

Abstract—With the advantage of simulating the details of a
transportation system, the “microsimulation” of a traffic system
has long been a hot topic in the Intelligent Transportation
Systems (ITS) research. The Cellular Automata (CA) and the
Multi-Agent System (MAS) modeling are two typical methods
for the traffic microsimulation. However, the computing burden
for the microsimulation and the optimization based on it is
usually very heavy. In recent years the Graphics Processing
Units (GPUs) have been applied successfully in many areas for
parallel computing. Compared with the traditional CPU cluster,
GPU has an obvious advantage of low cost of hardware and
electricity consumption. In this paper we build an MAS model
for a road network of four signalized intersections and we use a
Genetic Algorithm (GA) to optimize the traffic signal timing
with the objective of maximizing the number of the vehicles
leaving the network in a given period of time. Both the
simulation and the optimization are accelerated by GPU and a
speedup by a factor of 195 is obtained. In the future we will
extend the work to large scale road networks.

Index Terms—Microsimulation; Multi-Agent Systems;
Intelligent Transportation Systems; GPU; Genetic
Algorithms

I. INTRODUCTION
raffic simulation [1-21] is an important tool for control

and management of urban traffic systems as the
experiments on the real traffic systems are usually very

costly. Early traffic simulation systems tended to be
macroscopic or mesoscopic based on hydromechanics or
statistical physics. Typical methods include the
Lighthill_Whitham_Richards (LWR) model [10,11] and
Lattice Blotzmann Methods (LBM) method [12]. These
models are good at describing the overall properties of the
traffic flow but lack the flexibility to describe the complex
microscopic behaviors such as lane changing and vehicle
overtaking. As the development of computers, the
microsimulation methods such as car following model [13],
Cellular Automata (CA) [14] and Multi-Agent Systems
(MAS) [15, 16] become more and more popular in traffic
analysis and forecasting. Many microsimulation systems are

This work is supported in part by NSFC 60921061, 70890084, 90920305,
90924302, 60904057 and 60974095; CAS 2F09N05, 2F09N06, 2F10E08,
and 2F10E10.

Dr. Zhen Shen, Kai Wang and Dr. Fenghua Wang are with the State Key
Laboratory for Intelligent Control and Management of Complex Systems,
Beijing Engineering Research Center for Intelligent Systems and Technology,
Institute of Automation, Chinese Academy of Sciences, No. 95
Zhongguancun East Road, Haidian District, Beijing 100190, China. (phone:
+86-10-82615422, fax: +86-10-82615087, e-mail: zhen.shen@ia.ac.cn,
kai.wang_nudt@hotmail.com, fenghua.zhu@ia.ac.cn.) Kai Wang is also
with Center for Military Computational Experiments and Parallel Systems
Technology, and College of Mechatronics Engineering and Automation, the
National University of Defense Technology (NUDT), Changsha, Hunan,
China.

developed, for example [1, 9, 17-19], MATSim, VISSIM,
TRANSIMS, TransWorld, MITSIM, MITSIMU, CORSIM,
SHIVA and UTOBAHN. These systems can describe the
microscopic behavior of the vehicles but has to face a great
challenge that it is time-consuming to calculate the state
evolution of vehicles. The computation time consumed by
microscopic traffic flow simulation increases very fast as the
road network expands and the number of vehicles increases.
Moreover, the optimization of the traffic system with a
microsimulation model often involves in algorithms such as
the Genetic Algorithms (GA) which need to evaluate the
system many times. There is a great challenge in computing
when GA is applied to solve the traffic signal timing
optimization problem [22-24].

While the demand for computing power in the Intelligent
Transportation Systems (ITS) research is growing, the
computing hardware is going through a revolution. Relevant
graphics device companies propose the concept of general
purpose computing based on the innate characteristics of data
parallel computing of Graphics Processing Units (GPUs)
[25-31]. GPU is a specialized circuit originally designed to
offload graphics tasks from the CPU with the intention of
performing them faster than the CPU can do. In a personal
computer, GPU usually appears on the video card or the
mother board. Usually it has excellent floating point
performances with many cores working together to draw
triangles and polygons on the screen. Because of this, people
began to use it for scientific computing. However, people had
to map their applications into problems that draw graphs and
program with graphs programming languages like Open
Graphics Library (OpenGL) and Cg. NVIDIA, a great GPU
producer, realized the potential to use GPU for general
purpose computing, and developed General-Purpose GPU
(GPGPU) and Compute Unified Device Architecture
(CUDA). With CUDA, people can program with high-level
languages such as C, C++ and Fortran. The GPGPU idea and
CUDA make the objects processed by GPU converted from
pixels on screen to different kinds of scientific data. There
have been many successful applications of GPGPU, such as
molecular dynamics [26], computational fluid dynamics [27],
bioinformatics [28] and scheduling [29]. GPU can make
considerable speedups compared with CPU and is much
affordable than other kinds of computer hardware that have
the same computing performance. Lately some efforts have
already been made in microscopic traffic simulation using
CUDA [20,21] that opened up a new way for implementation
and parallelization of microscopic traffic simulation.

Just as the development of CPU makes the iterative
algorithms prevailing, we believe that the development of
GPU can make the parallel algorithms in an iterative fashion
prevailing. In this paper, we report some preliminary work on

Agent-based Traffic Simulation and Traffic Signal Timing
Optimization with GPU
Zhen Shen, Kai Wang, Fenghua Zhu

T

2011 14th International IEEE Conference on
Intelligent Transportation Systems
Washington, DC, USA. October 5-7, 2011

978-1-4577-2196-0/11/$26.00 ©2011 IEEE 145

using GPU for the traffic microsimulation and optimization.
We build a parallel MAS model for a road network with four
signalized intersections. This model builds a GPU based
MAS model of traffic simulation environment following the
work by David Strippgen [20,21], and then we apply
GPU-adapted parallel Genetic Algorithm (GA) [22] to
optimize the traffic signal timing configurations. By using
NVIDIA GTX 470 we obtain a speedup by a factor of 195
compared with a mainstream CPU of AMD AthlonTM 64 X2
Dual Core processor 4000+. The contribution of the paper is
that we use GPU to parallelize the microsimulation and
optimization of a traffic system and show that this integration
of GPU with MAS and parallel iterative algorithms can help
solve real problems more practically.

The remaining parts of the paper are organized as follows.
In Section II, we give a review on GPU and the
microsimulation and optimization of the traffic systems. In
Section III, we give the formulation of the problem and show
how to implement the parallel traffic simulation and
optimization model with GA on GPU. In Section IV we show
the experiment results. In Section V we conclude the paper
and discuss the future research.

II. REVIEW

A. GPU, Fermi and CUDA
Currently, millions of personal computer users are using

NVIDIA GPUs for various different purposes, most of which
are related to acceleration of graphics rendering or scientific
computation. GPU is the core of the display card and is
controlled by CPU. In hardware, a GPU has many cores
working together. The cores are called Streaming Processors
(SP), and several cores (8 or 32 typically) are organized into a
Streaming Multi-processor (SM). In software, a typical GPU
program consists of two parts: one part is the CPU codes that
control the process of the whole program and does the
sequential work, and the other is the GPU part that does the
parallel work. With CUDA, the programmers can use C style
codes to use the computing resources provided by GPU and
the programming on GPU has no much difference from using
Application Programming Interfaces (APIs).

Since 2006, NVIDIA has introduced three generations of
hardware architectures of GPU: G80, GT200, and Fermi. The
latest Fermi architecture makes great innovations and offers
dramatically increased programmability and compute
efficiency. Compared to GT200, some key features of Fermi
are:
1) Each SM has 32 SPs that is 4 times over GT200.
2) The peak double precision floating point performance is

8 times over GT200.
3) Each SM could have a 64KB shared memory that is 4

times over GT200.
We give some key performance indicators of one Fermi

GPU named GeForce GTX 470 in Table I.
A function that executes on the GPU is typically called a

“kernel” [25]. When a kernel is launched, multiple threads on
GPU organized by two levels are activated. The top level is

called “grid” and the other is called “block”. One grid can
consist of at most 65535×65535 blocks and each block can
consist of at most 512 threads. Then the grid is allocated to
GPU for parallel computing with blocks allocated to different
SMs in the GPU and threads allocated to different SPs in the
SM. Each SM has its own memory called shared memory that
all threads in it can access simultaneously, and all SMs share
the global memory, constant memory and texture memory of
GPU. Among all kinds of memories accessed by threads in
the grid, the shared memory has the lowest memory access
latency while the global memory has the highest latency. Fig.
1 illustrates the GPU parallel computing.

TABLE I KEY SPECIFICATIONS OF GEFORCE GTX 470

Number of SPs (cores) 448
Processor Clock (MHz) 1215

Memory Bandwidth (GB/s) 133.9
 Video Memory (MB) 1,280

C
PU

 th
re

ad

Fig. 1. GPU parallel computing

 One big achievement of the GPU is that Tianhe-1A, the
second fastest computer in the world (overtaken by the K
computer in Jun. 2011), uses 7,168 NVIDIA Tesla M2050
GPUs and 14, 336 CPUs. It would require more than 50,000
CPUs to deliver the same performance, and the power
consumption would increase from 4.04 megawatts to more
than 12 megawatts [30]. This shows clearly the advantage of
GPU.

B. Traffic mircosimulation and optimization

In the microsimulation, the road network and the vehicle
travel are two elementary parts. Usually a graph is used to
describe the topology of the road network. The nodes and the
links represent the intersections and roads. And a queue
simulation algorithm can be used to simulate the behaviors of
cars travelling along the links. When not considering the lane
changing or vehicle overtaking, the relationship between two
sequential vehicles can be described by a GM-type
car-following model [32],

 1
1

()
() [() ()],

[() ()]
n n

n n n n
n n

v t
a t v t v t

x t x t

β

γ

τ
τ α −

−

+
+ = −

−
 (1)

where n is used to index vehicles. The (n – 1)-th vehicle is in

146

front of the n-th vehicle. ()na t , ()nv t and ()nx t are the
acceleration, speed and position of vehicles at the time t , nτ
is the driver’s reaction time of the vehicles, α , β and γ are
constant parameters that need to be estimated from the real
car-following data.
 Many microsimulation systems are based on the above
methods of describing the road network and the vehicle travel.
As the computer develops, the performance of
microsimulation systems becomes better and better. For
example, MATSim has a multi-core version of its so-called
Deterministic, Event-based Queue-Simulation (DEQSim),
and by using a Beowulf Cluster (with 8 nodes) it can simulate
the traffic flow of Switzerland consisting of about 20,000
nodes and 60,000 links for one whole day (24 hours) within 7
min [17]. However, the Ethernet network latencies still make
it difficult to gain speedup by adding more clusters [20,21].
The GPU can be used to accelerate the microsimulation. It is
reported in [20] that a speedup of up to 67 times compared
against the highly optimized java version MATSim on a CPU
was achieved.

Besides traffic simulation, there are many optimization
problems in the ITS research. In [23] GA is used to solve the
problem of traffic signal timing optimization with a 34%
improvement over the mutually consistent solution of the
problem. It has been challenging for the microsimulation, not
to mention the optimization based on the microsimulation.
This is why we believe that GPU is a necessary and promising
tool for the traffic microsimulation and optimization.
Fortunately, GA has been modified into a parallel version
adapted to GPU. In [29], the authors use the parallel GA
algorithm to solve the Quadratic Assignment Problem (QAP)
and achieve a speedup factor of 3 to 12 by GTX 285
compared to the Intel i7 965 processor. This parallel GA is the
method that we use in this paper for solving the traffic signal
timing optimization problem.

III. FORMULATION AND IMPLEMENTATION

A. Problem Formulation and the Overall Implementation

In this paper we maximize the number of vehicles leaving a
road network in a given time period. This problem is
important in that the performance is improved by software
without upgrading the hardware. This problem is a typical
problem in the ITS research [23].

Fig. 2. The road network

We index the intersections in the road network arbitrarily
from 1 to N. The road network used in this paper is shown in
Fig. 2. For every road there are several lanes. We assume that
there are vehicles from both directions on a road and we do
not consider vehicle overtaking or lane changing in this paper.
For every intersection, there are several phases of the traffic
lights, shown in Fig. 3. We assume that there are M = 4 phases
and that the sequences of phases are the same for all the
intersections. The M phases constitute a “cycle” and we
assume that all intersections share the same cycle time,
denoted by c. We take the 1-st intersection as the reference
intersection and the offset time of cycles of the intersections
is denoted by a vector 1 2[, , ,]T

Mψ ψ ψ ψ=v L . Obviously 1ψ =

0. We denote []1 2, , , T
m m m Nmθ θ θ θ=
v

L (m = 1, 2, ..., M) with
nmθ

(n = 1, 2, …, N) as the green time of the m-th phase of the n-th
intersection. The problem can be formulated as follows,

1 2

min max

min,

max (, , , , ,)
. .

 0 ,

 , 1, 2, , ,

M

N

m m N

f c
s t c c c

ce

e m M

ψ θ θ θ

ψ

θ θ

≤ ≤
≤ ≤

≥ =

v v vv
L

v

v
L

 (2)

where 1 2(, , , , ,)Mf c ψ θ θ θ
v v vv

L is the function of the number of
vehicles that leave the road network during the given time,

min c and maxc are the minimum and maximum values of the
cycle time c, Ne is a column vector of N components all being

ones, min, (1,2, ,)m m Mθ =
v

L is the minimum green time for
the m-th phase.

Fig. 3. Phase sequence of the traffic lights

Fig. 4. Overall implementation

There are two main parts in the implementation: one is the

147

traffic flow simulator, and the other is the traffic signal timing
optimizer. Every vehicle is viewed as an agent. The
operations for the agents are similar. Also, the operations for
the chromosomes in GA are also similar. These make the
parallel implement on GPU possible, please see Fig. 4.

B. Traffic Flow Simulator
The road is divided into several lanes. We use the GM-type

car-following model [32] to describe the movements of the
vehicles as it has a clear physical meaning, please see (1). In
this model, vehicles are queued in a lane and the state of a
vehicle at a simulation time step can be computed by the
states of itself and the vehicle in front of it at the previous
simulation time step.

We assume that the arrival of the vehicles is subject to
Poisson distribution with the arrival rate λ for each lane of the
road network. The random numbers 1 2, ,..., nu u u which obeys
the uniform distribution are generated by a Mersenne Twister
(MT) generator [33]. This method can be applied easily on
GPU. Each lane of the roads in our simulator has its own
vehicle generator.

We use a “queue” to represent the vehicles in a lane. We
assume that when the distance between a vehicle and the one
at its front is less than 125 meters, the behind one moves in a
car-following mode [34]; otherwise, it travels with a desired
speed of its driver.

For vehicle agents in a queue, the most front is different
from the others as there is no vehicle at its front. Its
movement is totally determined by the states of traffic light
and its distance from the stop line. We assume that the most
front vehicle has an initial speed which obeys a normal
distribution. When a vehicle arrives at an intersection, it may
go forward, or turn left or turn right. No matter which action it
takes, we assume that it chooses the new lanes with an equal
probability.

C. Traffic Signal Timing Optimizer
1) Parallel GA model

GA is an iterative searching algorithm that mimics the
process of natural evolution. Its main idea is that the better
individuals are more likely to pass the genes to next
generations. Recently, there has been a growing interest in
implementing parallel GA with GPU [29, 31]. Here we
employ the parallel GA algorithm with the GPU designed in
[30] which can solve the quadratic assignment problem (QAP)
efficiently. In this parallel GA, two pools P and W of the same
size are used to store current and newly generated offspring
individuals. The algorithm flow is as follows,
Step 1: Generate an initial population of individuals of P .
Step 2: Evaluate the individuals in P .
Step 3: For each individual iI in P , select another individual

()jI i j≠ in P randomly. Apply crossover to iI and

jI with the probability cP . If the crossover happens,

put the child iI ′ into W; otherwise, copy Ii into W.

Step 4: For each individual iI ′ in W, apply the mutation with
the probability Pm.

Step 5: Evaluate individuals in W.
Step 6: For each individual Ii in P and its corresponding

child or copy iI ′ in W , compare the fitness values. If

iI ′ has a higher fitness, replace iI in P with iI ′ in W.
Step 7: If the termination criteria are met, terminate the

algorithm. Otherwise, go to Step3.
 The steps 2 to 6 all have the same operations on
chromosomes. This is why this GA can be parallelized.
2) Fitness function

The fitness function is used to measure how good a
solution is. In this paper we choose the number of vehicles
leaving the road network in the given time period as the
fitness measure [23]. It is just the objective function in (2).
3) Chromosome encoding and decoding

We use a binary encoding that the cycle time, the offset and
the duration of green time of the phases can be encoded in one
chromosome that is shown in Table II.

TABLE II CHROMOSOME ENCODING
 Traffic signal timing for the intersections

 No. 1 No. 2 … No. N

Cycle
time,

c

Offset
1ψ

duration of
green time
of phase 1,

11θ
…

duration of
green time
of phase M,

1Mθ

8 bits 8 bits 8 bits 8 bits

We need (M + 2) 8-bit codes for an intersection with the
first two for the cycle time and the offset and the remaining M
for the M phases. For the decoding, for any intersection, we
define a mapping factor iφ as follows,

7

0
= 2 , 1,2, , 2,k

m mk
k

b m Mφ
=

= +∑ L (3)

where mkb is the value of the k-th bit of the m-th 8-bit binary
code. The decoding method is shown in Table III.

TABLE III MAPPING BINARY CODES TO DECIMAL

Cycle time max min
min 1 255

c cc c φ −
= +

 Offset 2 255n
cψ φ=

Duration of the green
time for m-th phase

max min
min 2

min, min,
1

1

, 1, 2,...,
255

(), 1, 2,...,

nm m

M
nm

nm m iM
i

ni
i

p pp p m M

p c m M
p

φ

θ θ θ

+

=

=

−⎧ = + =⎪
⎪
⎨ = + − =⎪
⎪
⎩

∑
∑

In Table III, n is used as the index for the intersection, and
pnm is the parameter to determine the green time for the m-th
phase of the n-th intersection, with minp and maxp as its
minimum and maximum values.
4) Crossover and mutation

The one-point crossover operator and the one-point
mutation operators are with the probabilities of crossover cP
and mutation mP respectively.

148

D. Data Structures and Computing Resources Allocation
The data of vehicle agents is organized from top to bottom

in five levels: the traffic lights configurations, intersections,
roads, lanes, and vehicles. Please see Fig. 5. Before we launch
the kernel function on GPU, the data of vehicle agents and
traffic lights are copied to memories on GPU. The vehicle
data is copied to the global memory of GPU and then copied
to the shared memory of the SMs as the access to the shared
memory is faster. Traffic light data are copied to the constant
memory as the vehicles controlled by the same traffic lights
configuration need it and the constant memory can be read by
all the threads in the grid with lower memory access latency
than the global memory.

As Fig. 5 shows, a block handles the vehicles in the same
lane, and each thread in it handles a single vehicle on the lane.
Each row of blocks in the grid handles a replication of the
computing of the traffic lights configuration. For each
configuration, we simulate for T independent replications to
reduce the uncertainty.

Fig. 5. Data structures and computing resources allocations

IV. EXPERIMENTS
In this paper, we use the road network shown in Fig. 2. The

number of intersections is N = 4. For each road, there are 6
lanes with 3 at either side. The right side lane is used for
turning right, the left for turning left and the middle is used
for going forward. When going past the stop line, the vehicle
chooses new lanes with equal probabilities, i.e., 1/3.

 The distance between two neighboring intersections is 256
× 4 = 1024m, with 4m as the average length of a vehicle. The
vehicle arrival rate for each entry lane in the road network
shown in Fig. 2 (24 entry lanes altogether) is λ = 0.2 vehicle
per second. The initial speed of the car obeys the normal
distribution N(60 km/h, 10), and the desired speed is 80 km/h.
The parameters in the car-following model are = = =1α β γ .
The number of phases is M = 4.

The maximum and the minimum of the cycle time are
max 240c s= and min 60c s= . The parameters for phases are

min max0, 100p p= = and min, 6m sθ = (m = 1, 2, …, M). The
time step for the simulation is 1s. We simulate for 3,600s.

For GA, the number of individuals for each generation is C
= 500. The replications for evaluating a configuration is T =
10. The probabilities for the crossover and the mutation are

0.99cP = and 0.05mP = . We set GA for 1,000 generations.
We use a PC with one AMD AthlonTM 64 X2 Dual Core

processor 4000+ and an NVIDIA GeForce GTX470 GPU.
We use CUDA driver and SDK with the version 3.2.

The results of a typical run of GA are shown in Fig. 6.
Table IV shows the output of the GA. The number of vehicles
that leave the road network is corresponding to Fig. 6 is 8835.

We give the time consumption for one iteration of GA for
the CPU + GPU implementation and compare it with the
implementation of CPU only in Table V. The results are
based on 30 runs independently for both implementations.
The whole process of the CPU + GPU implementation takes
about 19,044s and it would be 3,719,976s (about 43.1 days)
on CPU with a speedup factor of 195. The data of one
generation transferred from the main memory to the GPU
memory takes about 120 MB video memory.

Please note that the road network used in this paper (Fig. 2)
is symmetric, and the results in Table IV verify the symmetry.

Fig.6. Results of a typical run of GA

TABLE IV TRAFFIC SIGNAL TIMING CONFIGURATION OUTPUT by GA

Cycle
time c/s

Inter-
section

No.
Offset/s

Green
time of
Phase 1

/s

Green
time of
Phase 2

/s

Green
time of
Phase 3

/s

Green
time of
Phase 4

/s

61

1 0 10 10 19 22
2 46 19 22 13 7
3 32 19 22 11 9
4 60 11 10 18 22

TABLE V TIME CONSUMPTION OF ONE ITERATION IN GA
 CPU ONLY GPU+CPU Speedup

Average Time/s 3719.976 19.044 195.336
Standard
Deviation 12.778 1.496 N/A

V. CONCLUSION AND FUTURE RESEARCH
In this paper, we propose a framework of an agent-based

traffic flow simulator and a traffic signal timing optimizer
based on GPU using NVIDIA’s CUDA. The GM type
car-following model and the parallel GA are used. We obtain
a speedup by a factor of 195 compared with the
implementations on CPU only. Our results show the power of
GPU on the transportation simulation and optimization. In the
future, we will go on the research on the following points,
1) Improve the microsimulation model to make it more

practical. We use a very simple model in this paper to
demonstrate and verify the power of GPU. In the future,

149

we will make the model more practical by learning from
mature software such as MATSim.

2) Solve large scale problems. The road network in the
paper has only 4 intersections. A real network contains
hundreds of intersections of many types. We plan to use
GPU clusters to tackle the large scale problems.

3) Improve the optimization method. GA is not the only
choice for the traffic signal timing optimization problem.
We may consider GA with some local search algorithms
to improve the performances.

4) Different criteria should be considered. We chose the
number of vehicles leaving the road network as the
objective to optimize. Other objective functions can be
considered, such as the mean travel time of the vehicles,
the mean length of the queues, or the mean stop times of
the vehicles. Moreover, we should consider the criteria
together and solve the multi-objective optimization
problem.

Finally, we conclude the paper that this paper is only part
of on-going research and we believe that it is promising to
design and use parallel algorithms with GPU to solve the
various simulation and optimization problems in the
Intelligent Transportation Systems research.

REFERENCES
[1] F.-Y. Wang, “Parallel control and management for intelligent
transportation systems: concepts, architectures, and applications,” IEEE
Trans. on Intelligent Transportation Systems, vol. 11, no. 3, pp. 630-638,
2010.
[2] F.-Y. Wang and S. Tang, “Concepts and frameworks of artificial
transportation systems,” Complex Systems and Complexity Science, vol.1,
no.2, pp.52-59, 2004. (in Chinese)
[3] N. Zhang, F.-Y. Wang, F. Zhu, D. Zhao and S. Tang, “DynaCAS:
computational experiments and decision support for ITS,” IEEE Intelligent
Systems, vol.23, no.6, pp.19-23, 2008.
[4] F.-Y. Wang and S. Tang, “Artificial societies for integrated and
sustainable development of metropolitan systems,” IEEE Intelligent Systems,
vol.19, no.4, pp. 82-87, 2004.
[5] N. Zhang, F.-Y. Wang, F. Zhu, D. Zhao and S. Tang, “DynaCAS:
computational experiments and decision support for ITS,” IEEE Intelligent
Systems, vol.23, no.6, pp.19-23, 2008.
[6] Q. Miao, F. Zhu, Y. Lv, C.-J. Cheng, C. Chen and X. Qiu, “A
game-engine-based platform for modeling and computing of artificial
transportation systems,” IEEE Transactions on Intelligent Transportation
Systems, vol. 12, no. 2, pp. 343-353, 2011.
[7] F. Zhu, G. Li, Z. Li, C. Chen and D. Wen, “A case study of evaluating
traffic signal control systems using computational experiments,” IEEE
transactions on Intelligent Transportation Systems, 2011, accepted.
[8] F.-Y. Wang, “Agent-based control for networked traffic management
systems,” IEEE Intelligent Systems, vol.20, no.5, pp. 92-96, 2005.
[9] B. Chen and H. H. Chen, "A review of the applications of agent
technologies in traffic and transportation systems," IEEE Trans. on
Intelligent Transportation Systems, vol. 11, no. 2, pp. 485-497, Jun. 2010.
[10] M. J. Lighthill and G. B. Whitham, ''On kinematic waves.I. Flood
movement in long rivers," in Proceedings of the Royal Society of London,
London, British,1955, pp. 281-316.
[11] M. J. Lighthill and G. B. Whitham, ''On kinematic waves. II. A theory
of traffic fow on long crowded roads," in Proceedings of the Royal Society of
London, London, British, 1955, pp. 317-345.
[12] I. Prigogine, R. Herman and R. S. Schechter, "Kinetic Theory of
Vehicular Traffic," IEEE Trans. Systems, Man and Cybernetics, vol. 2, pp.
295, April 1972.
[13] D. Chowdhury, L. Santen and A. Schadschneider, "Statistical physics
of vehicular traffic and some related systems," Physics Reports, vol. 329, pp.
199-329, May 2000.
[14] K. Nagel and S. Michael, "A cellular automaton model for freeway
traffic," Journal de Physique I, vol.2, pp. 2221-2229, Dec. 1992.

[15] P. Davidsson, L. Henesey, L. Ramstedt et al., "An analysis of
agent-based approaches to transport logistics," Transportation Research Part
C: Emerging Technologies, vol. 13, pp. 255-271, Aug. 2005.
[16] R. Schleiffer, "Intelligent agents in traffic and transportation,"
Transportation Research Part C: Emerging Technologies, vol.10, pp.
325-329, Oct.-Dec. 2002.
[17] M. Balmer, M. Rieser and K. M. et.al., "MATSim-T: Architecture and
Simulation Times," in A..Bazzan and F. Klügl (eds.) Multi-Agent Systems for
Traffic and Transportation Engineering, New York: Hershey, 2009.
[18] M. Fellendorf, "VISSIM: A microscopic simulation tool to evaluate
actuated signal control including bus priority," in 64th Institute
Transportation Engineers (ITE) Annu. Meeting, Dallas, TX, USA, 1994, pp.
1-9.
[19] K. Nagel and M. Rickert, "Parallel implementation of the TRANSIMS
micro-simulation," Parallel Computing, vol.27, pp. 1611-1639, Nov. 2001.
[20] D. Strippgen and K. Nagel, "Multi-agent traffic simulation with
CUDA," in International Conference on High Performance Computing &
Simulation, Leipzig, Germany, 2009, pp. 106-114.
[21] D. Strippgen and K. Nagel, ''Using common graphics hardware for
multi-agent traffic simulation with CUDA," in Proceedings of the 2nd
International Conference on Simulation Tools and Techniques, Brussels,
2009, pp.1-8.
[22] M. D. Foy, R. F. Benekohal and D. E. Goldberg, "Signal timing
determination using genetic algorithms," Transportation Research Record
1365 TRB, pp. 108-115, Apr. 1993.
[23] H. Ceylan and M. G. H. Bell, "Traffic signal timing optimisation based
on genetic algorithm approach, including drivers' routing," Transportation
Research Part B: Methodological, vol.38, pp. 329-342, May 2004.
[24] J. J. Sánchez-Medina, M. J. Galan-Moreno, E. Rubio-Royo, "Traffic
signal optimization in 'La Almozara' district in Saragossa under congestion
conditions, using genetic algorithms, traffic microsimulation, and cluster
computing," IEEE Intelli. Syst., vol. 11, pp.132-141, Mar. 2010.
[25] J. Sanders and E. Kandrot, CUDA by example, an introduction to
General-Purpose GPU Programming, p. 23, Addison-Wesley, MA, USA,
2011.
[26] T. Narumi, R. Sakamaki and S. Kameoka, "Overheads in accelerating
molecular dynamics simulations with GPUs," in Ninth International
Conference on Parallel and Distributed Computing, Applications and
Technologies, Otago 2008, pp. 143 - 150.
[27] J. Tölke, "Implementation of a Lattice Boltzmann kernel using the
Compute Unified Device Architecture developed by nVIDIA," Comput
Visual Sci, vol.13, pp. 29-39, Nov. 2009.
[28] A. Benso, S. Di Carlo, G. Politano et.al, "GPU acceleration for
statistical gene classification," in 2010 IEEE International Conference on
Automation Quality and Testing Robotics, Cluj-Napoca, 2010, pp. 1-6.
[29] S. Tsutsui and N. Fujimoto, ''Solving quadratic assignment problems by
genetic algorithms with GPU computation: a case study," in Proceedings of
the 11th Annual Conference Companion on Genetic and Evolutionary
Computation Conference, Montreal Quebec, Canada, 2009, pp. 2523-2530.
[30] NVIDIA Tesla GPUs power world's fastest supercomputer,
http://www.nvidia.com/object/tesla_computing_solutions.html.
[31] R. Arora, R. Tulshyan, K. Deb, "Parallelization of binary and
real-coded genetic algorithms on GPU using CUDA," in 2010 IEEE
Congress on Evolutionary Computation, Barcelona, Spain, 2010, pp. 1-8.
[32] X. Ma and I. Andréasson, "Driver reaction time estimation from real
car following data and application in GM-type model evaluation," in
Proceedings of the 85th TRB annual meeting, Washington D.C., 2006,
pp.1-19.
[33] M. Matsumoto and T. Nishimura, "Mersenne twister: a
623-dimensionally equidistributed uniform pseudo-random number
generator," ACM Transactions on Modeling and Computer Simulation, vol. 8,
pp. 4-30, Jan. 1998.
[34] D. L. Gerlough and M. J. Huber, "Traffic flow theory," in
Transportation Research Board Special Report 165, Washington D.C., 1975.

150

