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   Dear Editor,

In this letter, the backstepping technique is applied to solve the pre-
defined-time stabilization  problem  for  autonomous  nonlinear  sys-
tems, where nonlinear terms are unknown but satisfy a linear growth
condition. A linear time-varying control law is designed to drive all
states of an autonomous nonlinear system to the origin for an a pri-
ori preassigned  time.  Numerical  examples  are  included  to  validate
the obtained theoretical  results  and demonstrate  effectiveness  of  the
proposed  control  law.  The  conducted  simulations  show  that  the
designed control input provides a lesser magnitude and is easier com-
putable than some existing control laws.

There are different approaches to solving the stabilization problem
for autonomous systems. The most researched one is asymptotic sta-
bilization, where  the  control  objective  is  to  ensure  asymptotic  con-
vergence of the system states to an equilibrium as time goes to infin-
ity [1].  In many cases, the asymptotic convergence is provided by a
linear autonomous feedback, which is  easily computable and imple-
mentable.  However,  the  asymptotic  convergence  has  a  consider-
able  disadvantage:  since  the  system  state  actually  never  reaches  an
equilibrium,  the  separation  principle  must  be  rigorously  substanti-
ated.  To  overcome  this  difficulty,  much  attention  has  recently  been
paid to designing finite-time and fixed-time convergent control laws
and  estimating  their  convergence  (settling)  times,  in  particular,  for
uncertain  systems  [2]−[7].  However,  for  the  finite-time  convergent
strategies, their convergence times still depend on state initial values
and may diverge to infinity as the state initial values grow. The con-
vergence  times  are  uniformly  bounded  for  fixed-time  convergent
control laws, but the calculated upper convergence time estimate may
be unreasonably larger than the real convergence time. In addition, in
most fixed-time strategies, the settling time cannot be assigned a pri-
ori. This presents a challenge to design control laws where the fixed
settling time can be assigned arbitrarily.

An innovative idea has been proposed to include the convergence
time in the designed control law explicitly as a parameter, called pre-
defined-time  or  prescribed-time  convergence  [8]−[10].  This  enables
the control designer to assign the fixed settling time arbitrarily or at
will. Note that only time-varying (non-autonomous) control laws are
able  to  realize  predefined-time  convergence,  if  the  control  law  is
required to be smooth. There have recently been a number of papers
presenting predefined-time convergent algorithms for various classes

of nonlinear systems [11]−[16].
This  letter  considers  a  class  of  autonomous  nonlinear  systems,

where nonlinear terms are unknown but satisfy a linear growth condi-
tion, similarly to [15]. As known, the linear growth condition essen-
tially means that the system state cannot diverge to infinity in finite
time. Therefore,  it  is  a  conventional  condition  for  nonlinear  uncer-
tainties in a practical system. The predefined-time convergent linear
time-varying control law, stabilizing the system state at the origin in
presence of  unknown  nonlinearities,  is  designed  based  on  the  con-
ventional  backstepping  technique,  which  makes  it  straightforwardly
obtainable and intuitively consistent. The conducted numerical simu-
lations show that the designed control input provides a lesser magni-
tude and,  in  some cases,  faster  real  convergence times and is  easier
computable than some existing control laws, such as those proposed
in [15].

:Predefined-time convergence  Consider an autonomous system
 

ẋ(t) = f (x,u)
x(t0) = x0, t ≥ t0 (1)

x(t) u(t) t0where  is  the system state,  is  the control  input,  and  is  the
initial time moment.

Definition 1 [10]: The system (1) is called predefined-time conver-
gent to the origin, if

x0 Tmax > 0 x0
x(t) = 0 t ≥ Tmax

1) It is fixed-time convergent to the origin, i.e., for any initial state
, there exists a positive constant  independent of ,  such

that  for all ;
Tmax2)  is  independent  of  initial  conditions  and  disturbances  and

can be explicitly assigned as a parameter of the control input; and
Tmax ≥ T f T f3) , where  is the true convergence time.

Problem  statement: Consider  the  following  autonomous  nonli-
near system [15]:
 

ẋ1 = x2 +ϕ1(x,u)
ẋ2 = x3 +ϕ2(x,u)
...

ẋn−1 = xn +ϕn−1(x,u)
ẋn = u+ϕn(x,u)

(2)

x = [x1, x2, . . . , xn]T ∈ Rn u ∈ R
ϕi(x,u) i = 1,2, . . . ,n

ci j ≥ 0 i, j = 1,2, . . . ,n

where  is  the  state  vector,  is the  con-
trol  input,  and , , are  unknown continuous  func-
tions  (disturbances)  satisfying  a  linear  growth  condition,  i.e.,  there
exist some known constants , , such that
 

|ϕi(t, x,u)| ≤ ci1|x1|+ ci2|x2|+ · · ·+ cin|xn|. (3)
The control problem is to design a smooth control law driving the

state of the system (2) at the origin in predefined time in the sense of
Definition 1.

This problem was originally investigated in [15]. Here, we present
an alternative  solution  to  this  problem  and  demonstrate  its  advan-
tages  with  respect  to  some  performance  indices,  such  as  a  control
input  magnitude.  Note  that  the  linear  growth condition  (3)  does  not
have to be in a triangular form, as it was assumed in [15]. In contrast
to  [11],  the  system  (2)  contains  unmatched  nonlinear  disturbances
appearing in each system equation.

Control design:
Second-order  system: Consider  the  autonomous  nonlinear  two-
dimensional system (2) as
 {

ẋ1 = x2 +ϕ1(x,u)
ẋ2 = u+ϕ2(x,u)

(4)

where the nonlinear disturbances satisfy the linear growth conditions
 

ϕ1(x,u) ≤ c11|x1|+ c12|x2|
ϕ2(x,u) ≤ c21|x1|+ c22|x2| (5)

ci j > 0 i, j = 1,2with some known constants , , and the control input is
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given as
 

u(t) =


1

1+ρ12

(
−x1 −

∂ψ1
∂t
− x2
∂ψ1
∂x1

)
−ψ2 −ρ21x1, t0 ≤ t < t f

0, t ≥ t f

(6)

ψ1 = η1x1/(t f − t) ψ2 = η2z2/(t f − t)
η1,η2,ρ12,ρ21 > 0
where , ,  and  the  control  gains

 are defined in the following theorem.
x(t)
t f

t ≥ t f

η1 > c11(t f − t) + 1, η2 > c22(t f − t) + 1, ρ12 > c12,
ρ21 > c21

Theorem 1: The control law (6) drives the state  of the system
(4) at  the origin for an a priori pre-assigned time  and stays there
afterwards for  any ,  or,  in other words,  the closed-loop system
(4),  (6)  is  predefined-time convergent  to  the origin,  if  the following
conditions  hold: 

.

x2d

Proof:  Using the backstepping technique,  assign the desired value
 as

 

x2d =
−η1x1

(t f − t)
−ρ12x2 = −ψ1 −ρ12x2. (7)

Applying the change of variables
 

z2 = x2 − x2d = x2 +ψ1 +ρ12x2 (8)
and taking the time derivative, one obtains
 

ż2 = ẋ2 +
∂ψ1
∂x1

ẋ1 +
∂ψ1
∂t
+ρ12 ẋ2. (9)

Therefore, the transformed system takes the form
 

ẋ1 = z2 −ψ1 −ρ12x2 +ϕ1(x,u)

ż2 = (1+ρ12)(u(t)+ϕ2(x,u))+
∂ψ1
∂x1

ẋ1 +
∂ψ1
∂t
.

Choose the Lyapunov function as
 

V2 = V1 +
1
2
z22 (10)

V1 = (1/2)x2
1

V2

where  is the Lyapunov function for the first-order sys-
tem. Then, taking the time derivative of  yields
 

V̇2 =
∂ψ1
∂x1

ẋ1 + z2ż2 = x1 ẋ1 + z2ż2. (11)

ẋ1 ż2Substituting  and  into the last equation results in
 

V̇2 = x1(z2 −ψ1 −ρ12x2 +ϕ1)

+ z2
[
(1+ρ12)(u+ϕ2)+

∂ψ1
∂x1

ẋ1 +
∂ψ1
∂t

]
. (12)

Then, the control law is defined as
 

u(t) =


1

1+ρ12

(
−x1 −

∂ψ1
∂t
− x2
∂ψ1
∂x1

)
−ψ2 −ρ21x1, t0 ≤ t < t f

0, t ≥ t f

(13)

ψ2 = η2z2/(t f − t)where .
V̇2Thus,  can be rewritten as

 

V̇2 = x1(−ψ1 −ρ12x2 +ϕ1)
+ z2(1+ρ12)(−ρ21x1 −ψ2 +ϕ2). (14)

ϕ1 ϕ2Taking the upper bounds of  and  in (5) yields
 

V̇2 < x1

(
−η1

x1

(t f − t)
−ρ12x2 + c11x1 + c12x2

)
+ z2(1+ρ12)

(
−ρ21x1 −η2

z2
(t f − t)

+ c21x1 + c22x2

)
. (15)

z2 = x2 − x2dUsing ,
 

z2 = x2 +
η1x1

(t f − t)
+ρ12x2 = (1+ρ12)x2 +

η1x1

(t f − t)

and it follows that: 

x2 =
z2

(1+ρ21)
− η1x1

(t f − t)(1−ρ12)
. (16)

Substituting  (16)  into  (15)  implies  that  if  the  control  gains  are
assigned as
 

η1 > c11(t f − t)+1

η2 > c22(t f − t)+1 >
1

1+ρ12

(
c22(t f − t)+1

)
ρ12 > c12

ρ21 > c21 > c21 −
(

1
1+ρ12

)(
c22η1

(t f − t)

)
0 < 1/(1+ρ12) < 1taking into account , then

 

V̇2 < −
x2

1
(t f − t)

−
z22

(t f − t)
= − 1

(t f − t)
(x2

1 + z
2
2). (17)

In view of (10), the preceding equation can be rewritten as
 

V̇2 <
−2V2

(t f − t)
(18)

which implies that
 

V̇
V
<
−2

t f − t
. (19)

Therefore, the solution of the differential inequality (18) satisfies
 

V(t) < K(t f − t)2, t0 ≤ t < t f (20)
K = V(x0)/(t f − t0)2 t = t f

V2(t f ) = 0 x1(t f ) = x2(t f ) = 0
u(t) = 0 t ≥ t f t = t f

x1(t) =
x2(t) = 0 ∀t ≥ t f

where .  Therefore,  following  (20),  if ,  then
,  which  yields ,  in  view  of  (10).  Given

that  for  and the disturbances vanish at , in view of
the  condition  (5),  the  system  states  remain  equal  to  zero, 

, for . ■
x(t)

t = t f t = t f

Remark 1: The system state  remains at the origin after reach-
ing it at , since the disturbances vanish at , in view of the
condition  (3).  If  the  disturbances  are  not  vanishing,  an  additional
control input  is  required to  maintain  the  system state  at  the  equilib-
rium (see, e.g., [10], [16]).

Simulations:  Consider  the  following  autonomous  nonlinear  two-
dimensional system [15]:
 ẋ1 = x2 + x1sin(x2

2)

ẋ2 = u+ x
2
3
1 x

1
3
2 .

(21)

|ϕ1(x,u)| = |x1sin(x2
2)| ≤ |x1| c11 = 1 c12 = 0

|ϕ2(x,u)| = |x1x1x2|
1
3 ≤ (|x1|+ |x1|+ |x2|)/3 = (2/3)

|x1|+ (1/3)|x2| c21 = 2/3 c22 = 1/3
t f = 1

η1 = 5 η2 = 3 ρ12 = 0 ρ21 = 0.7
x0 = [5,50]

t f
x0

t = t f

In  this  case, ,  then  and .
On the other hand, 

,  thus,  and .  The  control  input  is
defined by (6). The convergence time is set to  and the control
gains are assigned as , , ,  and . Follow-
ing [15], the initial condition is selected as . Fig. 1 shows
the  time  histories  of  the  system  states  (21)  for  the  control  law  (6),
whereas Fig. 2 shows the time histories of the system states (21) for
the control law proposed in Theorem 1 of [15] with the same  and

. It can be observed that the magnitude of the control input (13) is
less than that of the control input proposed in [15]. Note that the con-
trol  law  (6)  is  smooth  at .  In  addition,  the  computation  of  the
gains of the control law (6) is more straightforward than those of the
control law proposed in [15].

Control design:

Vi = Vi−1 + (1/2)z2i

General-order system: To design a smooth predefined-time stabiliz-
ing control  law for  an n-dimensional  autonomous nonlinear  system,
there exist two ways: First, the control gains can be calculated recur-
sively  at  each  step  (similarly  to  the  considered  two-dimensional
case),  using  the  Lyapunov  stability  approach,  where  the  Lyapunov
function at the i-th step is defined as .

Second,  the  Routh-Hurwitz  stability  criterion  can  be  employed as
follows. At the i-th step, the desired virtual control input can be rep-
resented as 
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xid = −ψi −
n∑

i, j=1

ρi jx j + ζi (22)

i = 1, . . . ,n ζifor ,  where  denotes  all  backstepping-induced  terms
accumulated from the previous steps and
 

ψi = ηi
zi(t)

(t f − t)
. (23)

Assuming that the control gains satisfy the conditions
 

ηi > cii(t f − t)+1
ρi j > ci j

i, j = 1, . . . ,nfor , the predefined-time convergence of the closed-loop
system to the origin would follow, if  the dynamic matrix of the lin-
ear part of the system
 

A =


−η1 −ρ12 −· · · −ρ1n−ρ21 −η2 · · · −ρ2n
...

...
. . .

...
−ρn1 · · · · · · −ηn

 (24)

A

is  Hurwitz.  Note  that  the  conditions  obtained  in  the  paragraph  after
(16) in the proof of Theorem 1 are more relaxed than the conditions
given in the statement of Theorem 1. However, they are intentionally
strengthened  to  unify  them  with  the  conditions  induced  by  the  fact
that the matrix  in (24) is Hurwitz.

Conclusions: This  letter  has  presented  smooth  predefined-time
convergent  backstepping-based  control  laws  for  autonomous  nonli-
near  systems  with  linearly  growing  nonlinearities  in  two-dimen-
sional and n-dimensional cases. In the two-dimensional case, the con-
trol  input  is  obtained  explicitly.  The  performance  of  the  developed
algorithm is verified via numerical simulations, which show the reli-
able  predefined-time  convergence  to  the  origin.  and  demonstrate  its
advantages with respect to some existing control laws.
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Fig. 1. Time histories  of  the states  (21)  and the control  law (13)  for  the sec-
ond-order system.
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Fig. 2. Time histories of the state (21) and the control law proposed in [15] for
the second-order system.
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