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Abstract—Mining sufficient discriminative information is vital
for effective feature representation in vehicle re-identification.
Traditional methods mainly focus on the most salient features
and neglect whether the explored discriminative information is
sufficient. This paper tackles the above limitation by proposing
a novel Salience-Navigated Vehicle Re-identification Network
(SVRN) which explores diverse salient features at multi-scale.
For mining sufficient salient features, we design SVRN from two
aspects: 1) network architecture: we propose a novel salience-
navigated vehicle re-identification network, which mines diverse
features under a cascaded suppress-and-explore mode. 2) feature
space: cross-space constraint enables the diversity from feature
space, which restrains the cross-space features by vehicle and
image identifications (IDs). Extensive experiments demonstrate
our method’s effectiveness, and the overall results surpass all
previous state-of-the-arts in three widely-used Vehicle RelD
benchmarks (VeRi-776, VehicleID, and VERI-WILD), i.e., we
achieve an 84.5% mAP on VeRi-776 benchmark that outperforms
the second-best method by a large margin (3.5% mAP).

Index Terms—Vehicle Re-identification; Sufficient Salient Fea-
ture; Suppress-and-explore Mode; Grid-based Salient Naviga-
tion; Cross-space Constraints.

I. INTRODUCTION

EHICLE Re-identification (RelD) aims to retrieve a
V specific vehicle-of-interest in images captured by disjoint
cameras, which is broadly applied in cross-camera tracking,
surveillance systems and intelligent transportation [1]-[7].
The task is challenging for two reasons: 1) the inter-class
difference: two images that share the same vehicle ID may
have different appearances due to variations in illumination
and viewpoints; 2) the intra-class similarity: two images from
different vehicles may have similar appearances since they
share almost the same color and type.

The inter-class difference and the intra-class similarity pose
evident challenges for existing Vehicle RelD methods which
can be alleviated by a robust fine-grained feature represen-
tation. However, the previous Vehicle RelD methods [1], [2],
[4] tend to generate a global feature representation, which only
focuses on the most salient features and neglects the diversity
of features. Recently, we notice some methods [8]-[14] that
focus on the exploration of diverse and fine-grained features,
and summarize them as (Fig. 1): the methods based on prior
knowledge (predefined methods), e.g., the part-based informa-
tion and the attribute-based information; the methods based on
adaptive online feature learning (self-learning methods), e.g.,
the attention-based information.

The attributes (colors or types of vehicles) and the local
specifications (windows or logos) all need to be predefined by
human annotations, and we term the relevant attribute-based
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Fig. 1. A comparison between the predefined methods and self-learning
methods for Vehicle RelD: given vehicle A and B to both predefined method
and self-learning method, and the self-learning method mines more flexible
and diverse salient regions than the predefined methods.

methods [8], [9], [15]-[17] and part-based methods [10], [11],
[18]-[22] as predefined methods. Although these methods
have achieved remarkable performance on public benchmarks
with the assistance of predefined information, there still exists
some problems: 1) the predefined methods tend to focus on
fixed regions and neglect the potential salient information
outside the predefined range that may be important for dis-
tinguishing the difficult samples. 2) the predefined methods
rely heavily on detection or segmentation networks [20], [23],
[24] for obtaining the predefined information, which is time-
consuming and computational.

As mentioned before, the fixed focus regions in predefined
methods restrict the performance of Vehicle RelD, and the ex-
tra modules, e.g., detection or segmentation networks, are time
costing. So researchers propose some methods that explore the
discriminative fine-grained features adaptively [12]-[14], [25],
[26] and term them as self-learning methods. For example,
the attention-based methods [12]-[14], [25], [26] use the
attention mechanism to mine the discriminative information
adaptively; the residual information [13] that comes from the
coarse reconstruct images and the raw images can also be em-
ployed as a kind of attention. We conclude the advantages of
self-learning methods as 1) more flexibly fine-grained features
can be explored 2) no human annotation is needed. However,
the aforementioned attention-based methods are supervised by
classification or metric learning tasks indirectly, and thus the
feature representation tends to overfit the most salient regions
with the convergence of the network.

Based on the above observations, we find that both previous
predefined and self-learning methods focus on how to mine
for differentiated clues, but they neglect that whether the
mined discriminative information is sufficient for Vehicle
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RelID. Vehicle image information usually contains redundant
parts, and only part of the information can make RelD
model convergence better. However, redundant information is
significant for the ReID model since it can help to distinguish
some difficult samples.

For mining sufficient discriminative and fine-grained in-
formation adaptively in Vehicle Re-identification, we pro-
pose a salience-navigated vehicle re-identification network
(SVRN). SVRN employs a cascaded suppress-and-explore
mode at multi-stages, which explores the most salient features
and then suppresses them for exploring the second salient
features at the next stage as shown in Fig. 2. In addition,
SVRN uses a grid-based salience ranking layer that directly
guides the selection of the most salient regions under the
supervision of vehicle identification, making it more suitable
for the RelD task than previous methods. Finally, considering
that the features from different stages tend to distribute on
various subspaces with natural gaps, we propose a cross-space
constraint to keep the diversity of them from the feature space.
Cross-space constraint contains several sub-components: a
vehicle-based constraint that aims to push cross-space features
into a unified distribution, an image-based constraint that aims
to restrict the features from the same image closer, and a
diverse constraint that aims to enhance the diversity of the
unified features.

To summarize, our main contributions are in three folds:

e We propose a novel salience-navigated vehicle re-
identification network (SVRN), which employs a grid-
based critic module for navigating sufficient diverse
salient features adaptively under the supervision of the
RelD task straightforwardly.

o We propose a novel cross-space constraint that keeps
the diversity of features from feature space, and it is
consists of a vehicle-based constraint (VCC), an image-
based constraint (ICC), and a diverse constraint (DCC).

o Experiments on three Vehicle benchmarks achieve supe-
rior performance over previous SOTA methods, which
verify the effectiveness of SVRN and the necessity of
sufficient diverse salient information for Vehicle RelD.

II. RELATED WORK

We introduce the predefined and self-learning methods that
focus on alleviating the inter-class difference and the intra-
class similarity challenges. Predefined methods aim to solve
this problem with the assistance of local specifications or
attributes information [1], [2], [4], [6], [27]; while self-learning
methods are usually attention-based which can mine diverse
salient information adaptively.

Predefined Methods Recently, people employ some prede-
fined information to improve the performance of Vehicle RelD,
which can be classified as part-based information [8], [9], [17],
attribute-based information [11], [18], [20], and many other
information such as viewpoint information [24], [28], [29] and
multimedia information [30].

In part-based methods, there exist two kinds of local specifi-
cation: the unsupervised coarse specification [8], [9], [15]-[17]
and supervised local specification [24], [31]. In unsupervised

coarse specification methods, researchers divide the feature
map into stripes to capture fine-grained information, which
has been proved effective in PCB [15]: Wang et al. [32] use
a two-branch architecture to decompose the vehicle feature
from stripes at different scales; Qian et al. [25] design a
stripe-based branch to decompose the vehicle features and
integrate them with the global one for performance boosting.
In supervised local specification methods, people employ the
detection network or segmentation network for obtaining the
specified local parts and use them to enhance the Vehicle ReID
models, e.g., Wang et al. [16] propose to use a detection branch
for obtaining the predefined local parts and then integrate it
with the global ReID modules. Another group of part-based
methods employs the key points to emphasize the effectiveness
of localized features [12], [33], [34].

Considering that attributes such as types, appearance, and
colors are vital for Vehicle RelD, researchers propose the
attribute-based Vehicle RelD methods [19], [21], [22], [31].
Li et al. [35] propose to train the attribute classification and
RelD tasks jointly for improving the RelD performance. Zeng
et al. [36] propose a novel deep network architecture, which
works under the guidance of meaningful attributes includes
camera views, vehicle types, and colors. Wang et al. [37]
propose a novel Attribute-Guided Network (AGNet), which
could learn global representation with the abundant attribute
features in an end-to-end manner.

Recently, many other approaches are proposed such as
viewpoint-based methods [24], [28], [29] or multimedia-based
methods [30] are proposed. Meng et al . [24] propose PVEN
for capturing the stable discriminative information of vehicles
under different views, and then these features are integrated for
better feature alignment. Chen et al. [10] propose a dedicated
Semantics-guided Part Attention Network (SPAN), which can
robustly predict part attention masks for different views of ve-
hicles given only image-level semantic labels during training.
People further find that knowledge transfer can also improve
the performance of RelD models [38], high discrimination
can be ensured by distilling identity-relevant features from the
removed information.

Self-learning Methods As mentioned above, the predefined
methods achieve encouraging improvement when compared
with traditional ReID methods [39], but they are suffered
from the fixed information from the predefined regions and
can hardly mine diverse feature representations outside these
regions dynamically. So researchers propose the self-learning
methods for ReID [12]-[14], [25], [26] which aims to mine
diverse salient and fine-grained features adaptively. The atten-
tion mechanism is employed in the self-learning Vehicle RelD
methods to decide the salient degree of different regions. For
example, Pirazh et al. [12] present a novel dual-path adaptive
attention model for vehicle re-identification, which learns to
capture localized discriminative features by focusing attention
on the most informative key-points; Apart from using heat
maps as the attention, Pirazh et al. [13] also propose to use
the residual images from the coarse reconstruction images and
the raw images as another kind of attention in Vehicle RelD.

Finally, we conclude that both previous predefined methods
and the self-learning methods are focus on how to mine salient
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Fig. 2. An overview of SVRN consists of: a) a grid-based salience boosting module which mines diverse salient regions under a suppress-and-explore mode;
b) a cross-space constraint that consists of vehicle-based constraint, image-based constraint, and diverse constraint. The salient feature map in the final stage

does not require a grid-based evaluation process again.

and fine-grained features, but they tend to neglect whether the
explored information is sufficient for the Vehicle RelD task.
The SCSN [26] tries to mine more potential features under a
suppress-and-explore mode which is similar to our work, so we
compare it with our SVRN here: 1) SCSN proposes to explore
salient features with indirect supervision, and SVRN employs
a grid-based critic module for salient region navigation directly
under the supervision of Vehicle ID. The direct supervision in
our SVRN makes it more suitable for the RelD task. 2) the
CNN-based networks can recovery the masked region from
its neighbor parts thanks to the reception field. Instead of just
the suppress-and-explore mode in SCSN, we further propose
a cross-space constraint to ensure the diversity of features in
feature space.

III. METHODS

We propose a salience-navigated vehicle re-identification
network (SVRN) to explore enough saliency features adap-
tively. As shown in Fig. 2, SVRN consists of two main sub-
components: a grid-based salience boosting module and a
cross-space constraint. The grid-based salience boosting mod-
ule is illustrated in section III-A, which mines diverse salient
features (such as drivers, tabletops, etc.) in a suppress-and-
explore cascaded manner at multi-stages with the assistance
of a grid-based salience ranking layer. We introduce the cross-
space constraint in section III-B, which aims to keep the
diversity of salient features from the feature space. Finally,
we introduce the total loss function and inference process in
section III-C.

A. Grid-based Salience Boosting Module

The grid-based salience boosting module is consists of
a pyramid suppression network and a grid-based salience
ranking layer. The pyramid suppression network mines non-
overlapping salient features from multi-stages, which provides

sufficient discriminative information for Vehicle RelD. The
salience ranking layer predicts the salience of different re-
gions under the supervision of ReID tasks, which can give
a more accurate salience score than previous attention-based
methods [12], [13], [26].

Pyramid Suppression Network As aforementioned, the
pyramid suppression network employs a multi-stage archi-
tecture for exploring diverse salient feature representations,
and we take a three-stage pyramid suppression network as an
example in this section (as shown in Fig. 2). For convenience,
in stage ¢, we refer to th/th—H as the input/output feature
map of layer n, X; as the input of salience ranking layer, and
S as the predicted salience ranking score.

Given a training set P = [p1, po, ..., pn], where p; is a ve-
hicle image, N is the number of images. Pyramid suppression
network aims to learn a set of feature embedding functions
o(0,1) = {¢e(04; )|t = 1,2,3}, where ¢(6;;1;) denotes
the embedding function of stage ¢, I; represents the input
sample, and the parameters of branch ¢ are collectively denoted
as 6;. In this way, we obtain three feature representations
[F¢, Y, Fi] from each image p;, and the suppress-and-explore
process is employed to keep the diversity of features.

Following [23], [25], we adopt Resnet-50 as the backbone,
and the pyramid suppression network is organized in the
manner of a pyramid by duplicating blocks in ResNet-50. For
a given input p;, the output feature of backbone in stage ¢ is
the basic feature map X;. Then a spatial information mining
module that consists of the channel-wise pooling operation
and several convolutional layers is further employed to get
the spatial feature X;. After getting the spatial feature X;, we
feed it as the input of the salience ranking layer. Moreover,
we feed the spatial feature X; into a block for classifying the
samples into corresponding classes during the training process,
which consists of a reduction layer, a global average pooling
layer, a batch normalization layer, and a fully connected layer
(classified layer) Finally, the pyramid suppression network
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Fig. 3. The overview of grid-based salience ranking layer.

outputs a vehicle representation F; in stage ¢, and these
representations focus on different salient regions.

Fy = ¢t(9t;—7t)» (D

where Iy is p;, I; is the output feature of stagel, and I5 is
the output feature of stage2.

Grid-based Salience Ranking Layer Instead of previous
attention-based methods [12]-[14], [26] which generate at-
tention with indirect supervision, we propose the grid-based
salience ranking layer to generate the salient ranking score
(attention) under the supervision of the Vehicle ID. A gen-
eration process of the salience ranking score .S; is shown in
Fig. 2 and Fig. 3, which navigates the most salient regions.
We decompose the training process of the grid-based salience
ranking layer into three parts: the prediction of salience
ranking score, the generation of a grid-based salient map, and
the computation of reward loss.

Firstly, given the feature X; € R2048X16x16 from the
pyramid suppression network, the salience ranking layer uses
an average pooling layer to downsample the feature X into
R2V48x8x8 Then, a 1 x 1 convolution block is employed
to reduce the channel numbers and explore the salience
score of corresponding regions. Consequently, we term the
output of the salience ranking layer as salience ranking score
S; € R8>8, and the above process can be seen in the blue
part of Fig. 3. Each score S:(4,j),4,j € [1, 8] represents the
salience degree of relative regions, which can be reflected to
a R32%32 region in the original image.

Secondly, for integrating the training process of the salience
ranking layer and Vehicle RelD task better, we propose a grid-
based critic module as shown in the red part of Fig. 3. The
grid-based critic module generates the grid-based salient score
map Rscore, Which can be used as the label for the training of
the salience ranking layer. After obtaining the same input X,
as the salience ranking layer, we divide it into 8 x 8 feature
grids (R32x2048%2x2 for each one). For the feature map X,
we mask one grid at position (i, j) each time, and the setting
of masked feature maps is termed as grids pool as shown
in Fig. 3. Each masked feature map Xm(4,j) in grids pool
will be fed into the classification layer of stage ¢, and we can
get a cross-entropy loss (RelD supervision) C;(4,j) for each

masked feature map:

N S
—qr (i, j)log(pr(i, 7)) {j:((;j)) ;f ;jflf,

2
where (4, 7) are the coordinates of the masked grid, y is the
ground-truth Vehicle ID of the masked feature map, py, is the
predicted score of class k, and NN represents the number of
classes. We use the value of cross-entropy loss C(i,75) to
represent the salience degree of the masked region. A large
Cs(i,7) indicates that the masked region at (z,7) contains
information that is important for Vehicle RelD, and if we mask
it will lead to evident performance drops. The computation
of Cs(i,7) will be repeated 8 x 8 times parallelly, which
doesn’t need gradient back-propagation. The final ranking
score Rscore can be represent as:

Cy —minCy

maxC, —minCy

Cs(i,j) =
k=1

Rscore = ( (3)

Finally, we use the ranking score R..- to supervise the
training process of salience ranking score S;, and formulate
the salience ranking loss as:

Lreward = ‘Rscore — St|2. (4)

The above formula indicates that we train the salience ranking
layer under the supervision of the cross-entropy loss, which
makes the salience ranking score more suitable for the Vehicle
RelD task.

The Procedure of Suppress-and-explore. The combination
of salience ranking layer and pyramid suppression network
motivates the suppress-and-explore mode in SVRN, which
enables SVRN to learn sufficient diverse salient information
at multi-scales. After getting the salience ranking score .S;
and the hyper-parameter o, which denotes the suppression
percentage in stage t, we generate a salience ranking mask M;
to navigate the most salient regions as shown in Algorithm 1:

Algorithm 1 Salience ranking algorithm
Inputl: Salience ranking score Si;
Input2: Suppression percentage ;.
Output: Salience ranking mask M;
Main(args):

1: Reshape S; into one-dimension;

2: Sort the salience score map S; in a descending order, and
get a value list V; and a rank list Ry;

3: Get n = oy X len(Sy);

Get Suppression threshold o, by finding the top n-th value

in Vi;

£

5. if S¢(i,j) > al then
6: Mt(l7j) =0

7: else

8 My(i,j) =1

9: end if

10: return M, (i, j)

After getting the salience ranking mask M, we obtain the
input X, of the next stage ¢ + 1 based on M;:

Xig1 =0 X Up(Mt)> )
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Fig. 4. An illustration of cross-space constraint: a) the distribution of original cross-space features; b) the feature distribution after the vehicle-based constraint;
c) the feature distribution after the image-based constraint; d) the feature distribution after the diverse constraint; where A, B, C represent different vehicle
IDs; A1, A2 represent different samples of vehicle ID A; the color red, yellow, and blue represent cross-space features from multi-stages.

where O; is the output feature of stage ¢t and Up() is the
up-sampling operation. We need to map M; with X3 by up-
sampling since they have different sizes. The pyramid-like
suppress-and-explore mode masks the most salient regions at
the current stage and explores non-overlapping salient regions
at the next stage on a smaller scale. Once a region has been
chosen, it won’t be chosen again during the following stages.
Hence, SVRN can mine sufficient diverse salient information
from bottom to up.

B. Cross-space Constraint

We argue that the masked region in the aforementioned
grid-based salience boosting module can be easily recovered
from its neighbor parts, and thus it is harmful to the diversity
of features. To make up for the shortcoming of the grid-
based salience boosting module, we further propose the cross-
space constraint to (CSC) to enhance the diversity of features
from feature space. The cross-space constraint is consists of
a vehicle-based constraint, an image-based constraint, and a
diverse constraint.

Vehicle-based Cross-space Constraint Given an vehi-
cle image set P = pi,p2,....,pn, SVRN outputs three
groups of cross-space features Fy, Fi, and F%, where i €
[1, N] is the index of different images. It’s sub-optimal to
fuse these cross-space features straightforwardly by coarse
adding/concatenating since they are from different stages of
SVRN and tend to have gaps in distributions. So vehicle-based
constraint solves this by projecting the cross-space features
into a unified distribution, and a unified layer g(f,, F}) is
employed to project these cross-space features:

G =g(0,, F}) (6)

where 0, is parameters of the unified layer which is composed
of several convolution layers, and Gi denotes the unified
feature of image ¢ in stage .

We propose a novel vehicle-based cross-space constraint
(VCC) for training the unified layer, and VCC aims to push
features from the same vehicle closer and features from differ-
ent vehicles farther apart. The above process is an expansion
of triplet loss on cross-space features, and the formula is:

Lyce = maX(D(V+) - D(V_) + ﬁV; 0)7 @)

where D is a distance function and Sy is a margin enforced
between positive and negative pairs. The positive vehicle pair
VT and negative vehicle pair V' ~ in vehicle-based cross-space
features G can be represent as:

D(V*1) = max (D(G,GL))) s.t. ID(GY) = ID(GL),

n,m,t,}
D(V™) = min (D(G}, Gh)) st ID(GL) # ID(Ghy),
®)
where ¢, j denote the image identifications (IDs), n, m denote
the stages of SVRN, ID(G!) denotes the vehicle identifi-
cations (vehicle IDs) of feature G%, G denotes the anchor
feature, and G°, denotes any feature except the anchor one.
The V+ aims to find the farthest feature to the anchor one
among features which have the same vehicle ID of the anchor,
while V'~ aims to find the closest feature to the anchor
one among those features which have different vehicle ID of
the anchor. The vehicle-based cross-space constraint asks the
farthest distance between the anchor feature and the feature
from the same vehicle ID should smaller than the closest
distance between the anchor feature and the feature from the
different vehicle ID, and the process is shown in Fig. 4a and
Fig. 4b.

Image-based Cross-space Constraint We propose an
image-based cross-space constraint (ICC) that enables features
of the same image to have similar distributions. We formulate
the image-based cross-space constraint as :

Lice = max(D(I") — D(I™) + $31,0), 9)

where 3; is used to ensure the margin between I™ and I~
We further formulate the representation of the positive image
pair I and negative image pair I~ of a given input p; as:

D(I") =max(D(GI,GE)) st. n#m i=]

. . 10
aira, 10

D(I7)= min (D(GJ,G")) st
n,m,t,J

where keeps the same settings as the vehicle-based cross-space
constraint. The I aims to find the feature farthest to the
anchor among those features which have the same image ID of
the anchor feature, and I~ aims to find the feature closest to
the anchor among all features which have different image ID of
the anchor feature. As can be seen in Fig. 4d, the cross-space
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features from the same image show a better cluster distribution
after employing the image-based cross-space constraint.

Diverse Constraint The features that come from different
vehicles and images can be distinguished after the operations
of the vehicle-based and image-based cross-space constraints,
but some of the cross-space features are still hard to distinguish
(as shown in Fig. 4d). So we further propose the diverse
constraint, which aims that the cross-space features from
different stages of SVRN can have non-overlapping interest
regions. For a given image p;, G* = [G}, G, GE] € R3*E
represents the output cross-space features from SVRN, where
L represents the dimension of each feature. We compute the
gram of G, and ask it to be close to an identity matrix under
Frobenius norm:

Lgee = ||G'GT — 1| (1)

The joint optimization of cross-space constraint loss is:

N
1
Lcross = chc + Licc + N Z; dec~ (12)

C. The Total Loss Function and Inference Process

The total loss function We train the SVRN in an end-to-end
manner that takes the grid-based salience boosting module and
the cross-space constraint into a joint consideration. Finally,
we integrates the RelID loss (Triplet loss L., and Cross-
entropy loss L;4), the cross-constraint loss (L.;oss), and the
reward 10ss (Lyewarq) Of the grid-based salience boosting
module into a total loss function of SVRN:

3
=0 y#i
Lid = ZZ _Qilog(pi) {Z =1 gil
t=1 ‘

3 (13)
Lipi = Y _max(D(Z") — D(Z7) + Br,0)
t=1

Ltotal = Ltri + Lid + Lcross + Lrewarda

where t denotes stages of SVRN, y denotes the label for
vehicles, ZT /Z~ denotes the positive/negative feature pair at
each stage, Sr denotes the threshold value for distinguishing
the positive/negative feature pair Zt/Z~.

The inference process For a given figure, we get three
cross-space features (the red, yellow, and blue block after
the global average pooling (GAP) operation as shown in
Fig. 2) from different stages which focus on non-overlapping
salient regions. Then these features can be operated by a
feature soft-integration module or just adding them for getting
the final representation. We choose to add the cross-space
features straightforwardly since we aim to provide a fair
comparison with other methods and emphasize more on the
main contribution of our paper.

IV. EXPERIMENTS

We detail the implementation and evaluation of SVRN in
this section. The datasets and evaluation metrics are introduced
in section IV-A; the implementation details are introduced
in section IV-B; the comparisons with State-of-the-Arts are
introduced in section IV-C; the ablation study and evaluation

based on SVRN are introduced in section IV-D, finally, we
do further analysis on the visualization and time costing as
introduced in section IV-E1.

A. Datasets and Evaluation Metrics

Dataset We evaluate our method on three popular Vehicle
ReID benchmarks: VeRi776 [2], VehicleID [40], and VERI-
WILD [6]. VeRi776 [2] is a classic Vehicle ReID benchmark,
which contains 776 identities collected by 20 cameras in a
real-world environment. VehicleID [40] is a large-scale dataset
collected by multiple cameras during the daytime on the open
road, which contains 26,267 vehicles and 221,763 images in
total. VERI-WILD [6] is another large-scale dataset, and it
consists of 40,671 vehicles and 416,314 images.

Evaluation Metrics We follow the same official evalua-
tion protocols in [40]-[42], and employ the Mean Average
Precision (mAP) and the cumulative matching characteristics
at Rankl (CMC@1) to evaluate the performance of SVRN.
Moreover, it should be noticed that the VehicleID [40] bench-
mark pays more attention to CMC@1.

B. Implementation Details

Experimental Setting All experiments are conducted in
PyTorch with 8 NVIDIA Titan Xp GPU. We resize the
images to 256 x 256 x 3 and use the random erasing and
flipping operations for augmentation. We employ Adam as the
optimizer with the weight decay factor of le-4 and initialize
the learning rate to le-4 that decreased by a factor of 0.1 after
the 40*" and 70*" epoch.

Network The three-stage grid-based salience boosting mod-
ule is modified from ResNet-50 [S1]. The first stage in SVRN
that starts from block 1 in ResNet-50 suppresses the top 20%
salient regions of the output feature map for the second stage,
the second stage starts from block 3 in ResNet-50 with the
top 10% salient regions suppressed, and the third stage starts
from block 4 in ResNet-50. The two hyper-parameter 5y and
Br in cross-space constraint are set as 0.3 and 0.15, while the
Br for triplet loss is also set as 0.3. Each stage in SVRN has a
classifier layer for classifying the vehicles in training space by
ID loss, and this layer is further applied to calculate in Clscore
for the salience ranking layer.

C. Comparisons with State-of-the-Art Methods

We compare SVRN with a wide range of state-of-the-arts
Vehicle ReID methods, including (1) part-based approaches:
PGAN [43], PRN [23], PVEN [24], and GLAMOR [44];
(2) attribute-based approaches: AGNet-ASL [37], DJDL [35],
XG-6-sub-multi [31], and SAN [25]; (3) attention-based ap-
proaches: AAVER [12] and SEVER [13]; (4) other inter-
esting approaches: GSTE [45], VAMI [46], DCDLearn [47],
GB+GFB+SLB [49], CAL [48] and TransReID [50].

We show the comparison results in Table I, and get the
following conclusions: 1) SVRN achieves state-of-the-art per-
formance on all benchmarks, consistently outperforming the
best competitor by up to 3.5% mAP on VeRi-776, 0.4%
CMC@1 on VehicleID, and 2.1% mAP on VERI-WILD. 2)
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TABLE I
COMPARISON WITH STATE-OF-THE-ART METHODS. IT INCLUDES MAP AND CMC@ 1 ON VERI-776; CMC@ 1 ON THREE TEST SETS OF SMALL,
MEDIUM, AND LARGE ON VEHICLEID; MAP ON THREE TEST SETS OF SMALL, MEDIUM, AND LARGE ON VERI-WILD. FOR THE THREE TEST SETS ON
VEHICLEID AND VERI-WILD, THEY ARE REPRESENTED BY S, M, AND L RESPECTIVELY. FINALLY, ”/”” INDICATES MISSING PARTS OF THE

EXPERIMENTS.
Method VeRi-776 VehicleID VERI-WILD
mAP CMCe@l CMCe@l (S) CMCe@el ™M) CMC@l (L) mAP(S) mAPM) mAP (L)
Part-based PGAN [43] 79.3 96.5 71.8 / / 74.1 / /
PRN [23] 74.3 94.3 78.4 75.0 74.2 / / /
PVEN [24] 79.5 95.6 84.7 80.6 71.8 82.5 71.0 69.7
GLAMOR [44] 80.3 96.5 78.6 / / 77.2 / /
Attribute-based ~ AGNet-ASL [37] 71.59 95.61 71.15 69.23 65.74 / / /
DJDL [35] / / 78.6 74.7 72.0 / / /
XG-6-sub-multi [31] / / 76.1 73.1 71.2 / / /
SAN [25] 72.5 93.3 79.7 78.4 75.6 / / /
Attention-based ~ AAVER [12] 61.2 89.0 74.7 68.6 63.5 / / /
SEVER [13] 79.6 96.4 79.9 71.6 75.3 83.4 78.7 71.3
Others GSTE [45] 59.4 / 87.1 82.1 79.8 / / /
VAMI [46] 61.3 89.5 63.1 529 473 / / /
DCDLearn [47] 70.4 92.8 82.9 78.7 75.9 / / /
CAL [48] 74.3 95.4 82.5 / / / / /
GB+GFB+SLB [49] 81.0 96.7 86.8 / / / / /
TransRelD [50] 80.6 96.9 82.8 / / / / /
Ours Baseline 80.8 96.7 82.9 80.1 78.3 83.5 79.0 74.6
SVRN 84.5 97.2 87.5 84.6 81.8 85.5 81.5 76.3
TABLE 11 TABLE III

ABLATION STUDY OF COMPONENTS IN SVRN, WHERE GSB AND CSC
REPRESENT GRID-BASED SALIENCE BOOSTING MODULE AND
CROSS-SPACE CONSTRAINT, RESPECTIVELY.

Method \ GSB CSC \ mAP \ CMC@1
Baseline X X 80.7 95.6
Scheme a v X 83.0 96.5
Scheme b v v 84.5 97.4

Compared to the part-based and attribute-based methods [23]-
[25], [31], SVRN achieves significant improvement, e.g., up to
4.2% mAP on VeRi-776, 2.8% mAP on VehicleID, and 3.0%
mAP on VERI-WILD, which validates that the flexible salient
feature extraction ability in SVRN can lead to an obvious
performance improvement. 3) Compared to the attention-based
methods [12], [13], SVRN achieves significant improvement,
e.g. up to 4.9% mAP on VeRi-776, 7.6% mAP on VehiclelD,
and 2.1% mAP on VERI-WILD. The above experiments
validate that SVRN performs better than previous attention-
based methods, and we ascribe it to the direct supervision from
the Vehicle ID in the grid-based RelD specified supervision.

D. Ablation Study and Evaluation

Ablation of Components in SVRN SVRN is consists
of a grid-based salience boosting module and a cross-space
constraint. We do ablation studies on the performance of
these components on the VeRi-776 benchmark, and Table II
reports the ablation results. 1) With the employment of grid-
based salience boosting module, the model achieves significant
improvement than baseline, e.g., up to 2.3% mAP on VeRi-
776 benchmark. The suppress-and-explore mode cooperates
well with a salient ranking mechanism to mine sufficient
non-overlapping salient features beneficial to Vehicle RelD.
2) The proposed cross-space constraint brings a significant

EXPERIMENT RESULTS OF DIFFERENT STAGES OF SVRN ON THREE
POPULAR BENCHMARKS.

Method | VeRi776 | VehicleID | VeRi-WILD
| mAP_ CMC@I1 | CMC@1 |  mAP
Baseline 80.7 95.6 82.9 84.0
SVRN+2 stages 83.1 96.6 84.4 84.3
SVRN+3 stages 84.5 97.2 87.5 85.5
SVRN+4 stages 79.6 95.6 82.0 82.0

improvement, e.g., 1.5% mAP improvement on VeRi-776,
which validates that the cross-space constraint is more suitable
to the cross-space features than the single-space constraint.

Ablation of Stages in SVRN SVRN uses a multi-stage
design for mining sufficient diverse salient information, and
we do ablation studies on the influence of the number of stages
as shown in Table III. 1) The three-stage SVRN achieves
the best performance on all benchmarks, which outperforms
the second-best one by 1.4%, 3.1%, and 1.2% mAP on
VeRi-776, VehicleID, and VERI-WILD. 2) The two-stage
SVRN mines insufficient salient features, so there still exists
potential salient regions which can provide discriminative
information for Vehicle RelD. 3) In the four-stage SVRN, we
observe a significant performance degradation and conclude
this phenomenon into several reasons: a) the former stages
have explored a lot of information, leaving little ones for the
last stage. So it is hard to converge and results in negative
migration during back-propagation since the stages have a
shared feature extraction module. b) When we integrate the
cross-space features during inference, the fourth-stage features
with less useful information and greater randomness will lead
to a decline in performance;

Ablation of the Suppression Percentage in SVRN The
suppress-and-explore mode suppresses the most salient regions
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TABLE IV
ABLATION STUDY OF THE SUPPRESSED PERCENTAGES OF EACH STAGE IN
SVRN.
Method | Stage I ~ Stage 2 | CMC@1 mAP
Baseline 95.6 80.7
Scheme a 30% 30% 96.2 82.5
Scheme b 20% 20% 96.7 83.7
Scheme ¢ 10% 10% 96.5 83.1
Scheme d 5% 5% 96.9 82.1
Scheme e 20% 10% 97.4 84.5
TABLE V

ABLATION STUDY OF SUB-COMPONENTS IN CROSS-SPACE CONSTRAINT:
CSC REPRESENTS CROSS-SPACE CONSTRAINT WHICH CONSISTS OF
VEHICLE-BASED CONSTRAINT (VCC), IMAGE-BASED CONSTRAINT (ICC)
AND DIVERSE CONSTRAINT (DCC).

Method \ VCC 1ICC DC \ mAP CMCe@1
Baseline X X X 80.7 95.6
SVRN w/o CSC X X X 83.0 96.5
SVRN+VCC v X X 83.8 96.8
SVRN+ICC X v X 82.1 96.7
SVRN+DCC X X v 83.5 96.9
SVRN+CSC v v v 84.5 97.4

TABLE VI
ABLATION STUDY OF HYPER-PARAMETERS By, AND 31 IN CROSS-SPACE
CONSTRAINT.

Method | By Br | mAP CMC@l
SVRN+VCC | 0.15 / 83.3 96.5
SVRN+VCC | 0.30 / 83.8 96.8
SVRN+VCC | 045 / 82.7 96.1
SVRN+CSC | 0.30 0.30 83.2 96.9
SVRN+CSC | 0.30 0.15 84.5 97.4
SVRN+CSC | 0.30 0.10 83.8 97.2

in the current stage and transmits the masked feature to the
next one for exploring sufficient non-overlapping salient fea-
tures. We experiment on the percentage of suppressed regions
in each stage in Table IV and get the following conclusions: 1)
when keeping the same suppression percentage in stages, we
compare different 6; which ranges from 30%, 20%, 10%, and
5%, and we find that suppressing the top 20% salient features
achieves the best performance. A higher 6, will lead to little
useful information left for the later stages, while a smaller
f; can’t mine sufficient salient ones. 2) we also experiment
with an attenuated factor on the suppressed percentage for
broadcasting more information to the later stages. Scheme e
in Table IV denotes the attenuated suppression method that
outperforms Scheme b by 0.8% mAP, which shows that the
attenuated suppress factor can leave more information for the
last stage and achieve better performance.

Ablation of Sub-components in Cross-space Constraint
The cross-space constraint is consists of three components: the
vehicle-based constraint (VCC), the image-based constraint
(ICC) and the diverse constraint (DCC), and we do ablation
study on them as shown in Table V (VeRi-776). We find that
SVRN+VCC and SVRN+DCC outperform SVRN w/o CSC
by 0.8%, 0.5% in mAP, and it demonstrates that the single

Fig. 5. The visualization of salience-navigated vehicle re-identification
network (three stages): a) the original input image; b) the most salient regions
in stage 1; ¢) the most salient regions in stage 2; d) the feature visualization
in stage 1; e) the feature visualization in stage 2; f) the feature visualization
in stage 3.

VCC or DCC is beneficial to the performance of Vehicle
ReID. In addition, CSC integrated these sub-constraints and
produced significant improvements, such as a 1.5Nevertheless,
we notice that SVRN+ICC results in a 0.9% decline in mAP
and conclude that the cross-space features need to be unified
before conducting image-based constraints.

Ablation of Hyper-parameters in Cross-space Constraint
We further do experiments to study the influence on different
choices of hyper-parameters 3y and 3; as shown in Table VI.
Firstly, we experiment on the choice of By in VCC, e.g.,
SVRN+VCC achieves an mAP of 83.3%, 83.8%, and 82.7%
with Sy of 0.15, 0.30 and 0.45 respectively. The experiments
show that the model achieves the best result when Sy = 0.3.
We find a similar phenomenon in the choice process of S in
regular triplet loss since that VCC is an extension of triplet loss
from single-space features into cross-space features. Secondly,
SVRN+CSC reaches a mAP of 83.2%, 84.5%, and 83.8% with
Br of 0.3, 0.15 and 0.1 respectively. We conclude that 5
should be smaller than 3y since the image IDs should have a
closer distribution than vehicle IDs.

E. Further Analysis

1) Visualization of Salient Information in SVRN: To bet-
ter show how the suppress-and-explore mechanism works in
SVRN, we visualize the intermediate features from different
stages as shown in Fig. 5. Given an image (as shown in
Fig. 5a), we first explore the most salient regions in the first
stage, e.g., Fig. 5b represents the top 10Then we suppress the
marked regions in Fig. 5b and aim to explore more diverse
salient information in the next stage. We show a similar
visualization in the second stage, e.g., Fig. 5c represents the
most salient regions explored in the second stage, Fig. Se
visualize the feature map of the second stage. Finally, Fig. 5f
visualizes the feature map in the third stage. We can find
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TABLE VII
THE TRAINING TIME AND INFERENCE TIME OF BASELINE AND SVRN.

Method ‘ Training Time (ms/frame)

Baseline 40 23
SVRN 65 37

Inference Time (ms/frame)

that the stages focus on diverse salient information which is
complementary (as shown in Fig. 5d, Fig. Se, and Fig. 5f), and
these visualizations show the effectiveness of our methods.
2) Time Analysis of SVRN: As can be seen in Fig. 2, SVRN
employs some extra modules, e.g., the grid-based salience
suppression module and the cross-space constraint, which are
time-costing. We compare the training and inference time of
baseline and SVRN as shown in Table VII. The baseline
costs 40ms/step during training which has only one stage
and no extra component. Although the training process of
the grid-based salience suppression module needs to calculate
a classification loss value C(i,7) for each masked feature,
SVRN computes the C;(4,j) parallelly and needs no back-
propagation. So we find that the SVRN with the grid-based
salience suppression module and the cross-space constraint
cost 65ms/step during training, which cost more time from
the cascaded architecture but is still acceptable. A similar
phenomenon is shown in the inference time, with baseline and
SVRN taking 23 ms and 37 ms per frame, respectively.

V. CONCLUSION

In this paper, we propose a salience-navigated vehicle re-
identification network (SVRN) to explore sufficient diverse
salient features from both network structure and feature space.
Firstly, SVRN adopts a pyramid suppression network, which
can mine more discriminative features adaptively for the fol-
lowing reasons: 1) the multi-scale suppress-and-explore mode
that imitates the human’s attention mechanism from bottom-
to-up; 2) the direct supervision from the ReID loss in the grid-
based critic module. Secondly, we further proposed a cross-
space constraint to ensure the diversity of features in feature
space, which consists of vehicle-based constraint, image-
based constraint, and diverse constraint. Extensive experiments
achieve superior performance on three main benchmarks, e.g.,
VeRi-776, VehicleID, and VERI-WILD, which demonstrate
the effectiveness of SVRN.
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