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Abstract

Temporal action detection is a crucial aspect of video understanding. It aims to classify the
action as well as locate the start and end boundaries of the action in the untrimmed videos.
As deep learning is frequently utilized, the accuracy of annotation is crucial to boundary
localization. However, it is observed that some annotation instances are ambiguous and
the ambiguity varies between categories. To solve the problem above, a Gaussian model is
built to estimate the boundary uncertainty for each instance. Based on instance uncertainty,
category uncertainty is applied to describe the uncertainty of each category. By combining
instance and category uncertainty, the boundaries of the selected proposals are refined and
the ranking of candidate proposals is adjusted. Furthermore, overcorrection is avoided for
categories with a high level of uncertainty. With the uncertainty approach, state-of-the-art
performance is achieved: 57.5% on THUMOS14 (mAP@0.5) and 35.4% on ActivityNet
(mAP@Avg).

1 INTRODUCTION

With the progress of technology, an ever-increasing number of
videos are saved and made available for a variety of daily activi-
ties. As a fundamental aspect of video understanding, temporal
action detection can be applied to a variety of fields, including
video content analysis and video recommendation. This task is
not only to determine which actions are depicted in the video,
but also to find their temporal boundaries, that is, their start
and end times. Because most temporal action detection algo-
rithms rely significantly on deep learning, the quality of the
predicted proposals is dependent on the precision of the bound-
ary annotations. To limit the impact of unclear annotations, the
ambiguity of annotation boundaries are represented by instance
uncertainty in [1].

Based on instance uncertainty, we observe that the diffi-
culty of locating the boundaries of different categories varies.
The labeling of some action types is ambiguous. These ambi-
guities include ambiguity in action definitions, ambiguity in
action boundaries, and ambiguity in video content, as shown
in Figure 1. This labeling uncertainty leads to prediction bias,
which is difficult to correct.
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To describe the uncertainty of various categories, we cre-
ate a metric called category uncertainty. With these criteria, we
aim to avoid over-refinement of proposals that fall into high-
uncertainty categories. Specifically, we model the uncertainty of
each instance in the training process. To describe the uncer-
tainty of various categories, we create a metric called category
uncertainty. Throughout the testing phase, we apply the reli-
ability score module to select reliable proposals based on the
instance uncertainty score. By combining the instance uncer-
tainty and the category uncertainty, we refine the scores as
well as the boundary of the predicted proposal simultaneously
in uncertainty voting. Compared to [1], we introduce category
uncertainty to describe the uncertainty of each category. Based
on this metric, we propose the uncertainty voting module. In
this module, we refine the boundaries and adjust the ranking
of candidate proposals. In addition to the one-stage and two-
stage methods, we deploy our methodology in the anchor-free
method AFSD [2], and achieve state-of-the-art performance.
Our contribution can be summarized as:

1. We introduce category uncertainty to describe the annota-
tion accuracy of each category.
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CHEN ET AL. 3855

FIGURE 1 (a) Ambiguity of action definitions. The upper part of (a) is the complete Hammer Throw. The bottom half of (a) is a partial replay of the complete
action. However, the partial replay is still labelled as a complete Hammer Throw. (b) Ambiguity in the action’s boundaries. There is only a fraction of a second
between the begin and end of Billiards. As a result, determining the end boundary of Billiards is difficult. For labeling convenience, the white ball touched by the
club, the white ball touched by the target ball (yellow ball in (b)), and the target ball into the hole may all be labeled as the end boundary for labeling purposes. (c)
Ambiguity in video content. In this instance, the start and end boundaries of volleyball spiking are accurately labeled. However, there are other actions of other
people in this video, making it difficult for the model to learn volleyball spiking

2. According to category uncertainty, the uncertainty vot-
ing module is designed to refine proposals belonging to
categories with low uncertainty.

3. We deploy our uncertainty method on a one-stage, two-stage
and anchor-free framework to demonstrate the effective-
ness of our method. On the anchor-free method AFSD [2],
we achieve state-of-the-art performance. The performance
is 57.5% on THUOMS14 (mAP@0.5) and 35.4% on
ActivityNet (mAP@Avg).

The remainder of this work is arranged in the following
manner. Section 2 provides background on temporal action
localization and uncertainty learning in deep neural networks.
Section 3 describes the proposed temporal action detection
framework. In Section 4, the proposed method is validated
by experimental results and compared to earlier research. And
Section 5 concludes the paper and provides an overview of
future directions.

2 RELATED WORKS

2.1 Temporal action localization

Recently, great progress has been made in deep learning, which
facilitates the development of temporal action localization. The

methodology for this task can be divided into two categories:
single-stage and two-stage. The one-stage approach combines
proposal generation and classification into a single end-to-end
framework for high efficiency. Inspired by SSD [3], [4] designs
a one-dimensional temporal convolution to generate multiple
temporal action anchors for proposal generation. Further-
more, SSTAD [5] employs a recurrent neural network (RNN)
architecture to perform proposal generation and classification
simultaneously. To provide valid proposal boundaries and classi-
fication results, Decouple-SSAD [6] employs two branches: one
for regression and the other for classification. GTAN [7] intro-
duces a Gaussian kernel to dynamically optimize the time scale
of each action proposal.

On the other hand, the two-stage strategy first gener-
ates action proposals and then classifies them to achieve
high performance. By incorporating 3D regional convolutional
networks (C3D [8]), R-C3D [9] optimizes localization and
classification loss in an end-to-end framework. Inspired by
the end-to-end framework Faster R-CNN [10], TAL-Net [11]
adds context information into proposals. And to make bet-
ter use of contextual information, PGCN [12] considers the
proposal-proposal interactions as well as leverages proposal
relationships. Furthermore, AFSD [2] presents an efficient and
effective anchor-free temporal localization strategy that yields
state-of-the-art results. However, each of these methods suffers
from boundary ambiguity, resulting in unreliable proposals or
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3856 CHEN ET AL.

inaccurate boundaries. To reduce the impacts of unreliability
boundary, we introduce uncertainty metrics to describe the
accuracy of annotations.

2.2 Uncertainty learning in deep neural
networks (DNNs)

To improve the robustness and interpretability of discrimina-
tive deep neural networks (DNNs), researchers are increasingly
turning to the uncertainty approach. There are two types of
uncertainty approaches: model uncertainty and data uncertainty.
The model uncertainty captures the noise in the deep neural
network’s parameters, which can be minimized by increasing
the training data amount. Data uncertainty, on the other hand,
captures the noise in the given training data. As a result, data
uncertainty does not alter as the amount of training data grows.
This study is based on the uncertainty of the data. Previous
methods primarily focused on the image task’s uncertainty.
For example, ambiguity in bounding box labeling in object
detection [13], and ambiguity caused by blurry pictures in face
recognition [14]. In the action localization task, the ambigu-
ity of boundary labeling, as well as the ambiguity of action
definition, are both present. Furthermore, the level of uncer-
tainty differs for different categories of actions. Therefore, we
build a Gaussian model to estimate the boundary uncertainty
for each instance. Based on instance uncertainty, we apply cat-
egory uncertainty to describe the uncertainty of each category.
By combining instance and category uncertainty, we refine the
boundaries of the selected proposals and adjust the ranking of
candidate proposals.

3 METHOD

3.1 Baseline architecture

3.1.1 Base feature extraction

Temporal action detection aims to discover precise temporal
boundaries and classes of action instances in the untrimmed
video. Due to the limitation of computational resources, it is
impossible to feed the untrimmed video straight into the visual
coder for feature extraction (untrimmed videos are often very
long, up to several minutes). A typical strategy is to divide the
video into different segments at equally sized intervals. For-
mally, the input video with frame l can be separated into ls
segments by dividing into time intervals 𝜎.

S = {sn}
ls
n=1, ls =

l
𝜎
. (1)

Then, each segment is input into a pre-trained visual coding sys-
tem, such as two-stream [15] or I3D [16] to extract spatial and
temporal feature vectors, respectively. Finally, these two features
are linked together for further processing (Figure 2).

3.1.2 Proposal generation

Equipped with the extracted features, we forecast the location
of the instance and the action score using the proposal and clas-
sification branches, respectively. For the proposal branch, it’s
usual to build a set of anchors in different scales to determine
the default proposal location (pc , pw ), where pc and pw are the
default center and width, respectively. To locate the temporal
boundaries of action instances accurately, each proposal outputs
two predictions by 1D convolution: 1) Regression parameters of
the proposal (Δpc , Δpw ), indicating the offset of the default tem-
poral center and width. 2) The overlap score pov , which indicates
the intersection-over-union (IoU) score between the proposal
and its closest ground-truth segment. Finally, the regressed
boundaries are:

xs = pc + 𝛽1 pwΔpc −
1
2

pwe𝛽2Δpw

xe = pc + 𝛽1 pwΔpc +
1
2

pwe𝛽2Δpw

, (2)

where xs and xe denote the start and end position of the action,
respectively. 𝛽1 and 𝛽2 are hyper-parameters.

The classification branch, on the other hand, is responsible
for determining which category the action instance belongs to.
For each instance in proposal branch, the classification branch
outputs the classification score p = [p0, p1, … , pC ], indicating
the probability that the action instance belongs to C categories
and one background.

3.1.3 Post-processing

After predicting the location and action score, each proposal can
be represented as:

𝜓 = {, S }

 = {xs , xe}

S = pov × argmax
({

pr
}C

r=1

). (3)

 is the detection boundary of the proposal, where xs and
xe represent the predicted start and end boundary of action,
respectively. S represents the final score of the proposal,
which is obtained by multiplying the overlap score pov and
the maximum classification score pr . For these proposals, we
perform NMS [17] to remove any redundant predictions (in
Algorithm 1).

3.2 Standard multi-class classification and
boundary regression

As mentioned above, the baseline architecture generates three
attributes for each proposal: (1) Start and end boundaries of
action instances; (2) IoU between the proposal and the ground
truth that is closest to it. (3) Scores of the proposal belong-
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CHEN ET AL. 3857

FIGURE 2 Given an untrimmed video, we encode the RGB frames and optical flow into the video feature sequence. With the feature sequence, we acquire a
series of candidate proposals using uncertainty regression and classification branch, respectively. The candidate proposals include classification score and uncertainty
score of the boundary. In post-processing, the reliability score combines the uncertainty score of the boundary with the classification score to choose reliable
proposals. Furthermore, uncertainty voting sorts the candidate proposals and revises the boundaries of the selected proposals by incorporating category uncertainty

ALGORITHM 1 Uncertainty Post-processing

 is N × 2 matrix of initial proposal boundaries.  contains
corresponding final proposal scores. U denotes the boundary
uncertainty variance.

 = {b1, .., bN },  = {U1, ..,UN }

b = (xs , xe ), U = (𝜎2
s , 𝜎

2
e )

 ← {}

 ← 

Estimate  by Equation (13)

while  ≠ empty do

m ← argmax 

 ←  − bm

Refine  by Equation (14)

Refine bm by Equation (15)

 ← 
⋃

bm

end while

return ,

ing to C categories. Therefore, we supervise each of these
three attributes through location regression loss, overlap loss,
and classification loss. Specifically, we use the Smooth L1 loss
(SL1) [18] in location regression to shift the proposal (xs , xe )

closer the ground truth (gs , ge ) that is closest to it, which is
determined as:

Lloc = SL1(xs − gs ) + SL1(xe − ge ). (4)

And the overlap loss is calculated by Mean Square Error (MSE)
loss:

Lov =
(

pov − giou
)2
, (5)

where giou is the IoU value between the proposal and the
ground truth closest to it. For classification, we use the standard
softmax loss:

Lcls = −

C∑
i=0

Ii=t log (Pt ) and Pt =
exp

(
pt
)

∑C
j=0 exp

(
p j
) , (6)

where Ii=t is an indicator function that equals 1 if i is the ground
truth class label t , otherwise 0.

Finally, we accumulate the losses of the three attributes. The
overall training objective is defined as follows:

 = cls + 𝛽loc + 𝛾ov, (7)

where 𝛽 and 𝛾 are the hyperparameters that need to be adjusted.

 17519667, 2022, 14, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/ipr2.12599 by C

ochraneC
hina, W

iley O
nline L

ibrary on [06/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



3858 CHEN ET AL.

3.3 Uncertainty modeling

However, inaccurate regression boundaries and unreliability of
final scores may be caused by the ambiguity of action instance
labeling. To mitigate the impact of this ambiguity, we estimate
the uncertainty of the boundary in addition to the standard
regression loss (uncertainty-aware boundary regression). This
uncertainty indicator is further used to adjust the final score
of the proposal (Reliability Score) and the regression boundary
(Uncertainty Voting).

3.3.1 Uncertainty-aware boundary regression

As mentioned above, we build a Gaussian model to reduce
the impact of labeling ambiguity. This model locates the
action instances’ locations while simultaneously estimating the
regression boundary’s uncertainty:

P (gi |xi ) =
1√

2𝜋𝜎i
e
−

(gi−xi )2

2(𝜎i )2 , (8)

where 𝜎 denotes the boundary uncertainty variance and gi is
the corresponding ground truth of the location prediction xi .
Equipped with this model, The learnable parameters Θ̂ that
maximize the probability P (yi |xi , Θ) over N samples are then
estimated.

Θ̂ = arg max
Θ

N∏
i=1

1√
2𝜋𝜎i

e
−

(gi−xi )2

2(𝜎i )2 . (9)

The logarithm of Θ̂ is:

arg max
Θ

{
−

N
2

ln 2𝜋 −
N
2

ln
((
𝜎i
)2
)
−

1

2(𝜎i )2

N∑
i=1

(
xi − yi

)2

}
.

(10)

The Gaussian likelihood estimation can be treated as a regres-
sion loss by omitting the correlation term (i.e. N

2
ln 2𝜋) that does

not depend on the estimated parameter Θ:

L′
loc ∝

(g − x )2

2𝜎2
+

1
2

ln
(
𝜎2
)
. (11)

For some tiny values of 𝜎2, we notice that L′
loc can be negative.

Because the duration of actions fluctuates greatly, this condi-
tion occurs from time to time, resulting in training errors. As a
result, to avoid a negative loss, we adjust the regression loss as
follows:

L′
loc =

(g − x )2

2𝜎2
+

1
2

ln
(
𝜎2 + 1

)
. (12)

3.4 Uncertainty post-processing

In post-processing, the traditional localization process multi-
plies the classification and overlap scores as a detection criterion
score for non-maximum suppress (NMS). However, unreli-
able proposals with high classification or overlap scores may
be selected. To limit the impact of unreliable proposals, we
employ the uncertainty score in conjunction with classification
and overlap scores to pick more reliable proposals (i.e. Relia-
bility score) before the NMS. And in the NMS process, the
proposal score, as well as the related boundaries are regressed
in uncertainty voting. In this regression approach, It is worth
noting that we incorporate category uncertainty to avoid over-
refinement of categories with high uncertainty. And the details
are described below.

3.4.1 Reliability score

We employ (𝜎s , 𝜎e ) in conjunction with classification and over-
lap scores to pick more reliable proposals. The modified
proposal score is:

S = pov × max
({

pr
}C

r=1

)
× SReliability ,

SReliability = (1 − f (𝜎2
s )) × (1 − f (𝜎2

e )), f (𝜎2) =
e𝜎

2∑
e𝜎2

,

(13)

where f (⋅) is a softmax function to normalize the reliabil-
ity score.

∑
e𝜎

2
denotes the index summation of all input

proposals’ uncertainty variance.

3.4.2 Uncertainty voting

In uncertainty voting, we refer to Soft-NMS [19] that update
the candidate proposal’s confidence score based on the over-
lap between the selected proposal and the candidate proposals.
Specifically, we aim to award low ratings to candidate proposals
that correspond to large boundary uncertainties. The formula
for softnms is:

Si =

⎧⎪⎨⎪⎩
Si , IoU (m, bi ) < Nt

Si ⋅
𝜎b

𝜎i
c

(
1 − f (𝜎b )

)
(1 − IoU (m, bi )), IoU (m, bi ) ≥ Nt

,

(14)

where si is the candidate proposal i’s original score, f (⋅) is
the sigmoid function, 𝜎b = (𝜎s + 𝜎e )∕2 is the average value of
uncertainty boundary(𝜎s , 𝜎e ), 𝜎

j
c represents the category uncer-

tainty of the proposal, which is derived by averaging the mean
value of all proposals in the same category j . And IoU (m, bi )
denotes the overlapping proportion of the selected proposal
m and the candidate proposal bi . On the other hand, uncer-
tainty voting aims to regress the selected proposal’s boundaries
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CHEN ET AL. 3859

through uncertainty:

b′m =
f
(
𝜎

j
c

)
pmbm∕𝜎

2
b,m +

(
1 − f

(
𝜎

j
c

))∑
i≠m pib∕𝜎

2
b,i

f
(
𝜎

j
c

)
pm∕𝜎

2
b,m +

(
1 − f

(
𝜎

j
c

))∑
i≠m pi∕𝜎

2
b,i

pi = e−(1−IoU (m,bi ))
2
∕𝜎t , IoU (m, bi ) > 0

, (15)

where b′m is the temporal boundary of the selected proposal m
after regression, and 𝜎t is the hyperparameter. In this way, we
aim to avoid over-regression on classes with high uncertainty.
Specifically, for the category sigma j

c with large uncertainty, we
reduce the weight of the boundary adjustment by 1 − f (𝜎 j

c )
and increase the weight of the original boundary of the chosen
proposal by f (𝜎 j

c ).

4 EXPERIMENTS

4.1 Experimental settings

4.1.1 Datasets

We conduct experiments on two commonly used datasets THU-
MOS14 [20] and ActivityNet v1.3 [21]. For THUMOS14, it is
standard procedure to train on a validation set containing 200
temporal annotations in 20 categories and to evaluate on 213
test videos. In this dataset, each video has an average of 15
action clips, and some videos have numerous action clips. Fur-
thermore, the video length varies widely, ranging from a few
seconds to over an hour. For the reasons stated above, it’s chal-
lenging to perform temporal action detection on THUMOS14.
ActivityNet v1.3 is a widely used benchmark for temporal action
detection. It contains 10024 training, 4926 validation, 5044 test
videos, and 200 action categories. Most of the videos in this
dataset have instances of activity in a single category. This
dataset is much larger than THUMOS14 in terms of the num-
ber of activity categories and the number of videos. We use a
training subset for training and a validation subset for testing, as
is standard practice [2, 12].

4.1.2 Evaluation metrics

Implementation details

We use the uncertainty method on one-stage Tb-SSAD [1],
two-stage P-GCN [12], and anchor-free approach AFSD [2],
respectively. For a fair comparison, we stick to their initial setup
in our studies. To extract the video’s features, we fine-tune the
I3D [16] model that was pre-trained on Kinetics. In the train-
ing process, Our model is trained by Adam [22] with a learning
rate of 10−5 and weight decay of 10−3. We apply random crop
as well as horizontal flipping for data augmentation. The results
of RGB and optical flow frames are averaged to determine final
locations and class scores.

TABLE 1 Effectiveness of each component in uncertainty method based
on [2] in THUMOS14. And the mAP of tIoU is calculated by using 0.5
threshold (mAP@0.5). For mAP@0.5, the basic framework performs at
55.5%. The performance is enhanced to 57.5% after incorporating three
proposed approaches

Method Performance

Uncertainty modeling × ✓ ✓ ✓ ✓

Reliability score × × ✓ × ✓

Uncertainty voting × × × ✓ ✓

mAP@0.5(%) 55.5 56.1 56.8 57.0 57.5

4.2 Ablation study

To verify the validity of the individual modules of uncertainty,
we employ our algorithm on the state-of-the-art method [2].
As shown in Table 1, the model’s performance improves from
55.5% to 56.1% by integrating uncertainty modeling in the
training phase. With uncertainty modeling, the model’s perfor-
mance improves from 56.1% to 56.8% and 57.0%, respectively,
when the reliability score and uncertainty voting are combined
throughout the testing process. Finally, by combining the three
modules above, our method achieves a 2.0% improvement on
mAP@0.5 when compared to [2].

In post-processing, we visualize the reliability score and
uncertainty voting in Figures 3a and 3b, respectively. The reli-
ability score is calculated by multiplying the uncertainty score
to the final proposal score, resulting in the selection of the pro-
posal with a low level of uncertainty. After the selected proposal
is determined, uncertainty voting relies on the candidate pro-
posal to correct the boundaries of the selected proposal to bring
it closer to the ground truth. On the other hand, the selected
proposal revises the ratings of other candidate proposals in
uncertainty voting. Specifically, in addition to reducing candi-
date proposal scores based on the degree of overlap between
candidate and selected proposals [19], candidate proposals with
higher uncertainty get their scores reduced appropriately.

Due to the ambiguity of action definitions, the boundary of
some categories is difficult to label accurately and carries a large
uncertainty. This uncertainty results in a prediction deviation
that is difficult to correct. Therefore, we focus on correcting the
bounds corresponding to the categories with less uncertainty
while relaxing the constraints for the categories with greater
uncertainty by introducing a category uncertainty indicator 𝜎c .
As shown in Figure 4, our method improves the performance of
the classes with less uncertainty. On the other hand, categories
with greater uncertainty have the same or reduced performance
as before due to the relaxation of constraints.

4.3 Comparison with state-of-the-art
methods

To demonstrate the usefulness of the suggested uncertainty
method, we deploy our method on three types of approaches:
one-stage, two-stage, and anchor-free method. As shown in

 17519667, 2022, 14, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/ipr2.12599 by C

ochraneC
hina, W

iley O
nline L

ibrary on [06/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



3860 CHEN ET AL.

FIGURE 3 The reliability score is used to select proposals that have a low level of ambiguity. On the other side, uncertainty voting redraws the boundaries of
the selected proposal. Besides, it adjusts the candidate proposal’s score based on the selected proposal

FIGURE 4 We demonstrate the performance improvement of our method in comparison to [2] (bars) and the uncertainty (lines) for each category (AP@0.5)
in THUMOS14. Overall, lower class uncertainty correlates with higher performance gains
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TABLE 2 Performance comparison with state-of-the-art methods on THUMOS14 and ActivityNet1.3. The performance are measured by mAP at different
IoU thresholds. The average mAP is calculated in [0:3 : 0:1 : 0:7] on THUMOS14 and [0:5 : 0:05 : 0:95] on ActivityNet1.3. (Ours) represents the performance by
adding our proposed uncertainty method.

THUMOS14 ActivityNet 1.3

Type Model 0.3 0.4 0.5 0.6 0.7 0.5 0.75 0.95 Avg.

One-stage SSAD [4] 43.0 35.0 24.6 15.4 7.7 - - - -

SS-TAD [5] 45.7 - 29.2 - 9.6 - - - -

SSN [23] 51.0 41.0 29.8 - - 43.2 28.7 5.6 28.3

Decouple-SSAD [6] 49.9 44.4 35.8 24.3 13.6 - - - -

GTAN [7] 57.8 47.2 38.8 - - 52.6 34.1 8.9 34.3

Tb-SSAD [1] 49.9 45.5 38.0 28.0 16.5 - - - -

Tb-SSAD (Ours) 53.0 48.5 42.1 31.9 19.7 - - - -

Two-stage R-C3D [9] 44.8 35.6 28.9 19.1 9.3 26.8 - - -

TAL-Net [11] 53.2 48.5 42.8 33.8 20.8 38.2 18.3 1.3 20.2

TAL-MR [24] 53.9 50.7 45.4 38.0 28.5 43.5 33.9 9.2 30.2

TSA-Net [25] 61.2 55.9 46.9 36.1 25.2 48.7 32.0 9.0 31.9

G-TAD [26] 54.5 47.6 40.3 30.8 23.4 50.4 34.6 9.0 34.1

BC-GNN [27] 57.1 49.1 40.4 31.2 23.1 50.6 34.8 9.4 34.3

PGCN [12] 63.6 57.8 49.1 - - 48.3 33.2 3.3 31.1

PGCN (Ours) 66.8 60.3 50.8 38.0 23.8 48.7 34.2 4.7 32.4

Anchor-free AFSD [2] 67.3 62.4 55.5 43.7 31.1 52.4 35.3 6.5 34.4

AFSD (Ours) 70.0 65.1 57.5 46.5 32.7 53.1 36.4 7.2 35.4

Table 2, our uncertainty method outperforms all three types of
approaches significantly. On the one-stage method Tb-SSAD,
our strategy improves the performance of the model from
38.0% to 42.1% for mAP@0.5 on the THUMOS14 dataset. On
the two-stage method PGCN, the performance of the model
improves from 49.1% to 50.8% on THUMOS14 (mAP@0.5)
and from 31.1% to 32.4% in average mAP on ActivityNet
v1.3. Finally, the model achieves the state-of-the-art (SOTA)
performance by combining our method with the Anchor-free
method AFSD. After incorporating our method, the perfor-
mance of AFSD reaches 57.5% on THUMOS14 and 35.4% on
ActivityNet v1.3.

5 CONCLUSION

In this paper, we develop a Gaussian model to represent
instance uncertainty. Based on the instance uncertainty, we pro-
pose category uncertainty, which allows the model to focus on
refining the less uncertain category’s boundary. By integrating
instance and category uncertainty, we propose the uncertainty
voting module to modify the boundaries of the selected pro-
posals and the ranking of candidate proposals. We use a
combination of one-stage, two-stage, and anchor-free networks
in our method. Equipped with the anchor-free framework,
we attain state-of-the-art performance, with 57.5% on THU-
MOS14 (mAP@0.5) and 35.4% on ActivityNet (mAP@Avg).
Future work includes: (1) Apply uncertainty to the classifica-

tion and regression branch instead of focusing primarily on
the regression branch. (2) Combine uncertainty with temporal
information.
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