are a large number of rapid speaker change points in the AMI
corpus). Finally, we fix a4 s window and 1/8 temporal down-sampling
to compare the various length of the history chunk. The results are
shown in the bottom part of Table I. We find that the Hn value slightly
fluctuates with the changing of the length of the history chunk, and
the 160 ms history chunk achieves the best performance. In summary,
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TABLE II
EVALUATION OF THE BASELINE MODEL AND OUR BEST MODEL ON THE TEST
SET OF AMI AND DIHARD-I CORPORA

AMI DIHARD-I
Purity Coverage Hn  Purity Coverage Hn
Pyannote [29] 83.00 89.30  86.00 84.99 9143  88.09
Ours 83.92 89.81 86.76 86.24 92.56  89.29
TABLE III

EVALUATION OF THE ABLATION STUDY ON THE DEVELOPMENT AND TEST SET
OF AMI. RESULTS ON THE DEVELOPMENT SET USE A SMALL FONT

Purity Coverage Hn
Full model 83.92 8265 89.81 8856 86.76 3550
w/o Length Norm 81.66 79.91 91.24 9024 86.18 5476
w/o Scaling 83.87 8266 88.33 8727 86.05 s4.90
w/o Focal Loss 82.41 8197 87.97 8629 85.10 s4.08

for our sequence-level SCD model, 4 s window to sample batch, 1/8
temporal down-sampling, and 160 ms history chunk are relatively better
model settings, which will be used for the subsequent experiments.

C. Comparison With Baseline

In this section, we compare our model with the baseline model on
the AMI and DIHARD-I corpora. The baseline results are achieved in
an open-source toolkit, Pyannote [29]. It directly predicts frame-level
SCD results and applies the same Bi-LSTM layer as our model to
conduct binary sequence labeling. Considering that the baseline model
was trained for 1000 epochs, we increase the training epoch of our
model from 160 to 500. The results in Table II show that our sequence-
level model consistently outperforms the baseline model on the two
corpora. In addition, we compare our method with the baseline system
on AMI corpus adding reverberation noise. The baseline and our method
achieve 83.36%-88.86%-86.02% and 84.25%-89.83%-87.01% (Purity-
Coverage-Hn), respectively. It reflects the robustness of the proposed
sequence-level SCD method.

D. Ablation Study

In this section, we use the ablation study to evaluate the importance of
different methods applied to the sequence-level SCD model. As shown
in Table I11, the first row is the results achieved by the full model. In the
following three experiments, we ablate the length normalization, the
scaling operation and the focal loss, respectively. The results indicate
that all three methods provide improvements. Among them, ablating the
focal loss causes the largest performance degradation, which indicates
that the focal loss alleviates the imbalance of positive and negative
samples as we expected.

VI. CONCLUSION

In this paper, we address the speaker change detection task from
the perspective of sequence transduction and propose a sequence-
level SCD model using difference-based continuous integrate-and-fire
(DCIF). Evaluated on the AMI and DIHARD-I corpora, our proposed
sequence-level model achieves 86.76% and 89.29% harmonic mean
(Hn) of purity and coverage without using any precise frame-level
speaker change label, and outperforms the 86.00% and 88.09% Hn from
a strong frame-level baseline [7]. It demonstrates the effectiveness of
the sequence-level model in the SCD task.
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