
 
 

 

  

Abstract—With the advantage of simulating the details of a 
transportation system, the “microsimulation” of a traffic system 
has long been a hot topic in the Intelligent Transportation 
Systems (ITS) research. The Cellular Automata (CA) and the 
Multi-Agent System (MAS) modeling are two typical methods 
for the traffic microsimulation. However, the computing burden 
for the microsimulation and the optimization based on it is 
usually very heavy. In recent years the Graphics Processing 
Units (GPUs) have been applied successfully in many areas for 
parallel computing. Compared with the traditional CPU cluster, 
GPU has an obvious advantage of low cost of hardware and 
electricity consumption. In this paper we build an MAS model 
for a road network of four signalized intersections and we use a 
Genetic Algorithm (GA) to optimize the traffic signal timing  
with the objective of maximizing the number of the vehicles 
leaving the network in a given period of time. Both the 
simulation and the optimization are accelerated by GPU and a 
speedup by a factor of 195 is obtained. In the future we will 
extend the work to large scale road networks.  

Index Terms—Microsimulation; Multi-Agent Systems; 
Intelligent Transportation Systems; GPU; Genetic 
Algorithms 

I. INTRODUCTION 
raffic simulation [1-21] is an important tool for control 

and management of urban traffic systems as the 
experiments on the real traffic systems are usually very 

costly. Early traffic simulation systems tended to be 
macroscopic or mesoscopic based on hydromechanics or 
statistical physics. Typical methods include the 
Lighthill_Whitham_Richards (LWR) model [10,11] and 
Lattice Blotzmann Methods (LBM) method [12]. These 
models are good at describing the overall properties of the 
traffic flow but lack the flexibility to describe the complex 
microscopic behaviors such as lane changing and vehicle 
overtaking. As the development of computers, the 
microsimulation methods such as car following model [13], 
Cellular Automata (CA) [14] and Multi-Agent Systems 
(MAS) [15, 16] become more and more popular in traffic 
analysis and forecasting. Many microsimulation systems are 
 

This work is supported in part by NSFC 60921061, 70890084, 90920305, 
90924302, 60904057 and 60974095; CAS 2F09N05, 2F09N06, 2F10E08, 
and 2F10E10.  

Dr. Zhen Shen, Kai Wang and Dr. Fenghua Wang are with the State Key 
Laboratory for Intelligent Control and Management of Complex Systems,  
Beijing Engineering Research Center for Intelligent Systems and Technology, 
Institute of Automation, Chinese Academy of Sciences, No. 95 
Zhongguancun East Road, Haidian District, Beijing 100190, China. (phone: 
+86-10-82615422, fax: +86-10-82615087, e-mail: zhen.shen@ia.ac.cn, 
kai.wang_nudt@hotmail.com, fenghua.zhu@ia.ac.cn.) Kai Wang is also 
with Center for Military Computational Experiments and Parallel Systems 
Technology, and College of Mechatronics Engineering and Automation, the 
National University of Defense Technology (NUDT), Changsha, Hunan, 
China.  

developed, for example [1, 9, 17-19], MATSim, VISSIM, 
TRANSIMS, TransWorld, MITSIM, MITSIMU, CORSIM, 
SHIVA and UTOBAHN. These systems can describe the 
microscopic behavior of the vehicles but has to face a great 
challenge that it is time-consuming to calculate the state 
evolution of vehicles. The computation time consumed by 
microscopic traffic flow simulation increases very fast as the 
road network expands and the number of vehicles increases. 
Moreover, the optimization of the traffic system with a 
microsimulation model often involves in algorithms such as 
the Genetic Algorithms (GA) which need to evaluate the 
system many times. There is a great challenge in computing 
when GA is applied to solve the traffic signal timing 
optimization problem [22-24].    

While the demand for computing power in the Intelligent 
Transportation Systems (ITS) research is growing, the 
computing hardware is going through a revolution. Relevant 
graphics device companies propose the concept of general 
purpose computing based on the innate characteristics of data 
parallel computing of Graphics Processing Units (GPUs) 
[25-31]. GPU is a specialized circuit originally designed to 
offload graphics tasks from the CPU with the intention of 
performing them faster than the CPU can do. In a personal 
computer, GPU usually appears on the video card or the 
mother board. Usually it has excellent floating point 
performances with many cores working together to draw 
triangles and polygons on the screen. Because of this, people 
began to use it for scientific computing. However, people had 
to map their applications into problems that draw graphs and 
program with graphs programming languages like Open 
Graphics Library (OpenGL) and Cg. NVIDIA, a great GPU 
producer, realized the potential to use GPU for general 
purpose computing, and developed General-Purpose GPU 
(GPGPU) and Compute Unified Device Architecture 
(CUDA). With CUDA, people can program with high-level 
languages such as C, C++ and Fortran. The GPGPU idea and 
CUDA make the objects processed by GPU converted from 
pixels on screen to different kinds of scientific data. There 
have been many successful applications of GPGPU, such as 
molecular dynamics [26], computational fluid dynamics [27], 
bioinformatics [28] and scheduling [29]. GPU can make 
considerable speedups compared with CPU and is much 
affordable than other kinds of computer hardware that have 
the same computing performance. Lately some efforts have 
already been made in microscopic traffic simulation using 
CUDA [20,21] that opened up a new way for implementation 
and parallelization of microscopic traffic simulation. 

Just as the development of CPU makes the iterative 
algorithms prevailing, we believe that the development of 
GPU can make the parallel algorithms in an iterative fashion 
prevailing. In this paper, we report some preliminary work on 
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using GPU for the traffic microsimulation and optimization. 
We build a parallel MAS model for a road network with four 
signalized intersections. This model builds a GPU based 
MAS model of traffic simulation environment following the 
work by David Strippgen [20,21], and then we apply 
GPU-adapted parallel Genetic Algorithm (GA) [22] to 
optimize the traffic signal timing configurations. By using 
NVIDIA GTX 470 we obtain a speedup by a factor of 195 
compared with a mainstream CPU of AMD AthlonTM 64 X2 
Dual Core processor 4000+. The contribution of the paper is 
that we use GPU to parallelize the microsimulation and 
optimization of a traffic system and show that this integration 
of GPU with MAS and parallel iterative algorithms can help 
solve real problems more practically.  

The remaining parts of the paper are organized as follows. 
In Section II, we give a review on GPU and the 
microsimulation and optimization of the traffic systems. In 
Section III, we give the formulation of the problem and show 
how to implement the parallel traffic simulation and 
optimization model with GA on GPU. In Section IV we show 
the experiment results. In Section V we conclude the paper 
and discuss the future research. 

II. REVIEW 

A. GPU, Fermi and CUDA 
Currently, millions of personal computer users are using 

NVIDIA GPUs for various different purposes, most of which 
are related to acceleration of graphics rendering or scientific 
computation. GPU is the core of the display card and is 
controlled by CPU. In hardware, a GPU has many cores 
working together. The cores are called Streaming Processors 
(SP), and several cores (8 or 32 typically) are organized into a 
Streaming Multi-processor (SM). In software, a typical GPU 
program consists of two parts: one part is the CPU codes that 
control the process of the whole program and does the 
sequential work, and the other is the GPU part that does the 
parallel work. With CUDA, the programmers can use C style 
codes to use the computing resources provided by GPU and 
the programming on GPU has no much difference from using 
Application Programming Interfaces (APIs).  

Since 2006, NVIDIA has introduced three generations of 
hardware architectures of GPU: G80, GT200, and Fermi. The 
latest Fermi architecture makes great innovations and offers 
dramatically increased programmability and compute 
efficiency. Compared to GT200, some key features of Fermi 
are:  
1) Each SM has 32 SPs that is 4 times over GT200. 
2) The peak double precision floating point performance is 

8 times over GT200. 
3) Each SM could have a 64KB shared memory that is 4 

times over GT200. 
We give some key performance indicators of one Fermi 

GPU named GeForce GTX 470 in Table I.  
A function that executes on the GPU is typically called a 

“kernel” [25]. When a kernel is launched, multiple threads on 
GPU organized by two levels are activated. The top level is 

called “grid” and the other is called “block”. One grid can 
consist of at most 65535×65535 blocks and each block can 
consist of at most 512 threads. Then the grid is allocated to 
GPU for parallel computing with blocks allocated to different 
SMs in the GPU and threads allocated to different SPs in the 
SM. Each SM has its own memory called shared memory that 
all threads in it can access simultaneously, and all SMs share 
the global memory, constant memory and texture memory of 
GPU. Among all kinds of memories accessed by threads in 
the grid, the shared memory has the lowest memory access 
latency while the global memory has the highest latency. Fig. 
1 illustrates the GPU parallel computing. 

TABLE I KEY SPECIFICATIONS OF GEFORCE GTX 470  

Number of SPs (cores) 448 
Processor Clock (MHz) 1215 

Memory Bandwidth (GB/s) 133.9 
 Video Memory (MB) 1,280 
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Fig. 1. GPU parallel computing 

  One big achievement of the GPU is that Tianhe-1A, the 
second fastest computer in the world (overtaken by the K 
computer in Jun. 2011), uses 7,168 NVIDIA Tesla M2050 
GPUs and 14, 336 CPUs. It would require more than 50,000 
CPUs to deliver the same performance, and the power 
consumption would increase from 4.04 megawatts to more 
than 12 megawatts [30]. This shows clearly the advantage of 
GPU. 

B.  Traffic mircosimulation and optimization  

In the microsimulation, the road network and the vehicle 
travel are two elementary parts. Usually a graph is used to 
describe the topology of the road network. The nodes and the 
links represent the intersections and roads. And a queue 
simulation algorithm can be used to simulate the behaviors of 
cars travelling along the links. When not considering the lane 
changing or vehicle overtaking, the relationship between two 
sequential vehicles can be described by a GM-type 
car-following model [32],  
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where n is used to index vehicles. The (n – 1)-th vehicle is in 
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front of the n-th vehicle. ( )na t , ( )nv t  and ( )nx t are the 
acceleration, speed and position of vehicles at the time t , nτ  
is the driver’s reaction time of the vehicles, α , β and γ  are 
constant parameters that need to be estimated from the real 
car-following data.  
   Many microsimulation systems are based on the above 
methods of describing the road network and the vehicle travel. 
As the computer develops, the performance of 
microsimulation systems becomes better and better. For 
example, MATSim has a multi-core version of its so-called 
Deterministic, Event-based Queue-Simulation (DEQSim), 
and by using a Beowulf Cluster (with 8 nodes) it can simulate 
the traffic flow of Switzerland consisting of about 20,000 
nodes and 60,000 links for one whole day (24 hours) within 7 
min [17]. However, the Ethernet network latencies still make 
it difficult to gain speedup by adding more clusters [20,21]. 
The GPU can be used to accelerate the microsimulation. It is 
reported in [20] that a speedup of up to 67 times compared 
against the highly optimized java version MATSim on a CPU 
was achieved.  

Besides traffic simulation, there are many optimization 
problems in the ITS research. In [23] GA is used to solve the 
problem of traffic signal timing optimization with a 34% 
improvement over the mutually consistent solution of the 
problem. It has been challenging for the microsimulation, not 
to mention the optimization based on the microsimulation. 
This is why we believe that GPU is a necessary and promising 
tool for the traffic microsimulation and optimization. 
Fortunately, GA has been modified into a parallel version 
adapted to GPU. In [29], the authors use the parallel GA 
algorithm to solve the Quadratic Assignment Problem (QAP) 
and achieve a speedup factor of 3 to 12 by GTX 285 
compared to the Intel i7 965 processor. This parallel GA is the 
method that we use in this paper for solving the traffic signal 
timing optimization problem.  

III. FORMULATION AND IMPLEMENTATION 

A. Problem Formulation and the Overall Implementation 

In this paper we maximize the number of vehicles leaving a 
road network in a given time period. This problem is 
important in that the performance is improved by software 
without upgrading the hardware. This problem is a typical 
problem in the ITS research [23].  

 
Fig. 2. The road network 

We index the intersections in the road network arbitrarily 
from 1 to N. The road network used in this paper is shown in 
Fig. 2. For every road there are several lanes. We assume that 
there are vehicles from both directions on a road and we do 
not consider vehicle overtaking or lane changing in this paper. 
For every intersection, there are several phases of the traffic 
lights, shown in Fig. 3. We assume that there are M = 4 phases 
and that the sequences of phases are the same for all the 
intersections. The M phases constitute a “cycle” and we 
assume that all intersections share the same cycle time, 
denoted by c. We take the 1-st intersection as the reference 
intersection and the offset time of cycles of the intersections 
is denoted by a vector 1 2[ , , , ]T

Mψ ψ ψ ψ=v L . Obviously 1ψ = 

0. We denote [ ]1 2, , , T
m m m Nmθ θ θ θ=
v

L (m = 1, 2, ..., M) with 
nmθ

(n = 1, 2, …, N) as the green time of the m-th phase of the n-th 
intersection. The problem can be formulated as follows,  
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where 1 2( , , , , , )Mf c ψ θ θ θ
v v vv

L  is the function of the number of 
vehicles that leave the road network during the given time, 

min c  and maxc  are the minimum and maximum values of the 
cycle time c, Ne is a column vector of N components all being 

ones, min, ( 1,2, , )m m Mθ =
v

L is the minimum green time for 
the m-th phase.  

  
Fig. 3. Phase sequence of the traffic lights 

 
Fig. 4. Overall implementation 

There are two main parts in the implementation: one is the 
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traffic flow simulator, and the other is the traffic signal timing 
optimizer. Every vehicle is viewed as an agent. The 
operations for the agents are similar. Also, the operations for 
the chromosomes in GA are also similar. These make the 
parallel implement on GPU possible, please see Fig. 4. 

B. Traffic Flow Simulator 
The road is divided into several lanes. We use the GM-type 

car-following model [32] to describe the movements of the 
vehicles as it has a clear physical meaning, please see (1). In 
this model, vehicles are queued in a lane and the state of a 
vehicle at a simulation time step can be computed by the 
states of itself and the vehicle in front of it at the previous 
simulation time step.  

We assume that the arrival of the vehicles is subject to 
Poisson distribution with the arrival rate λ for each lane of the 
road network. The random numbers 1 2, ,..., nu u u  which obeys 
the uniform distribution are generated by a Mersenne Twister 
(MT) generator [33]. This method can be applied easily on 
GPU. Each lane of the roads in our simulator has its own 
vehicle generator.  

We use a “queue” to represent the vehicles in a lane. We 
assume that when the distance between a vehicle and the one 
at its front is less than 125 meters, the behind one moves in a 
car-following mode [34]; otherwise, it travels with a desired 
speed of its driver.  

For vehicle agents in a queue, the most front is different 
from the others as there is no vehicle at its front. Its 
movement is totally determined by the states of traffic light 
and its distance from the stop line. We assume that the most 
front vehicle has an initial speed which obeys a normal 
distribution. When a vehicle arrives at an intersection, it may 
go forward, or turn left or turn right. No matter which action it 
takes, we assume that it chooses the new lanes with an equal 
probability.  

C. Traffic Signal Timing Optimizer 
1) Parallel GA model 

GA is an iterative searching algorithm that mimics the 
process of natural evolution. Its main idea is that the better 
individuals are more likely to pass the genes to next 
generations. Recently, there has been a growing interest in 
implementing parallel GA with GPU [29, 31]. Here we 
employ the parallel GA algorithm with the GPU designed in 
[30] which can solve the quadratic assignment problem (QAP) 
efficiently. In this parallel GA, two pools P and W of the same 
size are used to store current and newly generated offspring 
individuals. The algorithm flow is as follows, 
Step 1: Generate an initial population of individuals of P . 
Step 2: Evaluate the individuals in P . 
Step 3: For each individual iI  in P , select another individual 

( )jI i j≠  in P  randomly. Apply crossover to iI  and 

jI  with the probability cP . If the crossover happens, 

put the child iI ′  into W; otherwise, copy Ii into W.  

Step 4: For each individual iI ′  in W, apply the mutation with 
the probability Pm. 

Step 5: Evaluate individuals in W. 
Step 6: For each individual Ii in P  and its corresponding 

child or copy iI ′ in W , compare the fitness values. If 

iI ′  has a higher fitness, replace iI  in P with iI ′  in W. 
Step 7: If the termination criteria are met, terminate the 

algorithm. Otherwise, go to Step3. 
  The steps 2 to 6 all have the same operations on 
chromosomes. This is why this GA can be parallelized.  
2) Fitness function 

The fitness function is used to measure how good a 
solution is. In this paper we choose the number of vehicles 
leaving the road network in the given time period as the 
fitness measure [23]. It is just the objective function in (2).  
3) Chromosome encoding and decoding 

We use a binary encoding that the cycle time, the offset and 
the duration of green time of the phases can be encoded in one 
chromosome that is shown in Table II. 

TABLE II CHROMOSOME ENCODING 
 Traffic signal timing for the intersections  

 No. 1  No. 2 … No. N 

Cycle 
time, 

c 

Offset 
1ψ  

duration of 
green time 
of phase 1, 

11θ  
… 

duration of 
green time 
of phase M, 

1Mθ  
   

8 bits 8 bits 8 bits  8 bits    

We need (M + 2) 8-bit codes for an intersection with the 
first two for the cycle time and the offset and the remaining M 
for the M phases. For the decoding, for any intersection, we 
define a mapping factor iφ  as follows,  

 
7

0
= 2 , 1,2, , 2,k

m mk
k

b m Mφ
=

= +∑ L  (3) 

where mkb  is the value of the k-th bit of the m-th 8-bit binary 
code. The decoding method is shown in Table III. 

TABLE III MAPPING BINARY CODES TO DECIMAL 

Cycle time max min
min 1 255

c cc c φ −
= +  

 Offset 2 255n
cψ φ=  

Duration of  the green 
time for m-th phase 

max min
min 2

min, min,
1

1

, 1, 2,...,
255

( ), 1, 2,...,

nm m

M
nm

nm m iM
i

ni
i

p pp p m M

p c m M
p

φ

θ θ θ

+

=

=

−⎧ = + =⎪
⎪
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⎩
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∑

 

In Table III, n is used as the index for the intersection, and 
pnm is the parameter to determine the green time for the m-th 
phase of the n-th intersection, with minp  and maxp  as its 
minimum and maximum values.  
4) Crossover and mutation 

The one-point crossover operator and the one-point 
mutation operators are with the probabilities of crossover cP  
and mutation mP  respectively.  
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D. Data Structures and Computing Resources Allocation 
The data of vehicle agents is organized from top to bottom 

in five levels: the traffic lights configurations, intersections, 
roads, lanes, and vehicles. Please see Fig. 5. Before we launch 
the kernel function on GPU, the data of vehicle agents and 
traffic lights are copied to memories on GPU. The vehicle 
data is copied to the global memory of GPU and then copied 
to the shared memory of the SMs as the access to the shared 
memory is faster. Traffic light data are copied to the constant 
memory as the vehicles controlled by the same traffic lights 
configuration need it and the constant memory can be read by 
all the threads in the grid with lower memory access latency 
than the global memory.  

As Fig. 5 shows, a block handles the vehicles in the same 
lane, and each thread in it handles a single vehicle on the lane. 
Each row of blocks in the grid handles a replication of the 
computing of the traffic lights configuration. For each 
configuration, we simulate for T independent replications to 
reduce the uncertainty.  

Fig. 5. Data structures and computing resources allocations 

IV. EXPERIMENTS 
In this paper, we use the road network shown in Fig. 2. The 

number of intersections is N = 4. For each road, there are 6 
lanes with 3 at either side. The right side lane is used for 
turning right, the left for turning left and the middle is used 
for going forward. When going past the stop line, the vehicle 
chooses new lanes with equal probabilities, i.e., 1/3.  

 The distance between two neighboring intersections is 256 
× 4 = 1024m, with 4m as the average length of a vehicle. The 
vehicle arrival rate for each entry lane in the road network 
shown in Fig. 2 (24 entry lanes altogether) is λ = 0.2 vehicle 
per second. The initial speed of the car obeys the normal 
distribution N(60 km/h, 10), and the desired speed is 80 km/h. 
The parameters in the car-following model are = = =1α β γ . 
The number of phases is M = 4.  

The maximum and the minimum of the cycle time are 
max 240c s= and min 60c s= . The parameters for phases are

min max0, 100p p= =  and min, 6m sθ = (m = 1, 2, …, M). The 
time step for the simulation is 1s. We simulate for 3,600s.  

For GA, the number of individuals for each generation is C 
= 500. The replications for evaluating a configuration is T = 
10. The probabilities for the crossover and the mutation are 

0.99cP = and 0.05mP = . We set GA for 1,000 generations.  
We use a PC with one AMD AthlonTM 64 X2 Dual Core 

processor 4000+ and an NVIDIA GeForce GTX470 GPU. 
We use CUDA driver and SDK with the version 3.2.  

The results of a typical run of GA are shown in Fig. 6.  
Table IV shows the output of the GA. The number of vehicles 
that leave the road network is corresponding to Fig. 6 is 8835.   

We give the time consumption for one iteration of GA for 
the CPU + GPU implementation and compare it with the 
implementation of CPU only in Table V. The results are 
based on 30 runs independently for both implementations. 
The whole process of the CPU + GPU implementation takes 
about 19,044s and it would be 3,719,976s (about 43.1 days) 
on CPU with a speedup factor of 195. The data of one 
generation transferred from the main memory to the GPU 
memory takes about 120 MB video memory.   

Please note that the road network used in this paper (Fig. 2) 
is symmetric, and the results in Table IV verify the symmetry.  

 
Fig.6. Results of a typical run of GA 

TABLE IV TRAFFIC SIGNAL TIMING CONFIGURATION OUTPUT by GA 

Cycle 
time c/s 

Inter- 
section 

No.  
Offset/s 

Green 
time  of 
Phase 1 

/s 

Green 
time of 
Phase 2 

/s 

Green 
time of 
Phase 3 

/s 

Green 
time of 
Phase 4 

/s 

61 

1 0 10 10 19 22 
2 46 19 22 13 7 
3 32 19 22 11 9 
4 60 11 10 18 22 

TABLE V TIME CONSUMPTION OF ONE ITERATION IN GA 
 CPU ONLY GPU+CPU Speedup 

Average Time/s 3719.976 19.044 195.336 
Standard 
Deviation 12.778 1.496 N/A 

V. CONCLUSION AND FUTURE RESEARCH 
In this paper, we propose a framework of an agent-based 

traffic flow simulator and a traffic signal timing optimizer 
based on GPU using NVIDIA’s CUDA. The GM type 
car-following model and the parallel GA are used. We obtain 
a speedup by a factor of 195 compared with the 
implementations on CPU only. Our results show the power of 
GPU on the transportation simulation and optimization. In the 
future, we will go on the research on the following points,  
1) Improve the microsimulation model to make it more 

practical. We use a very simple model in this paper to 
demonstrate and verify the power of GPU. In the future, 
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we will make the model more practical by learning from 
mature software such as MATSim.  

2) Solve large scale problems. The road network in the 
paper has only 4 intersections. A real network contains 
hundreds of intersections of many types. We plan to use 
GPU clusters to tackle the large scale problems.  

3) Improve the optimization method. GA is not the only 
choice for the traffic signal timing optimization problem. 
We may consider GA with some local search algorithms 
to improve the performances.  

4) Different criteria should be considered. We chose the 
number of vehicles leaving the road network as the 
objective to optimize. Other objective functions can be 
considered, such as the mean travel time of the vehicles, 
the mean length of the queues, or the mean stop times of 
the vehicles. Moreover, we should consider the criteria 
together and solve the multi-objective optimization 
problem.  

Finally, we conclude the paper that this paper is only part 
of on-going research and we believe that it is promising to 
design and use parallel algorithms with GPU to solve the 
various simulation and optimization problems in the 
Intelligent Transportation Systems research. 
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